T.C.
ANKARA ÜNİVERSİTESİ TİP FAKÜLTESİ
CERRAHİ TİP BİLİMLERİ BÖLÜMÜ
KADIN HASTALIKLARI VE DOĞUM ANABİLİM DALI

OOSİT MATURASYONUNUN
FOLLİKÜLER SIVI HORMON
PARAMETRELERİ İLE İLİŞKİSİ

T 71341

UZMANLIK TEZİ

DR. CEM S. ATABEKOĞLU

ANKARA-1998
ÖNSÖZ

Yoğun bir çalışmanın sonucunda oluşan ve branşımla ilgili ilk basamak olma özelliğini taşıyan bu tezin gerçekleşmesinde çalışmalarımı sabırla destek olan eşim Dr. Serap Atabekoğlu'na, tezin yazımında özeri ile yardımcıını esirgemeyen Evin Keleş, M.Sertaç Keleş ve Okan Yücel'e, yine tez çalışmalarının yürütülmesinde emek veren A.Ü.T.F. Kadın Hst. ve Doğum A.B.D. IVF-ET Ünitesi Embriyoloğu Dr. Oya Evirgen'e, Serpil ve Nefise hemşirelere, istatistik değerlendirme hizmeti birlikte yaptığımız Dr. S.Kenan Köse'ye sonsuz teşekkür borçluyum.

Tez danışmanı olarak her türlü desteği veren sevgili ağabeyim Doç. Dr. Hakan Satroğlu'na ve ihtisas eğitimim boyunca bilgi ve tecrübe lerini esirgemeyen tüm değerli hocalarına minnet duygularımı ve teşekkürlerimi belirtmek istiyorum.

Dr. Cem S. Atabekoğlu
İÇİNDEKİLER

1. GİRİŞ .. 4

2. GENEL BİLGİLER .. 5

2.1 Oosit Gelişimi .. 5

2.2 Oosit Maturasyonunun Değerlendirilmesi ... 6
 2.2.1 FSH ... 9
 2.2.2 LH .. 10
 2.2.3 HCG ... 11
 2.2.4 PRL ... 11
 2.2.5 Östrojen-Progesteron-Androjen ... 12

3. YÖNTEM ve GEREÇ ... 16

4. BULGULAR ... 18

5. TARTIŞMA ... 35

6. SONUÇ .. 43

7. ÖZET .. 45

8. KAYNAKLAR .. 46
1. GİRİŞ

IVF’nun başarısı spermin döleyebilme, ovumun döllenebilme yeteneğiyle ilişkilidir. İn vitro fertilizasyon ve embriyo transferi (IVF-ET) uygulamasında hasta seçimi, uygulanacak stimulasyon protokolü, siklusun monitorizasyonu, oosit toplama işleminin zamanlanması, toplanan oositlerin ve hazırlanlan spermlerin kalitesi, fertilizasyon sonrasında elde edilen embriyoların kalitesi, uterus reseptivitesi ve laboratuvar işlemler sonucu etkileyen faktörlerdir.

Oosit Kumulus Korona Kompleksi (OKKK) matürasyonu boyunca folliküler sıvının biyokimyasal karakteristikleri ile oosit matüritesi arasında direkt bir ilişki olduğuna inanılmaktadır.

Bu çalışmada, IVF-ET sikluslarında elde edilen oosit matürasyonunun folliküler sıvı hormon parametreleri ile ilişkisi değerlendirildi, bu parametrelerin farklı stimulasyon protokollerinden nasıl etkili olduğu ve IVF sonuçlarıyla ilişkisi araştırıldı.
2. GENEL BİLGİLER

2.1 OOSIT GELİŞİMİ

Anensefalik fetuslarda overler antral follikülerden yoksun olur ama mayoz ile progresyon ve primordial follikül gelişimi olur. Yani granuloza hücreleri 4 tabaka
olana kadar (antrum dönemine kadar olan) folliküler gelişim için gonadotropin etkisi gerektiği değildir.

Biraz büyüümüş ve etrafi zona pellüside ile çevrilmiş primer oositin etrafında tabakalanmış granülöza hücreleri ve stromadan farklılaşmış teka tabakasının bulunması ile oluşan ünite artuk preantral follikül (sekonder follikül) adını alır. Folliküle yakın olan teka hücreleri vasküler olup; teka interna, onun dışında fibrocellüler olanlar ise teka eksterna hücreleri adını alır. Gonadotropine bağımlı olan bu gelişime sınırlı olup, gonadotropin etkisi olmazsa sırata atrezi ile sonuçlanır. İntraüterin 7. ay civarında follikül gelişimine devam ederken granülöza hücreleri arasında boşluk oluştarya başlar ve içine sıvı dolar. Bu arada follikül içindeki oosit de gelişir. Bu yapı antral follikül (tersiyer follikül) adını alır. Preantral follikülen, antral follikül haline dönüşümünde gonadotropinler gerekli dir.

Yenidöşında prenatal oosit eksilmesi sonucu toplam kortikal germ hücrelerinin sayısı doğumda 1-2 milyona iner. Overler çocuklukta sessiz değildir. Hemen her zaman folliküller büyümeye başlar ve siklikla antral evreye kadar erişirler. Ergenlik çağı başlangıcında, germ hücre kütlesi 300bine inmiştir(1).

2.2 OOSİT MATURASYONUNUN DEĞERLENDİRİLMESİ

Oosit kalitesinin değerlendirilmesi inseminasyondan önce oositin invitro maturasyonunu tamamlayacağı sürenin belirlenmesi açısından önem taşımaktadır. Oosit ne kadar immatur ise inseminasyondan önce invitro maturasyon süresi o kadar uzun olacaktır. Ayrıca oosit maturitesi invitro fertilizasyonun başarısı ile ilişkili bulunmuştur. Yapılan bir çalışmada fertilizasyon oranları sırasıyla matur grupta %82, intermediate grupta %69, immatur grupta ise %36 bulunmuştur (2). IVF sikluslarında başarı, transfer edilen embriyo sayısına, stimulasyon sonucu elde edilen büyük oositlerin sayısı ve oosit kalitesine bağlıdır (3).

Oosit kalitesinin değerlendirilmesinde bazı kriterler yol gösterici olabilir; HCG verildiği zamanki follikül çapları, oositin aspire edildiği follikülün büyüklüğü ve aspire edilen follikül sıvısının miktarı gibi. Laboratuarda oosit maturasyonu stereomikroskopla çok çabuk olarak değerlendirilmektedir. Oosit, çevresindeki
yapılar tarafından örtülüdüğü için direkt olarak gözlenmez. Kumulus ve korona hücrelerinin dağılım ve düzenine bakılarak oosit maturasyonu konusunda Veeck ve arkadaşlarının belirttiği kriterlere (Oosit Kumulus Korona Kompleks Morfolojisi) göre karar verilir (4).

Steril petri kutusunda folliküler sıvı ya da kültür mediumu içerisinde oosit kumulus korona kompleksi gözlenir. Bu işlem oldukça hızlı yapılmalı ve tanınan oositler hızla kültür ortamına alınıp inkubatöre konulmalıdır. Oositlerin gözlenmesinde 1. polar cisimciğin ve germinal vezikülün varlığı veya yokluğu da maturasyonun belirlenmesinde kullanılır.

Immatur (Profaz I) Oosit: Germinal vezikül mevcut, 1. polar cisimciğin mevcut değildir. Immatur oositte kumulus ve korona hücreleri oosit etrafında oositi paketlemişesine sık görülürler. 24 saat inkibasyondan sonra tekrar değerlendirilirler ve 1. polar cisimciğin görülüp germinal vezikül kaybolduktan 2-3 saat sonra insemine edilebilirler.

Postmatur Oosit: 1. polar cisimciği içerir, ancak kumulus hücreleri seyrek şekilde dağınlık gösterir, korona hücreleri ise yaygın ve azdır. Bu grup oositlerin inkübe edilmelerine gerek yoktur.

MI oositlerin invtro maturasyonları 1-24 saat zaman alabilir. Yapılan çalışmalar 15 saat ve daha kısa sürede maturasyon gösteren MI oositlerin fertilizasyon oranları daha yüksek bulunmuştur (5). İnsemine edilen oositin maturitesi
artıkça fertilizasyon ve gebelik oranları da artmaktadır. Bugün IVF-ET ve ICSI’de kullanılan oositler MII oositlerdir.

Folliküler sıvı ekstrasellüler sıvının ovarian folliküllerin antrumu içinde biriken bir bölümüdür (6). Folliküler sıvı steroidleri hipofiz gonadotropinlerin kontrolü altında granüloza ve teka hücrelerinden salgılanmaktadır. Bütün antral follikül gelişim devrelerinde folliküler sıvı kumulus oosit kompleksi ile bütünyle çevrenen ve bazı steroidler folliküler sıvıda plazmadan 1000 kat yüksek olabilir (7). Ovarian steroidlerin folliküler sıvıdaki konsantrasyonu folliküler sıvıdan kana sınırlanmış difüzyon ile kandan oldukça yüksek olduğu idi süreılımektedir (3).

Follikülün maturasyonu ilerledikçe folliküler sıvı hacmi gibi folliküler sıvıdaki steroidal ve nonsteroidal maddelerin konsantrasyonu artar. OKKK’ı maturasyon boyunca folliküler sıvı içinde yıkandığında folliküler sıvının biyokimyasal karakteristikleri ile oosit maturitesi arasında direkt bir ilişki olduğuna inanılmaktadır(6-7).

Folliküler sıvı steroidleri, oosit kalitesinin tahmini için potansiyel marker olarak düşünülmektedir ve onların konsantrasyonlarını sonraki oosit fertilizasyonu, embriyo gelişimi ve implantasyonla ilişkilendirmek için girişimlerde bulunulmaktadır (6).

Folliküler sıvıda over kaynaklı hormonlar dışında diğer hormon ve biyokimyasal maddeler bulunmaktadır. Örneğin bazı kan kaynaklı hormonların (gonadotropinler gibi) düzeyleri plazmadan azdır. Bunun nedeni, bunların folliküler
kompartmenta sınır geçişlerdiridir. Bu maddelerinde konsantrasyonlar follicüller maturasyonu ve sağlığı gösterebilir çünkü kandan foliküler sıvıyla olan bu geçiş follicüler membran ve damarsal yapılarının sağlığını gösterir (8).

2.2.1 FSH

FSH bütün follikülerde antrum formasyyonunun başlangıcı ile bulunur. Folliküler faz sırasında bazı follikülerde FSH folliküler büyüme ile eşzamanlı olarak artar. 8mm'den büyük follikülerde FSH'in plazma düzeyi düşe bile folliküler değeri daha da artar. Bununla beraber folliküler sıvı FSH değeri plazma değerinin %60'ını geçmez.

Preantral döneminde sonra oosit gelişmesi gonadotropinlere bağlıdır ve artan östrojen yapımı ile uyum içindeidir. Preantral follikülerin granüloza hücreleri, steroidlerin her üç sınıfını da sentez edebilme yeteneğini de ancak androjen ve progestinlere oranla çok daha fazla östrojen yapmaktadır. Aromataz enzim sistemi androjenleri östrojenlere dönüştüğerek ovarian östrojen yapımını sınırlayan faktör olarak ortaya çıkmaktadır. FSH aromatazi induktörler ve aktive eder. FSH hem granüloza hücrelerindeki östrojen yapımını başlatmakta hem de granüloza hücrelerinin büyümesini stimule etmektedir (10).

FSH’in varlığında östrojen follikül sıvısındaki ana madde halini almaktadır. Buna karşın FSH yokluğunda androjenler hakim olmaktadır (13-14).

Kumulus oophorus hücreleri preovulatuar gonadotropin piki sonrasında karakteristik değişiklikler gösterir. Bu dönemde mukopolisakkarit ve özellikle hyaluronik asit sentezinde, laktat ve progestin üretiminde ve oksijen tüketiminde biyokimyasal değişiklikler oluşur. FSH’in bu dönemde farelerde hyaluronik asit sentezini ve mucifikasyonu kumulus kompleksinde artırarak kumulus oophorus maturasyonunda rol oynadığı ileri sürülmüştür (15).

2.2.2 LH

durum, LH’nin folliküldeki kendi reseptörlerinin down regulasyonu sorucusu olabilir. Sağlıklı antral folliküllerden elde edilen tekal doku, LH’nin yüksek seviyelerine mağrız bırakıldığında, steroidogenezde belirgin supresyon gözlemmektedir; oysa düşük düzeyin üzerinde etki söz konusu olunca steroid yapımı uyarılmaktadır (1).

2.2.3 HCG

Eksojen HCG, IVF sikluslarında LH pikini taklit etmek için verilir. LH gibi son folliküler maturasyonu sağladığı düşünülmektedir. Enjeksiyonu takiben folliküler sıvıda belirmektedir; ancak folliküler sıvıdaki konsantrasyonunun oosit maturitesi ve sonraki fertilizasyona ilişkin aydınlatmalıdır (6). HCG verilmesini takiben folliküler sıvıda Östrojen, Testosteron, Androstenedion düşerken, Progesteron düzeyleri artmaktadır (23).

2.2.4 PRL

Folliküler sıvıda tespit edilen Prolaktin düzeyleri genellikle serumdaki düzeylerinden yüksektir. Karşılaştırmada yapıldığında folliküler sıvı PRL’si, plazma düzeyinden %8 az veya %180 fazla olarak bulunmuştur (32).

Spesifik PRL reseptörlerinin insan overinde bulunması (24-25) ve hayvan çalışmalarları, ovarian fonksiyonların PRL ile direk regüle olabileceğini göstermiştir (26). Kadınlarda laktasyon gibi PRL seviyelerinin yükseldiği dönemlerde folliküler gelişim inhibe olmaktadır. Yüksek PRL düzeyleri genellikle ovarian progesteron

2.2.5 ÖSTROJEN-PROGESTERON-ANDROJEN

Kadınlarda androstenedion ya da onun metaboliti olan testosteron teka interna hücrelerinde sentez edilmekte olup, folliküller sıvıda tüm ovarian folliküllerde yüksek konsantrasyonlarda bulunur ve östradiole dönüşüm için substrat görevi yapar.

Gerçekekte östradiol düzeyi ile maturasyon arası ilişki kurulan çalışmalar, stimülasyon protokollerinde HMG kullananlar ile sınırlı bulunmuştur. Her ne kadar intrafolliküler östradiol düzeylerinin follikül maturasyonu ile üssel olarak artış gösterdiği rapor edilmiş ise de bazı çalışmaldarda bu korelasyon izlenememistir. Steroidlerin tek tek düzeyleri yerine birbirlerine oranları kullanılır ise flash mediumun dilüysonel etkisi gibi yapay hatalar düzelttilip belki de bu korelasyon daha doğru gözlemlenebilir (38).

McNatty ve arkadaşları follikül hücresindeki granüloza hücre sayısı ile östradiol/androstenedion oranı ve oosit maturasyonu arasında, normal menstruel sikluslu kadınlarda korelasyon bulunmuştur. Atrezi, follikülünün optimalden az granüloza hücresi içermesi sonucu olabilir (20). Folliküler sırlarda östradiol/androstenedion oranı granüloza hücrelerinin androjenleri östrojenlere dönüştürebilme yeteneğini, yani aromataz aktivitesini gösterir, ancak 5α-redüktaz ile oluşmuş olan androjen metabolitleri daha sonra aromatizasyonu inhibe etmektedir. 16 mm'den büyük follikülerde folliküler sırlı E₂/A oranı normal menstruel sikluslarda sağlıklı ve atretik follikülerin arımında en kesin parametre gibi göze çarpmaktadır. Sağlıklı folliküler yüksek östradiol oranları ile seyredenken, yüksek androstenedion konsantrasyonları atretik değişiklikleri işaret eder (20). Andersen, 16 mm'den büyük follikülerde E₂/A
oranın artışını gebelik oranları ile korele olduğunu rapor etmiştir (20). Yüksek testosteron seviyelerinin oosit fertilizasyonunda belirgin azalma ile paralel gittiği, dolayısıyla folliküler sıvı testosteron içeriğinin oosit kalitesine indirekt bir marker olduğu bulunmuştur (39). Stimule sikluslarında matür OKKK’sine sahip preovulatuar folliküllerin %30’unun hiçbir morfolojik dejenerasyon olmaksızın atretik değişikliklere gidebileceği rapor edilmiştir.

Progesteron düzeyleri de fertilize olan grupta istatistiksel olarak anlamlı yüksek bulunmuştur. McNatty ve Lobo, folliküler faz sırasında östradiol ve progesteron düzeylerinin büyük, daha matur folliküllerde en yüksek olduğunu rapor ettiler (52). Ancak progesteronun geç dönemde hızlı yükselişi ile E_2/P oranı östradiol konsantrasyonundaki artışa rağmen düşmekte ve E_2/P oranı folliküler maturasyon ile düşmektedir (40). Oosit maturasyonu folliküller sıvıda artış progesteron ve anlamlı derecede azalmış androstenedion düzeyleri ile korele bulunmuştur (43). HCG ve LH piki sonrası ani ve yüksek progesteron artışının oositin final maturasyonunu sağladığı iddia edilmektedir (33). Tamamlanmış oosit maturasyonu ilerleyen luteinizasyonu gerektirir (4).

Kreiner ve arkadaşları, Frenchimont ve arkadaşları gibi IVF başarılı siklusları ile folliküler sıvı E_2/P ve östradiol düzeyleri arasında korelasyon bulmuşlardır. Folliküler sıvı E_2 düzeyi ile IVF sikluslarında başarı gösteren diğer bir çalışma Gidley-Baird AA ve arkadaşlarının çalışmasıdır. Wramsby, Fishel ve arkadaşları ile Botero-Ruiz ve arkadaşları P/E$_2$ oranı ile oosit maturasyonu ve fertilizasyonu ile pozitif ilişki bulmuşlardır.
Deichert ve arkadaşları folliküler sıvı E₂/P oranının fertilizasyon sonuçları için en önemli steroid marker olduğunu rapor ettiler.

Matür OKKK içeren oositler, immatür OKKK içeren oositlerle karşılaştırıldığında progesteronda 30 katlık artış saptanırken, östradiol salgısında yalnızca 2 katlık bir artış izlenmiştir.

1. Immature oosit
Prot: 494 (S.B.)
15.4.1998

2. Intermediate oosit
Prot: 469 (R.A.)
7.3.1998

3. Mature oosit
Prot: 469 (R.A.)
7.3.1998

4. Postmature oosit
Prot: 466 (L.Y.)
25.1.1998
3. YÖNTEM ve GEREÇ

Toplanan 85 Oositin 66’sı uzun protokol GnRH-a, 19’u kısa protokol GnRH-a uygulanan gruptan alındı. 85 oositin stimulasyon protokollerine göre değerlendirildiğinde; 28’inde Pür FSH, 53’ünde HMG, 4’ünde Pür FSH ve HMG birlikte kullanıldı. 1 ampul HMG, 75 IU FSH ve 75 IU LH içerirken, 1 ampul Pür FSH, 75 IU FSH ve 1 üniteden az LH içermektedir.

16 mm’den büyük 85 folliküllü civarları ve aspirasyon günü toplanan serumlar 10 dakika 3000 devirle santrifüje edildikten sonra -20°C’de FSH, LH, ST, PRL, βHCG ölçümü için saklandı. FSH, LH ve PRL “Automated Chemiluminescence System”, ST ve βHCG ise RIA kullanılarak değerlendirildi.
Bu çalışma oosit maturasyonu ile serum ve folliküler sıvı hormon parametreleri ilişkisi, serum ve folliküler sıvı hormon parametrelerinin korelasyonu, farkları, serum ve folliküler sıvı hormon parametrelerinin ovulasyon indüksiyon tedavi şekilleri ve GnRH-a protokolleri ile karşılaştırılması, fertilizasyon failure olan gruba olmayan grubun, gebelikle sonuçlanan gruba sonuçlanmayan grubun, folliküler ve serum hormon parametreleri ile ilişkisi değerlendirildi.

Elde edilen verilerin istatistiksel değerlendirilmeleri “SPSS for Windows” istatistik paket programında yapıldı. Değerlendirmelerde, Student’s t testi, Paired t testi, tek yönlü Varyans Analizi ve bağlı olarak Duncan testi, Mann-Whitney U testi, Khi-Kare testi, Fisher-Exact testi ve korelasyon analizi uygulandı. En küçük anlamlılık sınırı 0.05 olarak tespit edildi.
4. BULGULAR

Çalışma; 33 matür, 25 intermediate, 5 immatür, 3 postmatür, 19 boş folliküller içermekteydi.

Çalışma grupları arasında immatür grupta yaşın (P<0.01) ve uygulanan ampul sayısının (P<0.05) yüksek olduğu, bunun dışında diğer gruplar arasında yaş, gün, ampul sayısı, aspiré edilen oosit sayısı, transfer edilen embriyo sayısı, endikasyon, GnRH-a protokolü ve tedavi şeması faktörleri açısından istatistiksel anlamlı farklılık saptanmadı (Tablo 1).

Tablo 1. Klinik Dataların Oosit Maturasyonu Açısından Değerlendirilmesi

<table>
<thead>
<tr>
<th></th>
<th>Matür</th>
<th>Intermediate</th>
<th>Immatür</th>
<th>Postmatür</th>
<th>Empty †</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yaş</td>
<td>32.32±5.16</td>
<td>31.62±4.40</td>
<td>41.76±0.5</td>
<td>31.66±5.68</td>
<td>33.73±6.08</td>
<td>SS*</td>
</tr>
<tr>
<td>(n = 31)</td>
<td>(n = 24)</td>
<td>(n = 4)</td>
<td>(n = 2)</td>
<td>(n = 19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gün</td>
<td>12.45±1.99</td>
<td>11.60±1.76</td>
<td>13.00±2.24</td>
<td>11.00±1.0</td>
<td>12.26±1.73</td>
<td>NS</td>
</tr>
<tr>
<td>(n = 33)</td>
<td>(n = 28)</td>
<td>(n = 5)</td>
<td>(n = 3)</td>
<td>(n = 19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampul sayısı ††</td>
<td>39.03±12.81</td>
<td>40.40±17.68</td>
<td>63.00±24.74</td>
<td>31.66±1.52</td>
<td>40.94±12.27</td>
<td>SS**</td>
</tr>
<tr>
<td>(n = 33)</td>
<td>(n = 25)</td>
<td>(n = 5)</td>
<td>(n = 3)</td>
<td>(n = 19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspire Edilen</td>
<td>9.76±6.84</td>
<td>9.52±6.84</td>
<td>9.20±5.22</td>
<td>8.00±1.00</td>
<td>10.89±8.15</td>
<td>NS</td>
</tr>
<tr>
<td>Oosit Sayısı</td>
<td>(n = 33)</td>
<td>(n = 25)</td>
<td>(n = 5)</td>
<td>(n = 3)</td>
<td>(n = 19)</td>
<td></td>
</tr>
<tr>
<td>Transfer Edilen</td>
<td>1.96±1.82</td>
<td>1.48±1.44</td>
<td>1.2±1.64</td>
<td>3.00±1.00</td>
<td>2.05±1.68</td>
<td>NS</td>
</tr>
<tr>
<td>Embriyo Sayısı</td>
<td>(n = 33)</td>
<td>(n = 25)</td>
<td>(n = 5)</td>
<td>(n = 3)</td>
<td>(n = 19)</td>
<td></td>
</tr>
<tr>
<td>Endikasyon</td>
<td>%48.5</td>
<td>%44</td>
<td>%20</td>
<td>%0</td>
<td>%47.9</td>
<td>NS</td>
</tr>
<tr>
<td>(n = 16)</td>
<td>(n = 11)</td>
<td>(n = 1)</td>
<td>(n = 1)</td>
<td>(n = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unexp.</td>
<td>%45.5</td>
<td>%56</td>
<td>%80</td>
<td>%100</td>
<td>%52.6</td>
<td>NS</td>
</tr>
<tr>
<td>(n = 15)</td>
<td>(n = 14)</td>
<td>(n = 4)</td>
<td>(n = 3)</td>
<td>(n = 10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protokol</td>
<td>%81.8</td>
<td>%68</td>
<td>%80</td>
<td>%66.7</td>
<td>%84.2</td>
<td>NS</td>
</tr>
<tr>
<td>GnRH-a</td>
<td>(n = 27)</td>
<td>(n = 17)</td>
<td>(n = 4)</td>
<td>(n = 2)</td>
<td>(n = 16)</td>
<td></td>
</tr>
<tr>
<td>Kisa</td>
<td>%18.2</td>
<td>%32</td>
<td>%20</td>
<td>%33</td>
<td>%15.8</td>
<td>NS</td>
</tr>
<tr>
<td>(n = 6)</td>
<td>(n = 9)</td>
<td>(n = 1)</td>
<td>(n = 1)</td>
<td>(n = 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tedavi</td>
<td>%33</td>
<td>%32</td>
<td>%20</td>
<td>%33</td>
<td>%36.8</td>
<td>NS</td>
</tr>
<tr>
<td>Pür FSH</td>
<td>(n = 11)</td>
<td>(n = 8)</td>
<td>(n = 1)</td>
<td>(n = 1)</td>
<td>(n = 7)</td>
<td></td>
</tr>
<tr>
<td>HMG</td>
<td>%63.6</td>
<td>%68</td>
<td>%60</td>
<td>%66.7</td>
<td>%53</td>
<td>NS</td>
</tr>
<tr>
<td>(n = 21)</td>
<td>(n = 17)</td>
<td>(n = 3)</td>
<td>(n = 2)</td>
<td>(n = 10)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Immatür grupta yaş yüksek, P < 0.01. Dişleri arasında istatistiksel fark yok.
** Immatür grupta ampul sayısı yüksek; P < 0.05.
† Oosit elde edilemeyen grup
†† 1 ampüll HMG'de 75 IU FSH ve 75 IU LH mevcut iken 1 ampül Pür FSH'ta 75 IU FSH ve 1 IU'den az LH mevcuttur.

Tablo 2'de oosit maturasyonuya serum hormon parametreleri ilişkisi gösterilmiştir. Matür grupta serum PRL değeri yüksek (P<0.05), immatür grupta serum βHCG değeri düşük (P<0.01), postmatür grupta yüksek (P<0.001) bulunmuştur.
Tablo 2. Serum Hormon Parametreleri ile Oosit Maturasyonu İlişkisi

<table>
<thead>
<tr>
<th></th>
<th>FSH (mIU/ml)</th>
<th>LH (mIU/ml)</th>
<th>ST (nmol/ml)</th>
<th>PRL (ng/ml)</th>
<th>βHCG (IU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matür</td>
<td>8,43±5,01 (n=33)</td>
<td>0,57±1,04 (n=33)</td>
<td>6,73±11,85 (n=32)</td>
<td>38,60±25,85 (n=33)</td>
<td>83,51±35,84 (n=33)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>8,59±4,54 (n=23)</td>
<td>0,50±0,55 (n=23)</td>
<td>2,95±1,46 (n=23)</td>
<td>27,07±11,47 (n=23)</td>
<td>78,55±26,33 (n=23)</td>
</tr>
<tr>
<td>İmmatür</td>
<td>8,88±1,67 (n=5)</td>
<td>0,38±0,10 (n=5)</td>
<td>1,46±0,26 (n=5)</td>
<td>23,74±8,90 (n=5)</td>
<td>27,56±14,49 (n=5)</td>
</tr>
<tr>
<td>Postmatür</td>
<td>8,10±0,71 (n=2)</td>
<td>0,16±0,16 (n=2)</td>
<td>1,2±0,0 (n=2)</td>
<td>16,95±6,15 (n=2)</td>
<td>144,40±163,48 (n=2)</td>
</tr>
<tr>
<td>Empty†</td>
<td>9,73±7,01 (n=19)</td>
<td>0,52±0,71 (n=19)</td>
<td>7,67±14,33 (n=19)</td>
<td>29,16±12,93 (n=19)</td>
<td>91,03±33,52 (n=19)</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>SS*</td>
<td>SS**</td>
</tr>
</tbody>
</table>

* Matür grupta serum prolaktin değeri daha yüksek (P < 0,05)
** İmmatür grupta serum βHCG değeri düşük (P < 0,01). Postmatür grupta yüksek (P < 0,001).
† Oosit elde edilememeyen grup

Folliküler sıvı hormon parametreleri ilişkisi değerlendirildiğinde (Tablo 3), immatür grupta serbest testosteron (ST) yüksektir (P<0,05) ve yine immatür grupta βHCG değeri düşük (P<0,05) tespit edilmiştir. Diğer gruplar arasında hormon parametreleri açısından istatistiksel anlamlı fark bulunamamıştır.

Tablo 3. Folliküler sıvı Hormon Parametreleri ile Oosit Maturasyonu İlişkisi

<table>
<thead>
<tr>
<th></th>
<th>FSH (mIU/ml)</th>
<th>LH (mIU/ml)</th>
<th>ST (nmol/ml)</th>
<th>PRL (ng/ml)</th>
<th>βHCG (IU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matür</td>
<td>5,61±3,77 (n=33)</td>
<td>0,31±0,29 (n=33)</td>
<td>82,39±70,14 (n=32)</td>
<td>33,04±17,52 (n=33)</td>
<td>38,53±24,03 (n=33)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>5,82±4,04 (n=25)</td>
<td>0,49±0,66 (n=25)</td>
<td>70,80±57,41 (n=24)</td>
<td>27,40±10,24 (n=23)</td>
<td>35,20±19,13 (n=23)</td>
</tr>
<tr>
<td>İmmatür</td>
<td>6,54±1,77 (n=5)</td>
<td>0,14±0,08 (n=5)</td>
<td>141,24±88,12 (n=5)</td>
<td>23,90±8,30 (n=5)</td>
<td>10,50±7,58 (n=5)</td>
</tr>
<tr>
<td>Postmatür</td>
<td>4,04±1,33 (n=2)</td>
<td>0,24±0,12 (n=2)</td>
<td>47,55±6,29 (n=2)</td>
<td>16,40±10,61 (n=2)</td>
<td>27,25±0,35 (n=2)</td>
</tr>
<tr>
<td>Empty†</td>
<td>5,71±3,70 (n=18)</td>
<td>0,26±0,33 (n=18)</td>
<td>70,75±50,16 (n=16)</td>
<td>25,37±10,03 (n=17)</td>
<td>40,80±23,08 (n=18)</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>NS</td>
<td>SS*</td>
<td>NS</td>
<td>SS**</td>
</tr>
</tbody>
</table>

* İmmatür grupta ST (Serbest Testosteron) yüksektir (P<0,05).
** İmmatür grupta folliküler sıvı βHCG değeri düşük (P < 0,05).
† Oosit elde edilememeyen grup

Tablo 4 ve Tablo 5’teki her oosit maturasyonu grubunda aynı aynı ve oosit maturasyonuna bakılmaksızın tüm oositlerde follikül ve serum hormon değerleri arası ilişkisi verilmiştir. Burada ST’nin serum düzeyinin bütün gruplarda folliküler sıvı düzeyi ile ilişkisiz olduğu, βHCG’nin matür grupta, FSH, LH, ST ve PRL’nin immatür grupta ilişkisiz olduğu belirlenmiştir.
Tablo 4. Oosit Maturasyonuna Göre Serum ve Folliküler Sıvı Hormon Parametreleri Korelasyonu

<table>
<thead>
<tr>
<th></th>
<th>Mattır</th>
<th>Intermediate</th>
<th>Immatur</th>
<th>Empty†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FF</td>
<td>Serum</td>
<td>r</td>
<td>P</td>
</tr>
<tr>
<td>FSH</td>
<td>5,6±3,77</td>
<td>8,43±5,01</td>
<td>0,34</td>
<td><0,001</td>
</tr>
<tr>
<td>LH</td>
<td>0,31±0,29</td>
<td>0,57±1,04</td>
<td>0,82</td>
<td><0,001</td>
</tr>
<tr>
<td>ST</td>
<td>82,4±70,14</td>
<td>6,73±11,8</td>
<td>-0,06</td>
<td>NS</td>
</tr>
<tr>
<td>PRL</td>
<td>33,04±17,5</td>
<td>38,6±25,9</td>
<td>0,84</td>
<td><0,001</td>
</tr>
<tr>
<td>hCG</td>
<td>38,53±24,0</td>
<td>83,5±35,8</td>
<td>0,39</td>
<td>NS</td>
</tr>
</tbody>
</table>

† Oosit elde edilemeyen grup

Tablo 5. Oosit Maturasyonuna Bakılmaksızın Serum ve Folliküler Sıvı Hormon Parametreleri Korelasyonu

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FF</td>
</tr>
<tr>
<td>FSH</td>
<td>5,72±3,67</td>
</tr>
<tr>
<td>LH</td>
<td>0,34±0,44</td>
</tr>
<tr>
<td>ST</td>
<td>79,35±64,21</td>
</tr>
<tr>
<td>PRL</td>
<td>28,77±13,88</td>
</tr>
<tr>
<td>βHCG</td>
<td>36,08±22,3</td>
</tr>
</tbody>
</table>
Tablo 6'da oosit maturasyonu göz önüne alınmakşizin serum ve folliküler sıvı hormon parametreleri değişim analizi verilmiştir. Buna göre en düşük istatistiksel anlam PRL'de olmak kaydıyla tüm hormonların serum ve follikül sıvı değerlerinin farklı olduğu görülmüştür.

Tablo 6. Oosit Matürasyonu Gözönüne Alınmakşizin Folliküler Sıvı Ve Serum Hormon Parametreleri Değişim Analizi

<table>
<thead>
<tr>
<th></th>
<th>Follikül Sıvısı Mean ± SD</th>
<th>Serum Mean ± SD</th>
<th>Birey Başına Değişim Miktarı Mean ± SD</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>5,78±3,69</td>
<td>8,84±5,21</td>
<td>-3,07±3,19</td>
<td><0.001</td>
</tr>
<tr>
<td>(n=80)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0,32±0,38</td>
<td>0,51±0,80</td>
<td>-0,20±0,58</td>
<td><0.01</td>
</tr>
<tr>
<td>(n=80)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>80,97±66,0</td>
<td>5,54±10,76</td>
<td>75,44±66,95</td>
<td><0.001</td>
</tr>
<tr>
<td>(n=74)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>28,85±14,12</td>
<td>32,01±19,61</td>
<td>-3,16±11,59</td>
<td>P<0.05</td>
</tr>
<tr>
<td>(n=79)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>βHCG (IU/ml)</td>
<td>36,20±22,64</td>
<td>79,19±34,26</td>
<td>-43,0±0,0</td>
<td><0.001</td>
</tr>
<tr>
<td>(n=78)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tablo 7'de aynı değişim analizi matur gruba uygulanmış ve LH hormon düzeyleri istatistiksel olarak anlamlı farklı göstermezken diğer gruplarda istatistiksel fark anlamlı bulunmuştur.

Tablo 7. Matur Grupta Folliküler Sıvı ve Serum Hormon Değerlerinin Değişim Analizi

<table>
<thead>
<tr>
<th></th>
<th>Follikül Sıvısı Mean ± SD</th>
<th>Serum Mean ± SD</th>
<th>Birey Başına Değişim Miktarı Mean ± SD</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH</td>
<td>5,61±3,77</td>
<td>8,43±5,01</td>
<td>-2,82±1,98</td>
<td><0.001</td>
</tr>
<tr>
<td>(mIU/ml) (n=33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH</td>
<td>0,31±0,29</td>
<td>0,56±1,04</td>
<td>-0,26±0,82</td>
<td>NS</td>
</tr>
<tr>
<td>(mIU/ml) (n=33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>82,85±71,25</td>
<td>6,86±12,01</td>
<td>75,98±72,95</td>
<td><0.001</td>
</tr>
<tr>
<td>(nmol/ml) (n=31)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRL</td>
<td>33,05±17,52</td>
<td>38,60±25,84</td>
<td>-5,55±14,53</td>
<td><0.05</td>
</tr>
<tr>
<td>(ng/ml) (n=33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>βHCG</td>
<td>38,52±24,33</td>
<td>83,51±35,84</td>
<td>-44,98±34,48</td>
<td><0.001</td>
</tr>
<tr>
<td>(IU/ml) (n=33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

İntermediate grupta bir önceki analizler tekrarlandığında PRL değerlerinin follikül sıvısı ve serumda farklı olmadığını gösterildi (Tablo 8).
Tablo 8. İntermediate Grupta Follikül ve Serum Hormon Değerleri Değişim Analizi

<table>
<thead>
<tr>
<th></th>
<th>Follikül Sıvısı Mean ± SD</th>
<th>Serum Mean ± SD</th>
<th>Birey Başına Değişim Miktarı Mean ± SD</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml) (n=23)</td>
<td>5,92±4,12</td>
<td>8,53±4,53</td>
<td>-2,60±2,02</td>
<td><0.001</td>
</tr>
<tr>
<td>LH (mIU/ml) (n=23)</td>
<td>0,41±0,53</td>
<td>0,50±0,55</td>
<td>-0,09±0,1</td>
<td><0.001</td>
</tr>
<tr>
<td>ST (nmol/ml) (n=22)</td>
<td>72,08±59,83</td>
<td>2,80±1,51</td>
<td>69,28±10,0</td>
<td><0.001</td>
</tr>
<tr>
<td>PRL (ng/ml) (n=23)</td>
<td>27,35±10,64</td>
<td>27,07±11,47</td>
<td>0,47±9,43</td>
<td>NS</td>
</tr>
<tr>
<td>βHCG (IU/ml) (n=21)</td>
<td>35,13±19,65</td>
<td>76,79±21,19</td>
<td>-41,66±16,25</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Tablo 9’da, boş follikülerde folliküler sıvı, serum hormon parametreleri değişim hızı incelediğinde yine PRL’nin 2 grup arasında fark göstermediği bulundu.

Tablo 9. Boş Follikülerde Folliküler Sıvı ve Serum Hormon Parametreleri Değişim Analizi

<table>
<thead>
<tr>
<th></th>
<th>Follikül Sıvısı Mean ± SD</th>
<th>Serum Mean ± SD</th>
<th>Birey Başına Değişim Miktarı Mean ± SD</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml) (n=18)</td>
<td>5,71±3,70</td>
<td>10,05±7,07</td>
<td>-4,33±5,61</td>
<td><0.01</td>
</tr>
<tr>
<td>LH (mIU/ml) (n=18)</td>
<td>0,26±0,33</td>
<td>0,51±0,72</td>
<td>-0,25±0,47</td>
<td><0.05</td>
</tr>
<tr>
<td>ST (nmol/ml) (n=16)</td>
<td>70,75±50,16</td>
<td>8,00±15,63</td>
<td>62,75±50,50</td>
<td><0.001</td>
</tr>
<tr>
<td>PRL (ng/ml) (n=17)</td>
<td>25,38±10,03</td>
<td>29,48±12,72</td>
<td>-4,10±8,2</td>
<td>NS</td>
</tr>
<tr>
<td>βHCG (IU/ml) (n=18)</td>
<td>40,80±23,08</td>
<td>91,21±34,48</td>
<td>-50,41±23,95</td>
<td><0.001</td>
</tr>
</tbody>
</table>

İmmatur grupta aynı değişim analizi yine PRL grubunda serum ve follikül sıvı hormon parametreleri arasında anlamli fark olmadığını göstermiştir (Tablo 10).
Tablo 10. İmmatür Folliküllerde Folliküler Sıvı ve Serum Hormon Parametreleri Değişim Analizi

<table>
<thead>
<tr>
<th></th>
<th>Follkül Sıvısı Mean ± SD</th>
<th>Serum Mean ± SD</th>
<th>Birey Başına Değişim Miktarı Mean ± SD</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>6,53±1,77</td>
<td>8,88±1,65</td>
<td>-2,34±1,01</td>
<td><0,01</td>
</tr>
<tr>
<td>(n=5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0,14±0,08</td>
<td>0,38±0,10</td>
<td>-0,24±0,15</td>
<td><0,05</td>
</tr>
<tr>
<td>(n=5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>141,24±88,12</td>
<td>1,46±0,26</td>
<td>139,78±88,24</td>
<td><0,05</td>
</tr>
<tr>
<td>(n=5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>23,9±8,29</td>
<td>23,74±8,9</td>
<td>0,16±5,73</td>
<td>NS</td>
</tr>
<tr>
<td>(n=5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>βHCG (IU/ml)</td>
<td>10,5±7,58</td>
<td>27,56±14,48</td>
<td>-17,06±0,0</td>
<td><0,01</td>
</tr>
<tr>
<td>(n=5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tablo 11'de klinik verilerin tedavi şemasına göre değerlendirilmesi yapmıştır. Tabloya göre Pür FSH+HMG’nin birlikte kullanıldığı grupta uygulanan ampul sayısıının yüksek (P<0,001), aspire edilen oosit sayısıının düşük (P<0,05) olduğu, Pür FSH verilen grupta transfer edilen embryo sayısıının yükse (P<0,05) olduğu görülmuştur.

Tablo 11. Klinik Verilerin Tedavi Şemasına Göre Değerlendirilmesi

<table>
<thead>
<tr>
<th></th>
<th>Pür FSH (n=28)</th>
<th>HMG (n=53)</th>
<th>P FSH+HMG (n=4)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gün Sayısı</td>
<td>12,14 ± 2,01</td>
<td>12,03 ± 1,75</td>
<td>13,50 ± 2,38</td>
<td>P > 0,05</td>
</tr>
<tr>
<td>Ampül Sayısı †</td>
<td>42,35 ± 16,12</td>
<td>37,58 ± 11,23</td>
<td>77,00 ± 20,93</td>
<td>P<0,001 *</td>
</tr>
<tr>
<td>Aspire Edilen Oosit Sayısı</td>
<td>11,10 ± 5,22</td>
<td>9,70 ± 7,99</td>
<td>3,00 ± 1,15</td>
<td>P<0,05 **</td>
</tr>
<tr>
<td>Transfer Edilen Embriyo Sayısı</td>
<td>2,46 ± 1,50</td>
<td>1,52 ± 1,67</td>
<td>1,50 ± 1,73</td>
<td>P<0,05 ***</td>
</tr>
<tr>
<td>Yaş</td>
<td>32,37 ± 4,78</td>
<td>32,75 ± 5,74</td>
<td>37,75 ± 2,87</td>
<td>P > 0,05</td>
</tr>
</tbody>
</table>

* Ampül sayısı P FSH + HMG’nin birlikte kullanıldığı grupta daha yüksek.
** Aspire edilen oosit sayısı P FSH + HMG olan grupta daha düşUCK.
*** Pür FSH verilen grupta transfer edilen embryo sayısı daha yüksekt. Diğerleri arası fark yok.
† 1 ampül HMG 75 IU FSH ve 75 IU LH içeren 1 ampül Pür FSH, 75 IU FSH ve 1 IU’den az LH içerir.

Tablo 12’de serum sıvı hormon parametrelerinin tedavi şeması ile ilişkisi değerlendirilmiştir. HMG grubunda LH’ın ve ST’nin yükse (P<0,05), Pür FSH+HMG uygulanan grupta βHCG düşUCK (P<0,05), FSH yükse (P<0,05) olduğu görülmuştur.
Tablo 12. Serum Sıvı Hormon Parametrelerinin Tedavi Şekli İle İlişkisi

<table>
<thead>
<tr>
<th></th>
<th>Pür FSH (Mean ± SD)</th>
<th>HMG (Mean ± SD)</th>
<th>Pür FSH + HMG (Mean ± SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>8.72 ± 5.18 (n=28)</td>
<td>8.25 ± 4.93 (n=50)</td>
<td>15.86 ± 3.80 (n=4)</td>
<td>P < 0.05 *</td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.22 ± 0.14 (n=28)</td>
<td>0.70 ± 0.96 (n=50)</td>
<td>0.24 ± 0.19 (n=4)</td>
<td>P < 0.05 **</td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>2.42 ± 1.07 (n=28)</td>
<td>7.57 ± 12.99 (n=48)</td>
<td>1.45 ± 0.33 (n=4)</td>
<td>P < 0.05 ***</td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>33.74 ± 22.05 (n=28)</td>
<td>30.48 ± 18.68 (n=50)</td>
<td>33.55 ± 6.70 (n=4)</td>
<td>NS</td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>80.56 ± 44.25 (n=28)</td>
<td>85.96 ± 37.26 (n=50)</td>
<td>41.17 ± 8.94 (n=4)</td>
<td>P < 0.05 ****</td>
</tr>
</tbody>
</table>

* Beraber olan grupta FSH daha yüksek.
** HMG grubunda serum LH yüksek.
*** HMG grubunda ST yüksek, diğerleri benzer.
**** βHCG beraber grupta daha düşük, diğerleri arasında fark yok.

Folliküler sıvı hormon parametrelerinin oosit.matmulırsyonuna bakılmaksızın tedavi şeması ile ilişkisi Tablo 13’te verilmiştir. HMG kullanan grupta LH değeri daha yüksek (P<0.05), Pür FSH+HMG kullanan grupta FSH değeri yüksek (P<0.05) bulunmuştur.

Tablo 13. Folliküler Sıvı Hormon Parametrelerinin Tedavi Şekli ile İlişkisi

<table>
<thead>
<tr>
<th></th>
<th>Pür FSH (Mean ± SD)</th>
<th>HMG (Mean ± SD)</th>
<th>Pür FSH + HMG (Mean ± SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>5.46 ± 3.26 (n=27)</td>
<td>5.42 ± 3.61 (n=52)</td>
<td>11.35 ± 3.11 (n=4)</td>
<td>P < 0.05 *</td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.17 ± 0.09 (n=27)</td>
<td>0.43 ± 0.52 (n=52)</td>
<td>0.23 ± 0.32 (n=4)</td>
<td>P < 0.05 **</td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>70.58 ± 75.05 (n=26)</td>
<td>81.82 ± 59.92 (n=49)</td>
<td>106.07 ± 33.10 (n=4)</td>
<td>NS</td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>30.95 ± 13.24 (n=27)</td>
<td>27.41 ± 14.52 (n=51)</td>
<td>31.42 ± 9.14 (n=4)</td>
<td>NS</td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>37.87 ± 24.15 (n=27)</td>
<td>36.54 ± 21.74 (n=50)</td>
<td>18.15 ± 7.54 (n=4)</td>
<td>NS</td>
</tr>
</tbody>
</table>

* Beraber kullanılan grup ürünlerinden farklı, diğer iki grup benzer.
** HMG grubunda LH daha yüksek, diğer iki grup benzer.

Tablo 14’te bir önceki analiz matır oosit elde edilen gruba uygulanmış ve gruplar arası istatistiksel fark HMG grubunda βHCG’de yüksek (P<0.05) olacak şekilde serumda bulunmuştur.
Tablo 14. Matür Oositlerde Serum Hormon Düzeylerinin Tedavi Protokollere Göre Değişimi

<table>
<thead>
<tr>
<th></th>
<th>P FSH</th>
<th>HMG</th>
<th>P FSH + HMG</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>8.23 ± 5.52</td>
<td>8.07 ± 4.48</td>
<td>18.1</td>
<td>NS</td>
</tr>
<tr>
<td>(n=11)</td>
<td>(n=21)</td>
<td>(n=1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.21 ± 0.14</td>
<td>0.76 ± 1.27</td>
<td>0.22</td>
<td>NS</td>
</tr>
<tr>
<td>(n=11)</td>
<td>(n=21)</td>
<td>(n=1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>2.85 ± 1.25</td>
<td>9.13 ± 14.55</td>
<td>1.2 ± 0</td>
<td>NS</td>
</tr>
<tr>
<td>(n=11)</td>
<td>(n=20)</td>
<td>(n=1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>40.88 ± 31.22</td>
<td>37.39 ± 24.01</td>
<td>38.9</td>
<td>NS</td>
</tr>
<tr>
<td>(n=11)</td>
<td>(n=21)</td>
<td>(n=1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHCG</td>
<td>66.97 ± 26.62</td>
<td>94.52 ± 36.06</td>
<td>33.90 ± 0</td>
<td>P < 0.05 *</td>
</tr>
<tr>
<td>(n=11)</td>
<td>(n=21)</td>
<td>(n=1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* HMG grubunda serum βHCG, Pür FSH grubundan daha yüksektir.

Tablo 15’te aynı analiz folliküler sıvı hormonlarında karşılaştırıldığında istatistiksel fark hiçbir grupta bulunamamıştır.

Tablo 15. Matür Oosit Elde Edilen Grupta Tedavi Şemasına Göre Folliküler Hormonların Karşılaştırılması

<table>
<thead>
<tr>
<th></th>
<th>P FSH</th>
<th>HMG</th>
<th>P FSH + HMG</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>5.30 ± 3.88</td>
<td>5.58 ± 3.79</td>
<td>9.70 ± 0.0</td>
<td>NS</td>
</tr>
<tr>
<td>(n=11)</td>
<td>(n=21)</td>
<td>(n=1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.22 ± 0.08</td>
<td>0.33 ± 0.34</td>
<td>0.72 ± 0.0</td>
<td>NS</td>
</tr>
<tr>
<td>(n=11)</td>
<td>(n=21)</td>
<td>(n=1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>99.43 ± 105.40</td>
<td>71.33 ± 46.50</td>
<td>144.10 ± 0</td>
<td>NS</td>
</tr>
<tr>
<td>(n=10)</td>
<td>(n=21)</td>
<td>(n=1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>35.37 ± 16.96</td>
<td>31.85 ± 18.52</td>
<td>32.00 ± 0.0</td>
<td>NS</td>
</tr>
<tr>
<td>(n=11)</td>
<td>(n=21)</td>
<td>(n=1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHCG</td>
<td>39.51 ± 28.39</td>
<td>39.08 ± 22.32</td>
<td>15.90 ± 0.0</td>
<td>NS</td>
</tr>
<tr>
<td>(n=11)</td>
<td>(n=21)</td>
<td>(n=1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pür FSH kullanan hastaların serum hormon düzeylerinin matür olan grupla matür olmayan gruplar arası karşılaştırılması yapıldığında hormon parametreleri arasında ilişki bulunmazken (Tablo 16); follikül sıvısında yapılan karşılaştırımda matür olmayan grupta LH’ın istatistiksel olarak anlamlı şekilde düşük (P<0.05) olduğu tespit edilmiştir (Tablo 17).
Tablo 16. Serumda FSH Kullanılan Hastaların Hormon Düzeylerinin Matür ve Matür Olmayan Gruplar Arası Karşılaştırılması

<table>
<thead>
<tr>
<th></th>
<th>Matür Grup</th>
<th>Matür Olmayan Grup</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>8.24±5.52 (n=11)</td>
<td>9.03±5.10 (n=17)</td>
<td>NS</td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.21±0.14 (n=11)</td>
<td>0.22±0.15 (n=17)</td>
<td>NS</td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>2.85±1.25 (n=11)</td>
<td>2.14±0.87 (n=17)</td>
<td>NS</td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>40.88±31.23 (n=11)</td>
<td>29.12±12.40 (n=17)</td>
<td>NS</td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>66.97±26.63 (n=11)</td>
<td>89.36±51.50 (n=17)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Tablo 17. Matür Olan Grupla Matür Olmayan Grup Arası Folliküler Sıvıda Hormon Değerlerinin FSH Kullanılan Grupta Karşılaştırılması

<table>
<thead>
<tr>
<th></th>
<th>Matür Grup</th>
<th>Matür Olmayan Grup</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>5.30±5.88 (n=11)</td>
<td>5.57±2.88 (n=16)</td>
<td>NS</td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.22±0.86 (n=11)</td>
<td>0.14±0.82 (n=16)</td>
<td>P<0.05*</td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>99.43±105.40 (n=10)</td>
<td>52.55±42.66 (n=16)</td>
<td>NS</td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>35.38±16.96 (n=11)</td>
<td>27.91±9.39 (n=16)</td>
<td>NS</td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>39.52±28.39 (n=11)</td>
<td>36.73±21.67 (n=16)</td>
<td>NS</td>
</tr>
</tbody>
</table>

* Matür grupta follikül LH yüksekt.

Aynı analizler HMG uygulanan hastalarda tekrarlandığında, serum PRL’nin matür grupta yüksek (P<0.05) (Tablo18) olduğu, follikül sıvısındaki PRL düzeyinin ise gruplar arasında istatistiksel anlamlı fark oluşturmadığı tespit edilmiştir (Tablo 19).
Tablo 18. HMG ile Tedavi Edilen Grupta Matür Olanlarla Olmayanlar Arasında Serum Hormon Değerleri Arasındaki İlişki

<table>
<thead>
<tr>
<th></th>
<th>Matür Grup</th>
<th>Matür Olmayan Grup</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>8.07±4.48 (n=21)</td>
<td>8.37±5.30 (n=29)</td>
<td>NS</td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.76±1.27 (n=21)</td>
<td>0.66±0.69 (n=29)</td>
<td>NS</td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>9.13±14.55 (n=20)</td>
<td>6.47±11.90 (n=28)</td>
<td>NS</td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>37.39±24.01 (n=21)</td>
<td>25.48±11.70 (n=29)</td>
<td>P<0.05*</td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>94.52±36.06 (n=21)</td>
<td>79.75±37.50 (n=29)</td>
<td>NS</td>
</tr>
</tbody>
</table>

*HMG kullanan grupta serum PRL düzeyleri matür grupta yüksektir buldu.

Tablo 19. HMG ile Tedavi Edilen Grupta Matür Olan Grupla Matür Olmayan Gruplar Arasında Folliküler Hormon Düzeyleri Arası İlişki

<table>
<thead>
<tr>
<th></th>
<th>Matür Grup</th>
<th>Matür Olmayan Grup</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>5.58±3.78 (n=21)</td>
<td>5.30±3.55 (n=31)</td>
<td>NS</td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.33±0.35 (n=21)</td>
<td>0.51±0.61 (n=31)</td>
<td>NS</td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>71.33±46.50 (n=21)</td>
<td>89.70±68.04 (n=28)</td>
<td>NS</td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>31.85±18.52 (n=21)</td>
<td>24.30±10.14 (n=30)</td>
<td>NS</td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>39.09±22.23 (n=21)</td>
<td>34.70±21.57 (n=29)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Tablo 20’de sadece uzun protokol GnRH-a alan hastalarda tedavi şemasına göre serum hormon parametreleri değerlendirildiğinde Pür FSH+HMG’yi birlikte alanlarda FSH düzeyi yüksek (P<0.001), HMG alan grupta serum LH düzeyi yüksek (P<0.05) olarak görülmüştür.
Tablo 20. Uzun Protokol GnRH-a Alan Hastalarda Tedavi Şekline Göre Serum Hormon Parametreleri

<table>
<thead>
<tr>
<th></th>
<th>Pür FSH (mIU/ml)</th>
<th>HMG (ng/ml)</th>
<th>Pür FSH + HMG (ng/ml)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>7.98 ± 4.38 (n=26)</td>
<td>9.69 ± 5.00 (n=34)</td>
<td>17.75 ± 6.60 (n=3)</td>
<td>P < 0.001 *</td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.20 ± 0.13 (n=26)</td>
<td>0.84 ± 1.13 (n=34)</td>
<td>1.61 ± 0.10 (n=3)</td>
<td>P < 0.05 **</td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>2.47 ± 1.08 (n=26)</td>
<td>5.08 ± 8.94 (n=34)</td>
<td>1.43 ± 0.40 (n=3)</td>
<td>NS</td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>34.56 ± 22.48 (n=26)</td>
<td>31.77 ± 19.87 (n=34)</td>
<td>36.40 ± 4.33 (n=3)</td>
<td>NS</td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>83.11 ± 44.95 (n=26)</td>
<td>91.20 ± 39.53 (n=34)</td>
<td>40.00 ± 10.56 (n=3)</td>
<td>NS</td>
</tr>
</tbody>
</table>

* FSH düzeyi Pür FSH + HMG birlikte alanlarda yüksek, diğer grup arası fark yok.
** HMG alan grupta serum LH düzeyi yüksek.

Bir önceki tabloda yapılan inceleme folliküler svi'da yapıldığında Pür FSH+HMG birlikte kullanılan grupta FSH'ın daha yüksek (P<0.05), HMG alan grupta LH'ın yüksek (P<0.05) olduğu belirlenmiştir (Tablo 21).

<table>
<thead>
<tr>
<th></th>
<th>Pür FSH (mIU/ml)</th>
<th>HMG (ng/ml)</th>
<th>Pür FSH + HMG (ng/ml)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>5.00 ± 2.63 (n=25)</td>
<td>6.17 ± 3.78 (n=37)</td>
<td>12.53 ± 2.47 (n=3)</td>
<td>P < 0.05 *</td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.17 ± 0.08 (n=25)</td>
<td>0.45 ± 0.61 (n=37)</td>
<td>0.29 ± 0.37 (n=3)</td>
<td>P < 0.05 **</td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>71.68 ± 76.38 (n=25)</td>
<td>69.62 ± 51.76 (n=34)</td>
<td>101.10 ± 38.66 (n=3)</td>
<td>NS</td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>30.65 ± 13.69 (n=25)</td>
<td>28.68 ± 15.20 (n=36)</td>
<td>34.60 ± 8.05 (n=3)</td>
<td>NS</td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>39.22 ± 24.51 (n=25)</td>
<td>36.07 ± 23.45 (n=36)</td>
<td>16.86 ± 8.69 (n=3)</td>
<td>NS</td>
</tr>
</tbody>
</table>

* Pür FSH + HMG birlikte kullanılan grupta FSH daha yüksek
** HMG alan grupta LH daha yüksek.

Tablo 22'de GnRH-a protokollerine göre serum hormon parametreleri değerlendirildiğinde kısa protokolde ST'nin yüksek (P<0.01), aynı çalışma folliküler sıvı hormon parametrelerinde yapıldığında yine kısa protokolde ST’nin yüksek (P<0.05) olduğu gösterilmiştir (Tablo 23).
Tablo 22. GnRH-a Protokolüne Göre Tüm Gruplarda Serum Hormon Parametreleri

<table>
<thead>
<tr>
<th></th>
<th>Kısa Protokol</th>
<th>Uzun Protokol</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>6.82 ± 5.30</td>
<td>9.37 ± 5.03</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(n=19)</td>
<td>(n=63)</td>
<td></td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.41 ± 0.23</td>
<td>0.54 ± 0.89</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(n=19)</td>
<td>(n=63)</td>
<td></td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>11.51 ± 17.53</td>
<td>3.83 ± 6.71</td>
<td>P <0.01*</td>
</tr>
<tr>
<td></td>
<td>(n=17)</td>
<td>(n=63)</td>
<td></td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>27.09 ± 15.24</td>
<td>33.14 ± 20.42</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(n=19)</td>
<td>(n=63)</td>
<td></td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>70.37 ± 29.43</td>
<td>85.42 ± 42.07</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(n=19)</td>
<td>(n=63)</td>
<td></td>
</tr>
</tbody>
</table>

* Serum serbest testosteron kısa protokolde yüksekt.

<table>
<thead>
<tr>
<th></th>
<th>Kısa Protokol</th>
<th>Uzun Protokol</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>4.63 ± 3.66</td>
<td>6.01 ± 3.64</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(n=18)</td>
<td>(n=65)</td>
<td></td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.34 ± 1.97</td>
<td>0.34 ± 0.48</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(n=18)</td>
<td>(n=65)</td>
<td></td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>106.24 ± 66.95</td>
<td>71.98 ± 61.96</td>
<td>P < 0.05*</td>
</tr>
<tr>
<td></td>
<td>(n=17)</td>
<td>(n=62)</td>
<td></td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>25.36 ± 12.11</td>
<td>29.73 ± 14.28</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(n=18)</td>
<td>(n=64)</td>
<td></td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>34.86 ± 17.09</td>
<td>36.40 ± 23.62</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(n=17)</td>
<td>(n=64)</td>
<td></td>
</tr>
</tbody>
</table>

* Folliküller serbest testosteron kısa protokolde yüksekt olarak bulundu.

Hiçbir oositi döllenmeyen 12 hastadan elde edilen 25 follikül, fertl gruptan elde edilen folliküllerle serum hormonları açısından karşılaştırıldığında ST düzeyinin "Fertilizasyon Failure (FF)" olan grupta düşük (P<0.05) ayrıca βHCG’nin de düşük (P<0.01) olduğu tesbit edilmiştir (Tablo 24).
Tablo 24. Fertilizasyon Failure Hastaların Oositleri ile Fertil Hastaların Oositlerinin Serum Hormon Düzeylerinin Karşılaştırılması

<table>
<thead>
<tr>
<th></th>
<th>Fertilizasyon Failure</th>
<th>Fertilizasyon Failure</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>olmayan grup</td>
<td>olan grup</td>
<td></td>
</tr>
<tr>
<td>FSH (mIU/ml)</td>
<td>8.48 ± 4.87</td>
<td>9.45</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(n=57)</td>
<td>(n=25)</td>
<td></td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.55 ± 0.94</td>
<td>0.43 ± 0.27</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(n=57)</td>
<td>(n=25)</td>
<td></td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>6.76 ± 12.29</td>
<td>2.63 ± 1.36</td>
<td>P < 0.05 *</td>
</tr>
<tr>
<td></td>
<td>(n=55)</td>
<td>(n=25)</td>
<td></td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>32.08 ± 18.48</td>
<td>30.98 ± 21.83</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(n=57)</td>
<td>(n=25)</td>
<td></td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>90.82 ± 38.44</td>
<td>61.65 ± 36.02</td>
<td>P < 0.01 **</td>
</tr>
<tr>
<td></td>
<td>(n=57)</td>
<td>(n=25)</td>
<td></td>
</tr>
</tbody>
</table>

* Fertilizasyon Failure olan hastaların serum free testosterone düzeyleri daha düşüktür.
** Fertilizasyon Failure olan hastaların serum βHCG düzeyleri düşük bulundu.

Aynı çalışmada follicüler sıvında yapıldığında βHCG değerinin yine FF olan grupta düşük (P<0.001) olduğu gösterilmiştir (Tablo 25).

Tablo 25. Tüm Folliküler Maturasyonlar Gözönüne Alındığında Fertilizasyon Failure Olan Grubu Olmayan Grubun Karşılaştırılması

<table>
<thead>
<tr>
<th></th>
<th>Fertilizasyon Failure Olmayan Grup</th>
<th>Fertilizasyon Failure Olan Grup</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>5.43 ± 3.06</td>
<td>6.38 ± 4.79</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(n=58)</td>
<td>(n=25)</td>
<td></td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.37 ± 0.50</td>
<td>0.28 ± 0.21</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(n=58)</td>
<td>(n=25)</td>
<td></td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>73.39 ± 63.48</td>
<td>92.22 ± 65</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(n=54)</td>
<td>(n=25)</td>
<td></td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>28.48 ± 13.86</td>
<td>29.44 ± 14.19</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>(n=57)</td>
<td>(n=25)</td>
<td></td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>41.24 ± 22.38</td>
<td>23.82 ± 17.06</td>
<td>P < 0.001 *</td>
</tr>
<tr>
<td></td>
<td>(n=27)</td>
<td>(n=24)</td>
<td></td>
</tr>
</tbody>
</table>

* Fertilizasyon Failure olan oositlerde follicüler βHCG düzeyleri daha düşük tespit edildi.

Tablo 26'da ve 27'de matür oosit grubunda sırasıyla serum ve follicül sıvısı hormon parametrelerinin FF olan grupla fertil grup karşılaştırılmasında istatistiksel anlamlı fark bulunmamıştır.
Tablo 26. Matür Oositlerin Serum Değerlerinin Fertil Grupla Fertilizasyon Failure Grup Arasında Karşılaştırılması

<table>
<thead>
<tr>
<th></th>
<th>Fertil Grup</th>
<th>Fertilizasyon Failure Grup</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>8.04 ± 4.81 (n=22)</td>
<td>9.21 ± 5.53 (n=15)</td>
<td>NS</td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.65 ± 1.26 (n=22)</td>
<td>0.38 ± 0.31 (n=11)</td>
<td>NS</td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>8.70 ± 14.30 (n=21)</td>
<td>2.94 ± 1.44 (n=11)</td>
<td>NS</td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>38.01 ± 23.90 (n=21)</td>
<td>39.77 ± 30.58 (n=11)</td>
<td>NS</td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>89.66 ± 32.66 (n=22)</td>
<td>71.20 ± 40.26 (n=11)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Tablo 27. Matür Oositler Dikkate Alındığında Fertilizasyon Failure Olan Hastaların Fertil Hastalarla Folliküler Hormon Düzeyleri Açısından Karşılaştırılması

<table>
<thead>
<tr>
<th></th>
<th>Fertil Grup</th>
<th>Fertilizasyon Failure Grup</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>5.33 ± 3.31 (n=22)</td>
<td>6.19 ± 4.68 (n=11)</td>
<td>NS</td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.32 ± 0.34 (n=22)</td>
<td>0.29 ± 0.18 (n=11)</td>
<td>NS</td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>86.04 ± 83.61 (n=22)</td>
<td>75.40 ± 34.47 (n=11)</td>
<td>NS</td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>32.49 ± 17.56 (n=22)</td>
<td>34.16 ± 18.25 (n=11)</td>
<td>NS</td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>43.08 ± 24.93 (n=22)</td>
<td>29.41 ± 20.14 (n=11)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Tablo 28, gebelik elde edilen ve edilmeyen grupların serum hormon parametreleri incelemiştirde gebelikle sonuçlanan grubun ST düzeyinin düşük olduğunu (P<0.01) göstermektedir.
Tablo 28. Gebelik Pozitif ve Negatif Gruplarda Serum Hormon Parametreleri İle Gebelik İlişkisi

<table>
<thead>
<tr>
<th></th>
<th>Gebelik (+)</th>
<th>Gebelik (-)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>83.58±4.87 (n=11)</td>
<td>8.80±5.26 (n=7)</td>
<td>NS</td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.63±0.83 (n=11)</td>
<td>0.50±0.79 (n=7)</td>
<td>NS</td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>2.06±0.64 (n=9)</td>
<td>5.90±10.94 (n=71)</td>
<td>P<0.01</td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>27.00±8.76 (n=11)</td>
<td>32.48±20.54 (n=71)</td>
<td>NS</td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>72.04±39.42 (n=11)</td>
<td>83.47±39.98 (n=71)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Tablo 29’da oosit maturasyonuna bakılmaksızın follikül sıvısı hormon parametreleri ve gebelik ilişkisi incelendiğinde gebe grupta PRL’nin düşük olduğu (P<0.05) tespit edilmiştir.

Tablo 29. Gebelik Pozitif ve Negatif Gruplarda Oosit Maturasyonuna Bakılmaksızın Follikül Sıvısı Hormon Parametreleri ve Gebelik İlişkisi

<table>
<thead>
<tr>
<th></th>
<th>Gebelik (+) Mean ± SD</th>
<th>Gebelik (-) Mean ± SD</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>6.04±4.03 (n=11)</td>
<td>5.66±3.64 (n=72)</td>
<td>NS</td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.22±0.15 (n=11)</td>
<td>0.35±0.47 (n=72)</td>
<td>NS</td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>63.85±38.47 (n=11)</td>
<td>81.86±67.32 (n=68)</td>
<td>NS</td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>22.27±8.70 (n=11)</td>
<td>29.78±14.30 (n=71)</td>
<td>P<0.05</td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>40.28±25.55 (n=11)</td>
<td>35.41±21.90 (n=70)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Tablo 30 ve 31’de sırasıyla matur oosit grubunda serum ve follikül sıvısı hormon parametrelerinin gebelikle ilişkisi tekrar incelendiğinde istatistiksel anlamlı sonuç elde edilememiştir.
<table>
<thead>
<tr>
<th></th>
<th>Gebelik (+)</th>
<th>Gebelik (-)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>5.73±1.61 (n=3)</td>
<td>8.70±5.16 (n=30)</td>
<td>NS</td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>1.28±1.074 (n=3)</td>
<td>0.49±1.03 (n=30)</td>
<td>NS</td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>2.90±0.0 (n=2)</td>
<td>6.98±12.20 (n=30)</td>
<td>NS</td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>27.53±12.93 (n=3)</td>
<td>39.70±26.67 (n=30)</td>
<td>NS</td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>96.53±58.65 (n=3)</td>
<td>82.20±34.08 (n=30)</td>
<td>NS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Gebelik (+)</th>
<th>Gebelik (-)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (mIU/ml)</td>
<td>4.68±2.47 (n=3)</td>
<td>5.70±3.89 (n=30)</td>
<td>NS</td>
</tr>
<tr>
<td>LH (mIU/ml)</td>
<td>0.38±0.04 (n=3)</td>
<td>0.30±0.31 (n=30)</td>
<td>NS</td>
</tr>
<tr>
<td>ST (nmol/ml)</td>
<td>93.23±39.15 (n=3)</td>
<td>81.26±72.96 (n=29)</td>
<td>NS</td>
</tr>
<tr>
<td>PRL (ng/ml)</td>
<td>22.97±11.95 (n=3)</td>
<td>34.05±17.82 (n=30)</td>
<td>NS</td>
</tr>
<tr>
<td>BHCG (IU/ml)</td>
<td>60.20±16.82 (n=3)</td>
<td>36.36±23.78 (n=30)</td>
<td>NS</td>
</tr>
</tbody>
</table>
5. TARTIŞMA

Bu çalışmada IVF-ET sikluslarından elde edilen oosit maturasyonunun folliküler sıvı hormon parametreleri ile ilişkisi değerlendirildi, bu parametrelerin farklı stimulasyon protokollerinden nasıl etkilendiği ve IVF sonuçlarıyla ilişkisi araştırıldı.

Bu çalışmada da FSH’nin serum ve folliküler sıvı hormon değerlerinin, oosit maturasyonu, fertilizasyon failure ve gebelik oranları ile korele olduğu görülmüştür. Ayrıca HMG kullanan grupta da matür gruplar değerleri ile karşılaştırılmış ancak farklı bir sonuç elde edilememiştir.

Cha ve arkadaşları yaptıkları çalışmada folliküler sıvı LH konsantrasyonunun oosit maturasyonu ile spontan sikluslarda iyi korelasyon gösterdiğini, bunun da daha önceleri diğer otörlere tarafından bulunan folliküler sıvı progesteron düzeyleri ile oosit maturasyonu arasındaki ilişkiye gösteren çalışmalarla uyumlu olduğunu rapor

Bu çalışmada literatürle uyumlu olarak HMG alan grupta serum ve folliküler sıvı LH değeri yüksek bulunmuş fakat matur oositler dikkate alındığında bu fark istatistiksel olarak anlamlı çıkmamıştır.Ayrıca gebelikle sonuçlanan grupla sonuçlanmamayan grubun, fertilizasyon failure olan grupta olmayan grubun karşılaştırılmasında da fark bulunamadı.
Laufer ve arkadaşları gibi bazı ötörler folliküler sıvıda artmış HCG konsantrasyonu ile invitro fertilizasyon oranları arasında korelasyon bulurken (48), diğer bazı ötörler karşı sonuçlar vermiştir.

McNatty ve arkadaşları doğal sikluslarda yaptıkları çalışmada küçük follikülerde PRL konsantrasyonunu en yüksek bulur ıken, bu değerin folliküler büyüme ile azaldığını gösterdiler (50). Ohwaki ve arkadaşları, folliküler sıvıdaki PRL’nin kaynağına araştırmak için yaptıkları çalışmada, folliküler sıvı PRL konsantrasyonunun plazma PRL düzeyi ve stimulatuar sikluslarda en yüksek E2 düzeyi ile korele olduğunu bulmuşlardır. Hipofizer doku ile karşılaştırıldığında ovarian folliküler dokuda PRL mRNA düzeylerinin 10000 kat az olduğu ve bu sonucu göre PRL’nın overlerde lokal olarak üretilmeyip östrojenle regule edilen sirkülasyondan pasif difüzyon ile geçtiği bildirilmiştir (51). Ohwaki ve arkadaşları,
folliküller çaplarının aynı hastada farklı olması rağmen stimule edilen bu hastanın folliküller sıvı PRL konsantrasyonlarında minimal varyasyon gösterdiğini ifade etmişlerdir (51). McNatty ve arkadaşları diğer çalışmaları aksine, folliküller sıvı PRL düzeyini plazma düzeyinden düşük bulunmuşlardır. Bu fark diğer çalışmalarında ovarian stimulasyon protokollerinin kullanılmasında bağlı olarak artış E₂ seviyelerine ve HCG kullanımına bağlı olabilir.

Çalışmamızda matür grupta serum PRL düzeyini daha yüksek bulduk. Ancak folliküller sıvı değerleri incelendiğinde en yüksek değerin yine bu grupta olmasına karşın istatistiksel fark tespit edilemedi. PRL’ın serum ve folliküllü sıvısı korelasyonunun istatistiksel olarak anlamlı olduğu, folliküllü sıvısında serum değerinin %85’i kadar olduğu ve çoğu maturasyon grubunda (matür grup hariç) serum ve folliküllü sıvı değerleri arasında istatistiksel fark olmadığı saptanmıştır. Fertilizasyon failure olan ve olmayan, gebelikle sonuçlanan ve sonuçlanmayan gruplar değerlendirildiğinde; oosit maturasyonu dikkate alınmadığında folliküller sıvında, gebelik (+) olan grupta PRL’nin düşük olduğu saptanmıştır. Sadece matür oosit
grubu veya serum değerleri gözönünde bulunduğunda yine gebelik (+) grupta PRL düşük bulunmuş ancak istatistiksel anlamlı fark tespit edilememiştir.

Lee, Lobo ve arkadaşları folliküler sıvıdaki progesteron düzeyindeki artış ve androstenedion seviyesindeki azalış, oosit maturasyonundaki artış ile korele bulmuşlardır (56-57).

Bu çalışmamızda androjen olarak serbest testosteron kullanıdık. Folliküler sıvı hormon parametresi incelendiğinde immatür grupta serbest testosteronun istatistiksel olarak anlamlı derecede yüksek olduğu, bunun serum değerleri ile korelasyon göstermediği, serum ve folliküler sıvı serbest testosteron değerlerinin birbirinden çok farklı olduğu ama iki değer arasında korelasyon bulunmadığı çalışmamızda gösterilmiştir. Fertilizasyon failure olan hasta grupunda serum serbest testosteron düzeyi düşük bulunmuş ancak folliküler sıvı değerleri incelendiğinde istatistiksel anlamlı fark tespit edilememiştir. Gebelik gelişen grupta yine serum serbest testosteron düzeyinin düşük olduğu fakat follikül sıvısında böyle bir korelasyonun bulunmadığını gösterdik.

IVF Stimulasyon Protokolleri ve Folliküler Sıvı Hormon İlişkisi

Polan ve arkadaşları huFSH ve HMG alan grupları karşılaştırılan çalışmalarında östradiol ve progesteron düzeylerini benzer bulurken, HMG ile stimüle olan follikülerin anlamlı olarak yüksek testosteron içerdğini ve androstenedion düzeylerininse huFSH alan gruptan düşük olduğunu belirlemişlerdir. Gebelik oranları huFSH grubunda yüksek bulunmuştur. Bu çalışmamın sonunda otörler FSH'in
yanında LH’nin bulunmasının ovülasyon indüksiyonu sırasında granüloloza luteal hücre fonksiyonu üzerine minimal etkisi olduğunu, LH varlığında androjenik ortamin androstenediondan testosterona kaydığını ve A/T oranının arttığını saptamışlardır. Bu kayma sonucu ovarian gelişimin ve başarılı implantasyonun bozulabileceği ifade etmişlerdir. Sebep olarak androstenedionun folliküler östrojen sentezi için testosterona nazaran 2 kat daha fazla aromatize olduğunu ve androstenedionun östradiol için başlıca östrojen prekürsörü olduğunu göstermişlerdir (59).

Ben-Chetrit ve arkadaşları çok uzun dönem GnRH-a kullanımını takiben rec-FSH vererek yaptıkları çalışmada düşük serum E₂ konsantrasyonuna karşı bariz şekilde normal folliküler gelişim izlemiştirler. İntrafolliküler E₂ ve progesteron düzeyleri HMG kullanılan grupların onda biri kadar izlenmiştir. Bu sonuçların sonunda Ben-Chetrit ve arkadaşları ölçülebilir LH yokluğunda bile eğer sirkülasyondaki adrenal androjenler yeterli ise ya da FSH’ın stimüle edildiği tekal doku kaynaklı androjenler az da olsa folliküler gelişim için yeterli intrafolliküler östradiol sentezini sağlamaktır olduğunu ifade etmişlerdir (60).

Bu çalışmada tedavi şemasına göre klinik datalar incelendiğinde Pür FSH uygulanan grupta transfer edilen embriyo sayısının yüksek olduğu, Pür FSH+HMG’nin birlikte uygulandığı grupta verilen ampul sayısının yüksek, aspire edilen oosit sayısının düşük olduğu istatistiksel olarak gösterilmiştir. Serum hormon parametrelerine göre HMG kullanan grupta LH ve serbest testosteron yüksek, Pür FSH+HMG’yi birlikte kullanan grupta βHCG düşük, FSH yüksek bulunmuştur.
Folliküler sivi inceленliğinde yine HMG grubunda LH yüksek, beraber kullanılan grupta muhtemelen verilen ampul sayısının yüksek olmasına bağlı olarak FSH yüksek bulunmuştur. Sadece matur oositlerin serum hormon düzeyleri değerlendirildiğinde HMG grubunda serum βHCG’nin düşük olduğu bu grubun follikül sıvılarında istatistiksel olarak fark bulunmadığı saptanmadı.

Sadece uzun protokol uygulanarak çalışma yinelendiğinde HMG alan grupa LH’ın serum ve follikülerde yüksek HMG+Pür FSH alan grupta FSH‘ın yüksek olduğu bulunmuştur. GnRH-a protokolüne göre kısa protokolde serbest testosterone serumda ve follikül sıvısında yüksek olduğu, diğer gruplar arasında fark olmadığı izlenmiştir.
6. SONUÇ

Bu çalışmada farklı hastalarda 44 IVF siklusunda 16 mm'den büyük folliküllerden flash medium verilmelden toplanan 85 oosit maturasyon grupları ve kullanmış olduklarını tedavi folliküllerine göre serum ve folliküller sıvı hormon parametreleri değerlendirildiğinde;

2. Sadece Pür FSH verilen grupta matür folliküllerde folliküller sıvı LH düzeyi yüksek bulunurken tedavi şemasına göre gruplama yapılmadığı zaman muhtemelen HMG'deki LH düzeylerinin etkisine bağlı olarak bu korelasyon ortadan kalkmaktadır.

3. İmmatür follikül grubunda serum βHCG düzeyi folliküller sıvı βHCG düzeyi ile korele olarak düşük bulunurken yine immatür folliküllerin folliküller sıvısında serbest testosteron yüksek bulundu.

6. Tedavi şemasına göre değerlendirildiğinde HMG kullanan grupta serum ve follikül sıvı LH düzeyleri ilaç dozu ile korele olarak yüksek bulunmuştur.
7. HMG ile tedavi olanlarda serum serbest testosteronu yüksek bulunmuş fakat bu fark folliküler sıvıda gösterilememiştir.

8. Sadece matûr oositler dikkate alındığında HMG kullanan grubun serum βHCG değerleri daha yüksek bulunurken follikül sıvılarında böyle bir fark gözlenmemiştir. İki tedavi şemasına göre βHCG düzeyleri matûr oositlerde fark göstermemektedir.

10. Fertilizasyon failure olan hastaların serum ve folliküler sıvı βHCG düzeyleri düşüktür. βHCG serum ve folliküler sıvı düzeyleri korele olduğundan bu hastaların serum βHCG ölçümleri yapılarak bir cut-off değeri tespitinden sonra kullanılabileceği düşünülmektedir.

12. Sadece matûr oosit grubu dikkate alındığında fertilizasyon failure grubunda βHCG düzeyleri serum ve follikül sıvısında düşük olmakla beraber istatistiksel anlamlı fark tespit edilemedi.

7. ÖZET

IVF-ET’de başarı oranını artırmak için stimulasyon protokollerinden en iyi olanı araştırılmaktadır.

Bu çalışmada IVF-ET’de oosit maturasyonunun folliküler ve serum hormon parametreleri ile ilişkisi ve bu hormon parametrelerinin kullanılan tedavi şemasından nasıl etkilendiği araştırılmıştır.

Bütün hastalar, yaş, verilen ampul sayısı, transfer edilen embriyo sayısı, oosit maturasyonu, folliküler sıvı ve serum hormon parametreleri, endikasyon, fertilizasyon failure ve gebelik açısından takip edildi.

Sonuçta özellikle serbest testosteron ve βHCG düzeylerinin oosit maturasyonu ve fertilizasyon failure tespit etmede önemli olduğu, kısa protokol GnRH-a’larının serum serbest testosteron oranını yükselttiği ve HMG kullanan grubun Pür FSH kullanan gruptan farklı olarak serum ve follikül sıvı LH düzeyinin yükseldiği saptandı.
8. KAYNAKLAR

