FARKLI BAŞ TİPLERİNDEKİ KRANİYOFASİYAL MORFOLOJİNİN DOĞAL BAŞ POSTÜRÜ DİKKATE ALINARAK DEĞERLENDİRİLMESİ

Dt. T. Ufuk Toygar Memikoğlu

Doktora Tezi
Ortodonti Anabilim Dalı

Danışman
Prof. Dr. Ayşegül Köklü

Ankara, 1994
İÇİNDEKİLER

GİRİŞ ve AMAÇ .. 1

GENEL BİLGİLER.. 3

MATUREYAL ve METOD ... 10

BULGULAR .. 29

TARTIŞMA .. 92

SONUÇLAR ... 126

ÖZET ... 127

SUMMARY .. 128

YARARLANILAN KAYNAKLAR .. 129
GİRİŞ VE AMAÇ

Ortodontik teşhiste, anormal durumu ve ilişkileri saptayıp uygun bir tedavi planı yapabilmek için, artık günümüze ortalama değerler ile ortaya konulmuş normları kullanmak yerine bireysel düşünceye görüşü hakim olmaya başlamış ve elden geldiğince bireylerin cinsiyetleri, yaşıları, ırkları ve fonksiyonları hep birlikte dikkate alınmaya başlanmıştır.

Farklı baş tiplerinin kraniyofasiyal morfolojilerinin de farklı olduğu görüşünden hareketle fasiyal morfolojiyi inceleyen çalışmalar gözden geçirildiğinde, genellikle ortak ve belirli bulguların olmadığı dikkati çekmektedir. Bunun nedenleri düşünüldüğünde, bugünkü bilgilerin ışığı altında ilk akla gelen konulardan biri kullanılan intrakranıyal referans düzlemlerideki anatominin farklılıklarından dolayı kraniyofasiyal morfolojinin belirgin özelliklerinin saptanamamış olması olabilir. Zaten günümüze bu nedenle birçok çalışmada ekstrakranıyal referans doğrularının kullanımına eğilim başlamıştır.

Farklı baş tiplerinde, fasiyal morfoloji bireylerinin doğal baş ve boyun konumlarının tespiti ile belirlenen ekstrakranıyal referans düzlemlerine göre inceленdiginde, acaba daha tipik özellikler saptanabilir mi sorusu ise beraberinde fasiyal morfoloji üzerinde baş ve boyun postürünün etkisini gösteren araştırmaları akla getirmektedir. Başın kütle merkezi, solunum fonksiyonu, dengе ve işitme, bireyin psikolojik durumu gibi birçok faktör ile etkilenebilecek olan doğal baş ve boyun postürünün, kasların çekme kuvvetleri ile büyüme ve gelişim çağı içinde fasiyal morfolojisi şekillendirebileceği göz ardı edilmemelidir.

Diğer yandan farklı baş ve yüz tiplerinde kas yapışma ve sonlanma noktalarının farklı olabileceği düşünülürse, anatominin özellikler nedeni ile kasların çekme kuvvetleri doğal baş ve boyun postürünün şekillenmesinde ve yerleşmesinde etkili olacaktır.
Bu görüşlerden yola çıkarak çalışmamızda farklı baş tiplerine sahip bireylerde;

- Fasiyal morfolojisi hem intrakraniyal hem de ekstrakraniyal referans düzlemlerine göre inceleyerek baş tiplerinde belirgin özelliklerin saptanamamasında intrakraniyal referans düzlemlerin etkisinin olup olmadığını,

- Karşılıklı form ve fonksiyon etkileşimi içinde, farklı baş ve boyun postürleri ile farklı fasiyal özelliklerin saptanmasının söz konusu olup olmadığını,

- Baş tipini ve kraniyal bölgesinde özelliklerini belirleyen kriterlerin, postür ve fasiyal morfoloji ile ne derece ilişkili olduğunu araştırmayı amaçladık.
GENEL BİLGİLER

Fasiyal morfoloji ve fasiyal morfolojinin relatif lokalizasyonu; beyin büyüklüğü, beyin konfigürasyonu, beyin hacmine göre kraniyal taban adaptasyonu ve vücut postürü'nü içeren birçok filogenetik etkileşim tarafından inşa edilmiştir (40).

Kraniyofasiyal morfogenez, yüz yumuşak dokuları ve onu destekleyen iskelet yapının aralarındaki gelişim etkileşmesi yolu ile gelir (54).

Van Limorgh'a (42) göre kraniyofasiyal morfogenezin kontrolünde beş ana faktör vardır: Bunlar:

1. İntrinsik genetik faktörler
2. Lokal epigenetik faktörler
3. Genel epigenetik faktörler
4. Lokal çevresel faktörler (Nöromusküler yapı gibi)
5. Genel çevresel faktörler (Beslenme gibi)

Baş, çeşitli yapılarından oluşmuş, solunum, görme, beslenme, konuşma, duyuma, denge ve nöral integrasyon gibi birbirinden bağımsız fonksiyonlar içermektedir (52). Birbir ile ilişkili büyükten kraniyofasiyal kompleksin farklı bölgelerine genetik ve çevre değişik derecelerde hükümder (41,54). Kraniyofasiyal kompleksin oluşumu sırasında rol oynayan genetik ve çevresel faktörler, baş tiplerinin de farklılaşmasında etkilidir (40,41,48,54,63).

Baş tiplerinde etkili olan genetik ve çevresel faktörlerden başka göz önünde tutulması gereken filogenetik mekanizmalar şunlardır; çevre ısısı, coğrafya, hormonlar, baş-boyun kas aksiyonları, dış dizilimi, vücut yapısı, mineral dengesi, beslenme ve spinalar üzerinde baş dengesidir. Yani baş tiplerini sınıflayan sefalik indeks sadece baş genişliği ve uzunluğu ile basit ilişkide değildir (1,7,61). Bunlarla birlikte baş formuna irk, etnik farklılıklar, gelişim, çenelerin
boyutu, internal form ve kapasite, boy, cinsiyet, bireysel gelişim ve evrim ilişkilerinin de etkisi vardır (1).

Kraniyoloji, fizik antropolojinin tarihçesinde ilgi ile irdelenmiş bir konudur (52). Fizik antropoloji kökenini anatomiden alır ve daha sonraları Dental ve Medikal olmak üzere iki alt gruba ayrılmıştır (37).

Fizik antropolojistler, beyinin simultan gelişimine, kraniyal taban eğimlenmesine, kraniyal şekil ve hacminin özelliklerine ve postürde meydana gelen değişikliklerin ilişkisine, dik vücut postürünün filogenetiğine ilgi duymuşlardır. Sefalik indeks fizik antropolojinin erken dönemlerinde ilgi odaklı iken, daha sonraları modern genetik teori gelişimi ile önemini kaybetmiştir. Bu ilginin azalma nedeni, baş şeklinin çevreye adapte olabilirliğinden ve sefalik indeks kavramının kafatası genotipini tam yansıtmamasından kaynaklanır (3,61).

Fizik antropolojistler, klasik olarak, sefalik indekses göre baş tiplerini Hiperbrakisefal, Brakisefal, Mezosefal, Dolikosefal ve Hiperdolikosefal olarak sınıflamışlardır (47).

Medikal bilimin ilerlemesiyile bazı predominant faktörler ve yüz yapısı, baş şekli arası ilişkiler gösterilmiş, röntgenografik sefalometri gelişi ile bu çalışmalar daha da ilerlemiştir. Ortodontide sefalometrik röntgen tarihinde ilk eğilimler klinik amaçlar için kullanılan normlar, tanımlanabilen ve tekrarlanabilen intrakraniyal noktalar, doğrular ve açılar kullanılarak yapılan çalışmalardır (36).

İlerleyen yıllarda bir grup için tanıtılmış norm ve standartların aynı ırk ve hatta aynı etnik gruplarda bile kullanılamayacağı gösterilmiştir. Kişisel normal teorisi yıllar önce tanıtılmış ve bireylerin yüz yapısının sonsuz değişkenliği vurgulanmış olmasına rağmen ortodontik teşhis, tedavi planlaması ve araştırmalarında bu normlar kullanılmıştır (2,3,7,18,40,41).

Bu çalışmaların bir kısmını içeren baş tipi ve kraniyofasiyodental morfoloji arası ilişkiler intrakraniyal referans düzlemleri kullanılarak araştırılmıştır (4,7,8,10,12,18,40,41,41,56). Bu çalışmalarla daha çok iki üç baş tipi olan Brakisefal ve Dolikosefal gruplar kullanılmıştır. Bu iki baş tipini genel olarak araştırmacılar şöyle tanımlamışlardır:
Brakisefal baş tipine sahip bireylerde, baş anteroposterior yönde kısa, kafanın posterior kısımı ve oksipital bölge geniş ve düz, intraorbital genişlikten dolayı gözler uzak, burun vertikal olarak kısa, geniş ve konkav, kraniyal taban açısı dar, kraniyal taban kısa, nazomaksiller kompleks geride, mandibula protrüziv konumda, çene ucu belirgin, Angle Kl. III okluzyona meyil ve sıkılaşla geniş yüz tipi görülmektedir. Dolikosefal baş tipine sahip bireylerde ise, baş anteroposterior yönde uzun, gözler birbirine yakın, burun uzun ve konveks, kraniyal taban açısı geniş, kraniyal taban düz ve uzun, nazomaksiller kompleks ileride ve mandibula aşağı ve geride, Angle Kl. II okluzyona meyil ve genellikle dar yüz tipi görülmektedir (4,7,18,19,40,41,63).

Baş tiplerinin farklılaşmasını incelemeğe üzere yapılan deneySEL çalışmalarla; Riesenfeld (60), bir grup bipedsin ön ayaklarını ampute ederken diğer grup bipedsin boyun kaslarını kesmiştir. Her iki deneyde de kasları kesilen grupta daha belirgin olmak üzere kraniyal değişiklikler meydana gelmiştir. Bipedslerin baş dengelerinin bozulması sonucunda, tüm kraniyumda anteroposterior kurvature fazlalaşmış, foramen magnum öne hareket etmiş, baş uzunluğu artarken, genişliği azalmış ve Dolikosefal'lik oluşmuştur.

Aynı araştırcı, Brakisefalızasyon teorileri üzerine yaptığı deneylerde şu sonuçları ortaya koymuştur: Masseter ve temporal kasları çıkarılan hayvanlarda, Brakisefal'lık kas basınç azalması ile değil, açlığın kafatası uzunluğuna, genişliğine ve hacmine etkisinden dolayı meydana gelmiştir. Araştırcı, açıklıkta relatif beyin büyümesini hidrosefalizme bağlamış ve beyin büyüklüğü ve kafa formu arası ilişki mevcudiyetini göstermiştir (61).

Abbie (1), yaşayan Avustralya yerlilerinde ve canlı olmayan kafataslarını üzerinde yaptığı çalışma doğrulanmıştır, saflik indeksin geçmişten bugüne kademeli artışını yani Brakisefalızasyon'a eğilim olduğunu göstermiştir.

Sefalometrik analiz, dentofasiyal kompleksin simetri, harmoni ve sınıflamasını tanımlar iken, ortodontik tedavi sonuçlarının değerlendirilmesinde ve tedavi planlamalarında da değerli bilgiler vermektedir. Sıklıkla intrakraniyal referanslar kullanılarak oluşturulan bu analizler, iç mimariyi anlatırken gerçek görünümü anlatmakta yetersiz kalmışlardır (14).

Teorikte, ideal bir referans doğrusu biyolojik olarak çok az değişen ve kraniyofasial bölgelerin değişkenliğini gösterebilen bir doğrudur. Ancak büyüyen organizmada ne bir sabit nokta ne de düzlem mevcuttur (85). Bu bağlamda araştırmacılar bağıtın doğal stres pozisyonu olan doğal baş pozisyonunu önermişlerdir.

Doğal baş pozisyonu, ilk olarak antropolojik literatürlerde bahsedilmiştir. Doğal baş pozisyonu farklı populasyon gruplarının kraniyal morfolojilerinin karşılaştırılmasında, baş postürü ve baş formu arası ilişkilerin açıklanmasında kullanılan standardize ve tekrarlanabildi bir terimdir (24,77). Ortodontide ise tedavi planlaması, fasiyal estetik değerlendirilmesi, mandibula istirahat çalışmaları ve orofarengeal çalışmaları kullanılmaktadır (70,75).

1862’de Broca (11), doğal baş pozisyonunu önermiş ve doğal baş pozisyonunu “birey görme ekseninde, baş horizontal durumda iken nötral pozisyondadır” olarak açıklamıştır.

1956’da Downs (17), baş postüründeki ortodontik diagnozu geliştirdiği için kullanmıştır. Fotoğraflar üzerinde yaptığı çalışmada Frankfurt Horizontal Düzleminin doğal baş postüründe farklı eğimlere sahip olduğunu göstermiş ve profil değerlendirilmelerinin dikkatli yapılması gerekliğini vurgulamıştır.

1958’de Moorrees ve Kean (51), doğal baş pozisyonunda benzer profile sahip bireylerin intrakraniyal referans düzlemlerinin varyasyonlarından bahsetmiş, doğal baş pozisyonu ve gerçek vertikal referans düzlemini önermiştir.
Önemini bir dönem kaybeden doğal baş pozisyonu, 1970'li yıllarda yeniden gündeme gelmiş, doğal baş postüründe alınan radyograflarla gerçek vertikal ve horizontal düzlemler tekrar kullanılmaya başlanmıştır.

Foster ve Howat (23), geniş biyolojik varyasyonlara sahip intrakraniyal noktaların ve düzlemlerin hem birbirlerine hem de horizontal referans düzlemine göre eğimlerinin değişkenliğinin çok fazla olduğunu, aynı bireyde bile farklı değerlendirmelerin yapılabileceği ve klinik görünümle uyum göstermeyeceğini belirtmişlerdir.

Birçok araştırmacı da intrakraniyal referansları göre ekstrakraniyal referansları daha stabil bulmuş ve intrakraniyal referansların gerçek hayat görünümü ile çelişkileri varattığını ve doğal baş pozisyonu kaydındaki varyasyonlardan intrakraniyal varyasyonların daha fazla olduğunu belirtmişlerdir (13,15,43,45,51,57).

Kraniyofasiyal morfoloji ve postür arası ilişkilerin değerlendirildiği ilk çalışma 1926 yılında Schwarz (64) tarafından yapılmıştır. Araştırmacı, Kl II maloklüzyona sahip bireylerin uyku esnasında başlarının servikal kolona göre ekstansiyonda olduğundan bahsetmiştir.

1951'de Björk(9), kraniyal tabanla ile postür arası olası ilişki üzerinde durmuş, retrognatik yüz profiline sahip bireylerin başlarını yukarıya kaldırmaya eğilimli olduklarını, prognatik yüz profiline sahip bireylerin ise başlarını öne eğdiklerini belirtmiştir.

1963 yılında Bench (6), servikal vertebranın sefalometrik çalışmasında fasiyal form ve servikal spina uzunluğu ve kurvature arasındaki ilişkiden söz etmiştir. Puberteden sonra yüzün vertikal büyümesinin boyun büyümesini ile yakın ilişkide olduğunu, Dolikosefal bireylerde servikal kolonun düz ve uzun, Brakisefal bireylerde ise öne eğimli olduğundan bahsetmiştir (3,4).

Solow ve Tallgren (77), 1976 yılında yaptıkları detaylı çalışmada doğal baş postüründe kraniyofasiyal morfoloji ve postür arası ilişkisi şöyle açıklamışlardır:
Başın servikal kolona göre ekstansiyonunda; ön yüz yükseklik artışı, arka yüz yükseklik azalığı, anteroposterior kraniyofasial boyut azalması, mandibulanın kraniyal tabana göre eğiminde artış, fasiyal retrognatizm, kraniyal taban açı artışı, nazofarengeal boşluk azalışı ve dar kraniyoservikal açı saptanmıştır.

Başın fleksiyonunda; ön yüz yükseklik azalışı, arka yüz yükseklik artışı, anteroposterior kraniyofasial boyut artışı, mandibulanın anterior kraniyal tabana göre eğiminde azalma, fasiyal prognatizm, kraniyal taban açı azalışı, nazofarengeal boşluk artışı ve geniş kraniyoservikal açı gözlemlenmiştir.

Kraniyofasial morfoloji ve postür arası ilişkiler daha sonra birçok yöntem ile cross-sectional ve longitüdunal olarak çeşitli yaş gruplarında ve popülasyonlarda incelemiş ve yukarıdaki çalışma ile benzer sonuçlar elde edilmiştir (21,24,29,46,67,69,72,73,74,78,80,86,87).

Özbek (57), yaptığı çalışmasında, doğal baş pozisyonunda, eksternal referanslara göre değerlendirme kraniyofasial morfolojinin daha çok servikal kolonun eğimini gösteren postür alçalıklarınıazağilı olduğunu bildirmiş, kraniyofasial morfoloji ile postür arası ilişkilerin değerlendirilmesinde başın ekstansiyon veya fleksiyonundan ziyade dik veya protrusiv servikal kolonun bahsetmenin daha doğru olacağını bildirmiştir.

Ayrıca fonksiyonel ortopediye ve form-fonksiyon arası interaksiyonu yoğunlaştıran ilgi ile, kraniyofasial komponentler arasında postüral iliskinin büyüme şeklinine rehberlik edebileceğini düşünülmuş, fonksiyonel faktörlerden fizyolojik fonksiyonlar yani solunum, yutunma, konuşma ve görme ile baş postörü arası ilişkiler incelemiştir.

Solow ve Kreiborg (71), kraniyofasial morfoloji, kraniyoservikal açı ve postür arası ilişkileri yumuşak doku gerilim hipotezi ile açıklamaya çalışmışlardır. Bu araştırmacılar yumuşak doku gerilimleri ile kraniyofasial morfolojinin etkilenebileceğini belirtmişlerdir. Bu hipoteze göre, servikal kolonla ilişkili baş ekstansiyonunda yüz ve boyun yumuşak dokularının pasif gerilими ile aşağı ve geriye kuvvetlerin olabileceğini vurgulamışlardır.

Fizyolojik faktörlerden nazofarengeal hava yolu ile servikal kolon ve başın postüral ilişkileri araştırılmış, bu çalışmalarında hava yolu tikanıklılığı ile postüral
parametreler arasında ilişki bulunamamış, kraniyoservikal açılanma arasında korelasyon olduğu bulunmuştur. Orofarengeal hava yolu devamlılığı gerektiren durumlarda geriye baş pozisyonu saptanmıştır (5,70,72,86).

Deneysel olarak yapılan çalışmalarında, solunum ve görme fonksiyonları yapay olarak değiştirilen bireylerde refleks adaptasyon meydana gelmiş ve nöromusküler kontrolde solunumun daha basın olduğu gösterilmiştir. Deneysel olarak ağız solunumu oluşturulan bireylerde basın geriye pozisyonu ve artış dudak basıncı gözeleceğini (21,27,28,84).

1985 yılında Forsberg (22), baş postürü ile boyun çizgemi kasları aktivitesi arası ilişkileri EMG ile araştırılmıştır. Araştırıcı, nazal tıkanıklığı takiben baş ekstansiyonunda post servikal kaslar ve anterior temporal kas aktivitesinde azalma, suprahoid kasların aktivitesinde artma tespit etmiştir. Aynı zamanda alt çene aşağıda konumlanırken geniohyoid kasın aktivasyonu ile hyoid kemik pozisyonunun korunacağını ve hava yolunun açılacağını bildirmiştir.

Vig ve arkadaşları (83), çalışmalarında, başın ağrılık merkezini yapay olarak değiştirilmesi ile postural adaptasyonun kısa süreli etkisini sagittal planda incelemiştir. Bu çalışmada sabit bir adaptasyon modeli saptanamamış ve bireysel değişkenlik bulmuştur. Bazı bireylerde görülen düzensiz fleksiyon yada ekstansiyon cevaplarının baş postüründeki kontrol mekanizması ile ilişkili olduğunu vurgulamışlardır.

Kraniyofasial morfoloji ve servikal vertebral arası ilişkilerden 1985 yılında Huggare ve Kylamarkula söz etmişlerdir (39). Daha sonraları yapılan çalışmalarla atlas ile mandibula büyüme yönü ve kraniyoservikal açılanma arasında birliktelik olduğunu göstermişlerdir (31,32,73).

Hem insan çalışmalar hem de hayvan deneyleri nöromusküler postural faktörler ve iskeletsel ve dental gelişim arasında bir ilişki olduğunu göstermiş ancak, bütün bu çalışmalar sonucunda, postürü ve morfolojiyi belirleyen determinantların biyolojik varyasyonlarından dolayı morfoloji mi postürü yoksa postur mı morfolojiyi etkiliyor sorusu tam olarak açığa çıkarılmamamıştır.
MATERÝYAL ve METOD

Araştırmaımız yaşları 19 ile 29 yıl arasında değişen Ankara Üniversitesi Diş Hekimliği Fakültesinde eğitim gören, ortodontik tedavi görmemiş ve diş eksikliği olmayan 114 bireyin doğal baş ve boyun postüründe alınan lateral ve posteroanterior sefalometrik filmleri üzerinde yürütülmüştür.

Bu amaçla, Ankara Üniversitesi Diş Hekimliği Fakültesi Ortodonti Anabilim Dalı arşivinden baş indeksleri saptanmış, doğal baş ve boyun postüründe lateral ve posteroanterior sefalometrik filmleri alınmış ve doğal baş ve boyun postürünün tekrarlanabilirliği istatistiksel yöntemle ortaya konmuş, 106 bireye ait kayıtlar incelenmiş ve 100 birey araştırma kapsamına alınmıştır. Toplumumuzda diğer baş tiplerine göre daha az bulunan Hiperdolikosefal ve Dolikosefal baş tipine ait grupların sayılarının artırılması amacı ile fakültemizin 1., 2. ve 3. sınıflarından 300 kişi taramıştır. Hiperdolikosefal baş tipi gruba oluşturulamamış, Dolikosefal baş tipine sahip olduklarını saptanan 14 bireyin daha önce arşivimizdeki 100 bireye uygulanan yöntemle dökümanları toplanmıştır. Araştırmaımızda dört baş tipi gruba oluşturulmuştur. Araştırma materyalimizin baş tipi ve cinsiyete göre dağılımını Tablo 3.1'de verilmiştir.

<table>
<thead>
<tr>
<th>Baş Tipi</th>
<th>Erkek</th>
<th>Kız</th>
<th>Toplam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hiperbrakisefal</td>
<td>10</td>
<td>17</td>
<td>27</td>
</tr>
<tr>
<td>Brakisefal</td>
<td>14</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td>Mezosefal</td>
<td>14</td>
<td>16</td>
<td>29</td>
</tr>
<tr>
<td>Dolikosefal</td>
<td>14</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>Toplam</td>
<td>52</td>
<td>62</td>
<td>114</td>
</tr>
</tbody>
</table>

İlk olarak bireylerin sefalik indeksleri saptanmıştır. Baş üzerinde direkt yapılan maksimum uzunluk ve genişlik ölçümülerinde yuvarlak üçlü çap
pergelinden yararlanmıştır (Resim 3.1). Oliver'in (55) tarif ettiği ve Özbek'in (56) uyguladığı şekilde çap pergelinin uçlarının deriye fazla baskı yapmamasına özen gösterilmiştir. Ölçümlerimize, serebral kapsülün 2 duvarındaki kemik katmanlarını ve yumuşak dokularının kalınlığını dahil edilmiştir (52).

Maksimum baş genişliğini saptamak için;
Birey dik oturur pozisyonda iken başın posterior bölgesinde olmak üzere ve median plana dik olarak şekilde ölçüm yapılmıştır. Çap pergelinin uçları deriye fazla baskı yapmadan parietal bölgelerin posteroinferiorlarında geniş daireler çizerek şekilde hareket ettirilmiş ve pergelin uçlarının en çok açıldığı birim maksimum baş genişliğini olarak alınmıştır.

Maksimum baş uzunluğunu saptamak için;
Bireylerin sağ yanından ölçüm yapılmıştır. Kompasın bir ucu glabella diğer ucu ise oksipital kemiğin posteriorun orta noktasında konumlandırılarak vertikal yönde hareket ettirilmiştir ve yine pergelin en çok açıldığı birim maksimum baş uzunluğu olarak kaydedilmiştir.

Alınan veriler,
başın maksimum genişliği/başın maksimum uzunluğux100=sefalik indeks
siniflamasına konulmuştur.

Fizik antropolojide klasik olarak kullanılan Tablo 3.2'de görülen sınıflandırmaya göre daha önce sefalik indeksleri saptanan bireylere ilave olarak sefalik indeksleri 71.0 - 75.9 arasındaki Dolikosefal 14 bireyin doğal baş ve boyun postürlerinin saptanabilmesi için öncelikle tek tek görüşme yapılmıştır.

<table>
<thead>
<tr>
<th>Şifre Tada</th>
<th>Sınıf Alanı</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIÇPERBRAKİSEFAL</td>
<td>85.5 ve yukarısı</td>
</tr>
<tr>
<td>BRAKİSEFAL</td>
<td>81.0 - 85.4</td>
</tr>
<tr>
<td>MEZOSEFAL</td>
<td>76.0 - 80.9</td>
</tr>
<tr>
<td>DOLİKOSEFAL</td>
<td>71.0 - 75.9</td>
</tr>
<tr>
<td>HIÇPERDOLİKOSEFAL</td>
<td>70.9 ve altı</td>
</tr>
</tbody>
</table>
Hazırlanan odaya alınan bireylere ilk etapta hiç bir açıklama yapılmamış ve genel vücut-baş postürleri incelenmiştir. Daha sonra baş ve vücut postürü ile ilgili bilgiler ve önemi bireye aktarılmıştır.

Bireylerden vücut, omuz ve başlarını rahat konuma getirmeleri istendiğten sonra, bir kaç adım şüürmeleri söylenmiş, dizler kırılmadan ayaklar hafif açık biçimde kollarının iki yana sarkık ve dik durulup istenmiştir. Gözler tam karşıya bakarken başlarını öne-arkaya gittıkçe azalan miktarda sallamaları ve en rahat pozisyonu bulduklarında durmaları istenmiştir.

Daha sonra aynı işlem Showfety ve arkadaşlarının önerdiği (66), Özbek'in (57) geliştirdiği şekilde başa yerleştirilmiş bir mika bant üzerine vida ile monte edilmiş su terazisi ile tekrarlatinmıştır (Resim 3.2). Bireylerin çok fazla X-ışını almasını engelleyen bu yöntemle, baş ve boyunlarının en doğal konumu saptandıktan sonra su terazisi dengelenmiş ve sonra aynı işlem üç kez bireylere tekrarlatinmiştir. Bireyler üç seferde de aynı baş ve boyun konumunu gösterdiklerinde su terazisi cerrahi bant ile başa yapıtılanarak sefalometri odasına alınmıştır.

Lateral sefalogramlar Siemens Orthoceph 10 röntgen aygıtı ile elde edilmiştir. Bireylerin midsagital düzlemi ile merkez ışın arası uzaklık 155 cm., film kaseti arası uzaklık 12.5 cm. olacak şekilde ayarlanmıştır. Film çekimi sırasında bireylerin sentrik okuluzyonda olmalarına ve yutkunmamalarına dikkat edilmiştir.

Araştırmamızda, bireylerin kendi denge konumlarını hedeflendikarih eksternal destek olarak ayna kullanılmamıştır.
Sefalostatta film kasetinin önüne yumuşak doku profilinin görüntüsü bozulmayaçak şekildekürsun ağırlıklı bir zincir asılarak gerçek vertikal düzlem tespit edilmiştir (Resim 3.3).

Başlarınındaki su terazisi çıkarılduktan sonra; bireylerin posteroanterior sefalometrik filmleri yine sentrik okluzyonda iken ve Frankfurt Horizontal Düzlem yere paralel olacak şekilde konumlandırılarak elde edilmiştir.

Lateral sefalometrik filmler elde edildikten sonra görüntü kalitelerine ve netliklerine, gerçek vertikal düzlem ile gerçek horizontal düzlem arası açının 90°±0.5 olup olmadığını ve su terazisindeki hava kapbarçığının tam ortada olup olmadığını göre elemeye tabi tutulmuşlar ve bu şartlar sağlanana kadar yenilendişlerdir.

VERİLERİN ELDE EDILMESİ

Filmlerin değerlendirilmesinde Hewlett Packard Vectra RS-20 Bilgisayar, Houston Hipad Digitizer ve HP printerden yararlanılmıştır.

Danimarka Ortodontik Bilgisayar Bilimleri Enstitüsüne hazırlanan ve ortodontide kullanılan geleneksel sefalometrik analizlere ilave olarak özel araştırmalara yönelik orijinal analizlerin programlanması ve kullanımı imkânını veren PORDIOS programı kullanılmıştır.

Anatomik referans noktalar filmler üzerine yerleştirilen asetat kağıdına yumuşak uçlu bir kalem ile işaretlenmiş, digitizer ve optik okuyucu ile bilgisayara aktarılmıştır. 0.125 hassasiyet ile hesaplanan veriler printerden elde edilmiştir.

Doğal baş ve boyun postürüünün tekrarlanabilirliği için; daha önce arşivimizdeki 106 bireyden 21’ine uygulandığı gibi 14 bireyin 7’sinden birer hafta ara ile lateral sefalometrik filmler yenilenmiş, doğal baş ve boyun postür tekrarlama katsayları kontrol edilmiştir.

Referans noktalarının belirlenmesindeki hata kontrolu amacı ile ise 114 filmden rastgele seçilen 40 adet film üzerinde referans noktaları yeniden işaretlenmiş ve tekrarlama katsayları hesaplanmıştır.
SEFALOMETRİK ANALİZ YÖNTEMİ

a) Lateral Sefalométrik Analiz:
 Çalışmamızda kullanılan Şekil 3.1'de görülen sefalométrik noktalar şunlardır:
 1. Nokta S : Sella
 2. Nokta N : Nasion
 5. Nokta Ba : Basion
 6. Nokta Bo : Bolton
 7. Nokta Ar : Articulare
 8. Nokta A : Subspinale
 9. Nokta B : Supramentale
 10. Nokta ANS : Anterior Nasal Spina
 11. Nokta PNS : Posterior Nasal Spina
 12. Nokta Pg : Pogonion
 13. Nokta G : Gnathion
 14. Nokta M : Menton
 15. Nokta G : Gonion
 16. Nokta C : Condylion
 17. Nokta cv2tg : Cv2ip noktasından geçen OPT düzleminin, ikinci servikal vertebrenin odontoid prosesinin posterior-superior kenarına teğet yaptığı noktasıdır.
 20. Nokta x : Doğal baş pozisyonunu saptamak amacıyla başa yerleştirildikten sonra dengelenen su terazisinin üzerinde yer alan 0.5 mm. çapındaki telin lateral sefalogramlardaki görüntüsünün gerçek horizontal referans düzlemi oluşturmak amacıyla yararlanılan ön üç noktasıdır.
Şekil 3.1: Lateral Sefalométrik Analizde Kullanılan Referans Noktalar
b) Posteroanterior Sefalometrik Analiz:

Bu analizde Şekil 3.2'de gösterilen sefalometrik noktalar kullanılmıştır.

7. Nokta RMan.: Sağ Antegonial Protuberantianın lateral ve inferior kenarındır.
11. Nokta Me : Menton

Lateral ve Posteroanterior Sefalometrik Filmlerde Kullanılan Referans Düzləmlər: (Şekil 3.3 - 3.4)

1. SELLA-NASİON DÜZLƏMİ (NSL): Sella ve Nasion noktaları arasında oluşturulan düzlemdir.
2. GERÇEK HORIZONTAL DÜZLƏM (HOR): Bireyin başı doğal konuma getirildikten sonra, başa yerleştirildikten sonra denge durumuna getirilen su terazisinin üzerinde bulunan telin lateral sefalometrik filmlerdeki radyopak görüntüsünün ön ve arka uçlarını belirleyen x ve xi noktaları arasında oluşturulmuş ve bu doğrunun paralel olarak Sella noktasına kaydırılmasıyla elde edilen yer çekimi kuvvetlerinin yönüne dik olan yatay düzlemdir.
Şekil 3.2: Posteroanterior Sefalomtrik Analizde Kullanılan Referans Noktalar
Şekil 3.3: Lateral Sefalometrik Analizde Kullanılan Referans Düzlemler
Şekil 3.4: Posteroanterior Sefalométrik Analizde Kullanılan Referans Düzlemler
3. GERÇEK VERTIKAL DÜZLEM (VER): Gerçek horizontal referans düzleminin
PNS noktasına dik olarak indirilen, kürşun ağırlıklı zincirin görüntüsüne ve yer
çekimi kuvvetlerinin yönüne paralel olan düzlemdir.
4. LATERO-ORBITAL DÜZLEM (LOD): Sağ ve sol Latero-orbital noktalarından
geçen düzlemdir.
5. MİDSAGİTAL DÜZLEM (MSD): Latero-orbital düzlemine Crista Gallinin tepe
noktasından dik indirilerek oluşturulunan düzlemdir.

Çalışmamızda lateral sefalometrik film analizinde kullanılan kraniyal,
kroniyo-servikal ve servikal postürü belirleyen açısal, kraniyal, maksiller,
mandibüler ve maksillomandibüler boyutsal, açısal ve oransal ölçümler sunuldu.

Kraniyal, Kroniyo-Servikal ve Servikal Postür Açısal Ölçüler: (Şekil 3.6)

1. NSL.VER: Sella-Nasion düzlemi ile gerçek vertikal referans düzlemi arasında
oluşturulan ve anterior kraniyal taban eğimini gösteren açıdır.
2. NSL.OPT: Sella-Nasion düzlemi ile cv2ıp noktasından geçen odontoid
prosese teğet olarak oluşturulan OPT düzlemi arasında oluşturulan kraniyo-
servikal açıdır.
3. NSL.CVT: Sella-Nasion düzlemi ile cv2tg ve cv4ip noktalarından geçen CVT
düzlemi arasında oluşturulan kraniyo-servikal postörü belirleyen açıdır.
4. OPT.HOR: Gerçek horizontal referans düzlemi ile OPT düzlemi arasında
oluşturulan ve odontoid proses eğimini gösteren açıdır.
5. CVT.HOR: Gerçek horizontal referans düzlemi ile CVT düzlemi arasında
oluşturulan ve servikal eğimi belirleyen açıdır.
6. OPT.CVT: OPT ve CVT düzlemleri arasında oluşturulan ve servikal kolon
kurvaturunun belirleyen açıdır.
7. WSL.VER: W ve S noktalarından geçen düzlemin gerçek vertikal referans
düzlemi arasında oluşturulan ve orta kraniyal taban eğimini gösteren açıdır.

Kraniyal Ölçümler: (Şekil 3.5)

Boyutsal:
Şekil 3.5: Lateral Sefalometrik Analizde Kullanılan Boyutsal Ölçümler
Şekil 3.6: Lateral Sefalometrik Analizde Kullanılan Açısal Ölçümler
13. V-Bo : V-HOR ve B-HOR boyutlarının toplanmasıyla elde edilen total kraniyal yükseklik ölçümüdür.

Açısal: (Şekil 3.6)
15. NSBa : Kraniyal taban açısıdır.
16. SBa.HOR : Doğal baş pozisyonunda arka kraniyal tabanın gerçek horizontal düzlem ile yaptığı açıdır.

Oransal:
17. S-Ba/N-Ba
18. S-N/N-Ba
19. V-Bo/N-Ba

Maksiller Ölçümler:

Boyutsal: (Şekil 3.5)
20. ANS-PNS : Maksillerin sagital yöndeki uzunluğudur.

Açısal: (Şekil 3.6)
23. SNA
24. ANSPNS.SN : Spinalar düzleminin ön kafa kaidesine göre eğimidir.
25. ANSPNS.VER : Doğal baş pozisyonunda spinalar düzleminin gerçek vertikal referans düzlemine göre eğimidir.

Oransal:
Mandibuler Ölçümler:

Boyutsal: (Şekil 3.5)
27. B-VER : Doğal baş pozisyonunda B noktasının gerçek vertikal referans düzlemine olan dik uzaklığıdır.
30. Go-Me : Mandibula korpus uzunluğudur.
31. Pg-VER : Doğal baş pozisyonunda Pogonion noktasının gerçek vertikal referans düzlemine olan dik uzaklığıdır.
32. Cd-Go : Mandibula ramus uzunluğudur.

Açsal: (Şekil 3.6)
33. SNB
34. GoMe.SN
35. GoMe.HOR : Doğal baş pozisyonunda mandibulanın gerçek horizontal referans düzlemine göre eğimidir.
36. CdGo.GoMe

Oransal:
37. B-VER/N-VER : Doğal baş pozisyonunda mandibuler bazal kaidenin Nasion noktasına göre sagital yöndeki konumudur.
38. Pg-VER/N-VER : Doğal baş pozisyonunda mandibuler simfizin Nasion noktasına göre sagital yöndeki konumudur.
39. Go-Me/V-Bo

Maksillomandibuler Ölçümler:

Boyutsal: (Şekil 3.5)
41. ANS-Me : Alt ön yüz yüksekliğidir.
42. N-Me : Ön yüz yüksekliğidir.
43. S-Go : Arka yüz yüksekliğidir.
44. S-PNS : Üst arka yüz yüksekliğidir.
45. PNS-Go : Alt arka yüz yüksekliğidir.
46. (A-VER)-(B-VER) : Doğal baş pozisyonunda alt ve üst çenênin birbirlerine göre sagital yöndeki konumudur.
47. (A-HOR)-(B-HOR) : Doğal baş pozisyonunda alt ve üst çenênin birbirlerine göre vertikal yöndeki konumudur.

Açısal: (Şekil 3.6)
49. ANB

50. AB.HOR : Doğal baş pozisyonunda A ve B noktalarını birleştiren doğru ile gerçek horizontal referans düzlemi arasında oluşan açıdır.
51. ANSPNS.GoMe

Oransal:
52. B-VER/A-VER: Doğal baş pozisyonunda A ve B noktalarının sagital yönde birbirlerine göre konumunu gösteren oranıdır.

53. N-ANS/N-Me
54. ANS-Me/N-Me
55. S-Go/N-Me
56. N-Me/N-Ba
57. S-Go/N-Ba
58. Cd-Go/S-Go

Çalışmamızda Posteroanterior Sefalométrik Analizinde Kullanılan boyutsal ölçümler: (Şekil 3.7)

Boyutsal:
59. LP-RP : Biparietal mesafe, parietal noktalardan midsagital düzlemine indirilen dikmelerin toplamıdır (a+b).
60. LMax-RMax : Bimaksiller mesafe, maksiller noktalardan midsagital düzlemine indirilen dikmelerin toplamıdır (c+d).
61. LMand-RMand : Bimandibuler mesafe, mandibuler noktalardan midsagital düzlemine indirilen dikmelerin toplamıdır (e+f).
62. V-Me

Çalışmamızda bireylerin başlarında yapılan direkt ölçümler:
63. Sefalik İndeks
64. Maksimum genişlik
65. Maksimum uzunluk
Şekil 3.7: Posteroanterior Sefalométrik Analizde Kullanılan Boyutsal Ölçümier
İSTATİSTİK DEĞERLENDİRME:

Bu çalışma ile ilgili istatistik değerlendirmeler Ankara Üniversitesi Ziraat Fakültesi Biometri ve Genetik Anabilim Dalında Prof.Dr. Fikret Gürbüz ve Yrd.Doç.Dr. Ensar Başpınar tarafından planlanmış ve yürütülmüştür.

Bu çalışmanın istatistik değerlendirmesi 3 aşamada yapılmıştır:

1. Referans noktalarının işaretlenmesi ve doğal baş ve boyun postürünün saptanmasındaki hassasiyetin belirlenmesi amacıyla her ölçüm için "tekrarlama katsayısı" hesaplanmıştır.

2. Dört farklı baş tipi grubunun ve cinsiyet gruplarının ortalamaları arasındaki farklılığın ve grup ortalamaları arasındaki farkın cinsiyet gruplarına göre değişip değişmediğinin istatistik olarak testinde "Faktöriyel Düzende Varyans Tekniği"nden yararlanılmış, interaksiyon önemli olduğunda grupların ortalaması arasındaki farkın istatistik olarak önemliliğinin test edilmesinde asgari önemli fark (LSD: Least Significance Difference) ve "Duncan Metod"undan yararlanılmıştır.

3. Araştırma kapsamında 114 bireylik toplam ve dört farklı baş tipine sahip kız ve erkek bireylerden oluşan gruplarda seçilen beş parametre ile diğer parametreler arası ilişkiler "Korelasyon Analizi" ile incelenmiştir.
BULGULAR

Araştırmamızda kullanılan ölçümlerin tekrarlama katsaylarını saptamak amacıyla toplam 228 filmden rastgele 40 film seçilerek noktalar yeniden işaretlenmiş, ölçümler yeniden elde edilmiştir. Birinci ve ikinci ölçümler birbirleri ile karşılaştırılarak tekrarlama katsayları hesaplanmıştır. Tekrarlama katsayları Tablo 4.1'de görüldüğü gibi yüksek bulunmuştur.

Tablo 4.1: Araştırmada Kullanılan Açışal ve Boyutsal Ölçümüere Ait Tekrarlama Katsayıları (n=40)

<table>
<thead>
<tr>
<th>Parametre</th>
<th>Tekrarlama Katsayısı (r)</th>
<th>Parametre</th>
<th>Tekrarlama Katsayısı (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSL. VER</td>
<td>0.9745</td>
<td>B-HOR</td>
<td>0.9922</td>
</tr>
<tr>
<td>NSL. CVT</td>
<td>0.9854</td>
<td>Cd-Gn</td>
<td>0.9867</td>
</tr>
<tr>
<td>NSL. OPT</td>
<td>0.9801</td>
<td>Go-Me</td>
<td>0.9883</td>
</tr>
<tr>
<td>OPT. CVT</td>
<td>0.9592</td>
<td>Pg-VER</td>
<td>0.9851</td>
</tr>
<tr>
<td>CVT. HOR</td>
<td>0.9826</td>
<td>Cd-Go</td>
<td>0.9870</td>
</tr>
<tr>
<td>OPT. HOR</td>
<td>0.9806</td>
<td>SNB</td>
<td>0.9796</td>
</tr>
<tr>
<td>WSL. VER</td>
<td>0.9752</td>
<td>GoMe. HOR</td>
<td>0.9847</td>
</tr>
<tr>
<td>N-S</td>
<td>0.9932</td>
<td>CdGo. GoMe</td>
<td>0.9774</td>
</tr>
<tr>
<td>S-Ba</td>
<td>0.9827</td>
<td>N-ANS</td>
<td>0.9645</td>
</tr>
<tr>
<td>N-Ba</td>
<td>0.9920</td>
<td>ANS-Me</td>
<td>0.9666</td>
</tr>
<tr>
<td>V-HOR</td>
<td>0.9920</td>
<td>N-Me</td>
<td>0.9936</td>
</tr>
<tr>
<td>Bo-HOR</td>
<td>0.9882</td>
<td>S-Go</td>
<td>0.9948</td>
</tr>
<tr>
<td>V-Bo</td>
<td>0.9895</td>
<td>S-PNS</td>
<td>0.9741</td>
</tr>
<tr>
<td>NSBa</td>
<td>0.9628</td>
<td>PNS-GO</td>
<td>0.9896</td>
</tr>
<tr>
<td>SBa. HOR</td>
<td>0.9163</td>
<td>A-B</td>
<td>0.9927</td>
</tr>
<tr>
<td>ANS-PNS</td>
<td>0.9768</td>
<td>ANB</td>
<td>0.9879</td>
</tr>
<tr>
<td>A-VER</td>
<td>0.9695</td>
<td>AB.HOR</td>
<td>0.9819</td>
</tr>
<tr>
<td>A-HOR</td>
<td>0.9859</td>
<td>P-P</td>
<td>0.9982</td>
</tr>
<tr>
<td>SNA</td>
<td>0.9809</td>
<td>Max-Max</td>
<td>0.9974</td>
</tr>
<tr>
<td>ANSPNS. NS</td>
<td>0.9451</td>
<td>Mand-Mand</td>
<td>0.9928</td>
</tr>
<tr>
<td>ANSPNS. VER</td>
<td>0.9869</td>
<td>V-Me</td>
<td>0.9997</td>
</tr>
<tr>
<td>B-VER</td>
<td>0.9829</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Doğal baş ve boyun postürüne farklı zamanlardaki tekrarlama katsayısını saptamak için ise 14 bireyin 7'sinden birer hafta araya iki kez elde edilen lateral sefalometrik filmler üzerinde yapılan ölçümlerin istatistiksel olarak değerlendirilmesi sonucunda tekrarlama katsayılın yüksek bulunmuştur (Tablo 4.2).

Tablo 4.2: Kraniyal, Kraniyoservikal ve Servikal Postörü Belirleyen Ölçümlerin Aynı Bireylerden Birer Hafta Ara ile Elde Edilen Lateral Sefalogramlardaki Tekrarlama Katsayısı (n=7)

<table>
<thead>
<tr>
<th>PARAMETRE</th>
<th>TEKRARLAMA KATSAYISI (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSL.VER</td>
<td>0.85211</td>
</tr>
<tr>
<td>NSL.CVT</td>
<td>0.91171</td>
</tr>
<tr>
<td>NSL.OPT</td>
<td>0.90182</td>
</tr>
<tr>
<td>OPT.CVT</td>
<td>0.88116</td>
</tr>
<tr>
<td>CVT.HOR</td>
<td>0.90324</td>
</tr>
<tr>
<td>OPT.HOR</td>
<td>0.89132</td>
</tr>
<tr>
<td>WSL.VER</td>
<td>0.90312</td>
</tr>
</tbody>
</table>

Araştırmamızda kullanılan ölçümlerin ortalama değerleri ve standart sapmaları Tablo 4.3'de görülmektedir.

Ölçümlerimize uygulanılan Faktöriyel Düzende Varyans Analizi sonuçları Tablo 4.4'de verilmiştir: Tablonun incelenmesinden sefalık indeksin beklenildiği gibi bütün gruplar arasında p<0.01 düzeyinde önemli fark gösterdiği anlaşılmataktadır.

Direkt olarak yapılan maksimum uzunluk ve genişlik ölçümlerinde ise interaksiyon olduğu görülmüş ve kaynağı Duncan Testi ile araştırılmıştır (Tablo 4.5). Maksimum genişlik ölçümünün erkeklerde Hiperbrakisefal gruba ait ortalama değeri $x=160.8\pm1.03$ olup bu ortalama değer Dolikosefal gruba doğru $x=151.43\pm0.86$, 149.21 ± 1.26, 147.57 ± 1.13 mm.lik değerlerle giderek azalmaktadır. Mezosefal erkek grubu ile Brakisefal ve Dolikosefal erkek bireyler arasında istatistiksel olarak önemli fark bulunamamıştır. Maksimum genişlik ölçümünde, Hiperbrakisefal erkek bireylerde diğer gruplar arasında p<0.01 düzeyinde önemli aysıcalık mevcuttur. Brakisefal ve Dolikosefal gruplar arasındaki fark ise p<0.05 düzeyinde önemlidir.
Tablo 4.3: Araştırmada Kullanılan 65 Özellikin Hiperbrakiselal, Brakiselal, Mezosefal ve Dolikosefal Bireylerde Her İki Cinse Ait Ortalama Değerleri ve Standart Hataları (n=114)

<table>
<thead>
<tr>
<th>KAFA TİPİ</th>
<th>CİNSİYET</th>
<th>n</th>
<th>NSL. VER $X \pm S_x$</th>
<th>NSL. CVT $X \pm S_x$</th>
<th>NSL. OPT $X \pm S_x$</th>
<th>OPT. CVT $X \pm S_x$</th>
<th>CVT. HOR $X \pm S_x$</th>
<th>OPT. HOR $X \pm S_x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>♂ + ♀</td>
<td>27</td>
<td>95.81 ± 0.81</td>
<td>102.18 ± 1.22</td>
<td>96.50 ± 1.14</td>
<td>5.67 ± 0.53</td>
<td>95.36 ± 1.10</td>
<td>90.68 ± 1.00</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>10</td>
<td>95.29 ± 1.51</td>
<td>100.35 ± 2.76</td>
<td>95.11 ± 2.35</td>
<td>5.23 ± 0.91</td>
<td>95.07 ± 2.25</td>
<td>89.83 ± 1.89</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>17</td>
<td>96.14 ± 0.98</td>
<td>103.25 ± 1.06</td>
<td>97.32 ± 1.19</td>
<td>5.93 ± 0.67</td>
<td>97.11 ± 1.17</td>
<td>91.18 ± 1.17</td>
</tr>
<tr>
<td>B</td>
<td>♂ + ♀</td>
<td>34</td>
<td>95.68 ± 0.48</td>
<td>101.75 ± 1.16</td>
<td>98.67 ± 1.05</td>
<td>5.07 ± 0.40</td>
<td>96.06 ± 1.07</td>
<td>90.99 ± 1.03</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>14</td>
<td>95.60 ± 0.79</td>
<td>100.75 ± 2.00</td>
<td>95.88 ± 1.84</td>
<td>4.86 ± 0.70</td>
<td>95.15 ± 1.75</td>
<td>90.29 ± 1.70</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>20</td>
<td>95.75 ± 0.62</td>
<td>102.44 ± 1.40</td>
<td>97.23 ± 1.27</td>
<td>5.22 ± 0.49</td>
<td>96.70 ± 1.36</td>
<td>91.48 ± 1.30</td>
</tr>
<tr>
<td>M</td>
<td>♂ + ♀</td>
<td>29</td>
<td>94.43 ± 0.97</td>
<td>99.77 ± 1.02</td>
<td>94.53 ± 1.29</td>
<td>5.23 ± 0.53</td>
<td>95.34 ± 0.74</td>
<td>90.11 ± 1.04</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>14</td>
<td>93.44 ± 1.81</td>
<td>99.38 ± 1.55</td>
<td>94.86 ± 1.86</td>
<td>4.52 ± 0.69</td>
<td>95.94 ± 0.98</td>
<td>91.42 ± 1.12</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>15</td>
<td>95.35 ± 1.11</td>
<td>100.13 ± 1.39</td>
<td>94.23 ± 1.85</td>
<td>5.90 ± 0.78</td>
<td>94.78 ± 1.12</td>
<td>88.88 ± 1.69</td>
</tr>
<tr>
<td>D</td>
<td>♂ + ♀</td>
<td>24</td>
<td>97.36 ± 1.01</td>
<td>101.40 ± 1.63</td>
<td>95.70 ± 1.68</td>
<td>5.70 ± 0.51</td>
<td>94.04 ± 1.16</td>
<td>88.33 ± 1.31</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>14</td>
<td>95.51 ± 1.16</td>
<td>98.34 ± 1.72</td>
<td>93.35 ± 1.72</td>
<td>4.98 ± 0.49</td>
<td>91.82 ± 1.14</td>
<td>86.84 ± 1.32</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>10</td>
<td>98.56 ± 1.82</td>
<td>105.69 ± 2.60</td>
<td>98.96 ± 3.03</td>
<td>6.71 ± 0.96</td>
<td>97.14 ± 1.94</td>
<td>90.43 ± 2.50</td>
</tr>
<tr>
<td>TOPLAM</td>
<td>♂ + ♀</td>
<td>114</td>
<td>95.75 ± 0.41</td>
<td>101.27 ± 0.62</td>
<td>95.88 ± 0.63</td>
<td>5.39 ± 0.24</td>
<td>95.52 ± 0.51</td>
<td>90.13 ± 0.55</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>52</td>
<td>95.20 ± 0.65</td>
<td>99.66 ± 0.96</td>
<td>97.78 ± 0.94</td>
<td>4.87 ± 0.34</td>
<td>94.45 ± 0.77</td>
<td>89.58 ± 0.77</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>62</td>
<td>96.21 ± 0.52</td>
<td>102.63 ± 0.77</td>
<td>96.81 ± 0.85</td>
<td>5.82 ± 0.34</td>
<td>96.42 ± 0.68</td>
<td>90.60 ± 0.77</td>
</tr>
<tr>
<td>Kafa Tipi</td>
<td>Cinsiyet</td>
<td>n</td>
<td>WSL VER $X \pm S_x$</td>
<td>NSL mm $X \pm S_x$</td>
<td>S-Ba $X \pm S_x$</td>
<td>N-Ba $X \pm S_x$</td>
<td>V-HOR $X \pm S_x$</td>
<td>Bo-HOR $X \pm S_x$</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>$\sigma + \varphi$</td>
<td>27</td>
<td>100.07 ± 1.18</td>
<td>70.92 ± 0.77</td>
<td>46.36 ± 0.81</td>
<td>106.81 ± 1.10</td>
<td>114.80 ± 1.02</td>
<td>42.38 ± 0.83</td>
</tr>
<tr>
<td>H</td>
<td>σ</td>
<td>10</td>
<td>100.05 ± 2.39</td>
<td>73.89 ± 0.55</td>
<td>48.56 ± 1.56</td>
<td>110.92 ± 1.61</td>
<td>116.53 ± 1.69</td>
<td>45.06 ± 1.35</td>
</tr>
<tr>
<td></td>
<td>φ</td>
<td>17</td>
<td>100.08 ± 1.30</td>
<td>69.17 ± 0.95</td>
<td>45.06 ± 0.77</td>
<td>104.39 ± 1.13</td>
<td>113.77 ± 1.25</td>
<td>40.81 ± 0.87</td>
</tr>
<tr>
<td></td>
<td>$\sigma + \varphi$</td>
<td>34</td>
<td>99.44 ± 1.00</td>
<td>71.91 ± 0.57</td>
<td>48.06 ± 0.74</td>
<td>109.37 ± 0.92</td>
<td>111.65 ± 0.80</td>
<td>42.17 ± 1.02</td>
</tr>
<tr>
<td>B</td>
<td>σ</td>
<td>14</td>
<td>100.60 ± 1.53</td>
<td>74.05 ± 0.66</td>
<td>51.62 ± 0.81</td>
<td>113.77 ± 0.85</td>
<td>112.29 ± 1.48</td>
<td>45.46 ± 1.77</td>
</tr>
<tr>
<td></td>
<td>φ</td>
<td>20</td>
<td>98.62 ± 1.32</td>
<td>70.42 ± 0.68</td>
<td>45.58 ± 0.72</td>
<td>106.28 ± 0.98</td>
<td>111.20 ± 0.90</td>
<td>39.87 ± 0.96</td>
</tr>
<tr>
<td></td>
<td>$\sigma + \varphi$</td>
<td>29</td>
<td>96.09 ± 1.25</td>
<td>73.65 ± 0.67</td>
<td>48.78 ± 0.64</td>
<td>111.46 ± 1.08</td>
<td>112.15 ± 1.05</td>
<td>42.35 ± 0.97</td>
</tr>
<tr>
<td>M</td>
<td>σ</td>
<td>14</td>
<td>94.83 ± 1.95</td>
<td>75.24 ± 0.99</td>
<td>50.74 ± 1.03</td>
<td>114.65 ± 1.64</td>
<td>111.93 ± 1.82</td>
<td>42.78 ± 1.51</td>
</tr>
<tr>
<td></td>
<td>φ</td>
<td>15</td>
<td>97.27 ± 1.60</td>
<td>72.18 ± 0.74</td>
<td>46.96 ± 0.42</td>
<td>108.48 ± 0.91</td>
<td>112.35 ± 1.19</td>
<td>41.95 ± 1.27</td>
</tr>
<tr>
<td></td>
<td>$\sigma + \varphi$</td>
<td>24</td>
<td>102.15 ± 1.11</td>
<td>75.55 ± 0.91</td>
<td>48.92 ± 0.72</td>
<td>114.43 ± 1.36</td>
<td>114.77 ± 0.93</td>
<td>43.87 ± 1.16</td>
</tr>
<tr>
<td>D</td>
<td>σ</td>
<td>14</td>
<td>100.94 ± 1.03</td>
<td>78.06 ± 1.10</td>
<td>51.05 ± 0.66</td>
<td>118.56 ± 1.45</td>
<td>115.75 ± 1.11</td>
<td>45.81 ± 1.37</td>
</tr>
<tr>
<td></td>
<td>φ</td>
<td>10</td>
<td>103.84 ± 2.20</td>
<td>72.04 ± 0.51</td>
<td>45.95 ± 0.77</td>
<td>108.65 ± 0.88</td>
<td>113.40 ± 1.56</td>
<td>41.16 ± 1.73</td>
</tr>
<tr>
<td></td>
<td>$\sigma + \varphi$</td>
<td>114</td>
<td>99.31 ± 0.59</td>
<td>72.89 ± 0.39</td>
<td>48.02 ± 0.37</td>
<td>110.36 ± 0.60</td>
<td>113.18 ± 0.49</td>
<td>42.63 ± 0.50</td>
</tr>
<tr>
<td>TOPLAM</td>
<td>σ</td>
<td>52</td>
<td>99.03 ± 0.90</td>
<td>75.42 ± 0.50</td>
<td>50.64 ± 0.50</td>
<td>114.75 ± 0.78</td>
<td>113.94 ± 0.80</td>
<td>44.76 ± 0.77</td>
</tr>
<tr>
<td></td>
<td>φ</td>
<td>62</td>
<td>99.54 ± 0.79</td>
<td>70.76 ± 0.41</td>
<td>45.82 ± 0.36</td>
<td>106.68 ± 0.55</td>
<td>112.54 ± 0.59</td>
<td>40.84 ± 0.56</td>
</tr>
<tr>
<td>KAFATİPLİ</td>
<td>CİNSİYET</td>
<td>n</td>
<td>V-Bo</td>
<td>N-VER</td>
<td>NSBa.</td>
<td>Sba. HOR</td>
<td>S-Ba/N-Ba</td>
<td>S-N/N-Ba</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X ± Sx</td>
<td>X ± Sx</td>
<td>X ± Sx</td>
<td>X ± Sx</td>
<td>X ± Sx</td>
<td>X ± Sx</td>
</tr>
<tr>
<td>H</td>
<td>♂ + ♀</td>
<td>27</td>
<td>158.34 ± 1.13</td>
<td>52.35 ± 0.66</td>
<td>130.34 ± 1.13</td>
<td>124.51 ± 0.85</td>
<td>0.43 ± 0.01</td>
<td>0.66 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>10</td>
<td>163.42 ± 1.4</td>
<td>54.01 ± 1.29</td>
<td>128.89 ± 1.76</td>
<td>123.61 ± 1.55</td>
<td>0.44 ± 0.01</td>
<td>0.67 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>17</td>
<td>155.34 ± 1.07</td>
<td>51.37 ± 0.65</td>
<td>131.19 ± 1.46</td>
<td>125.05 ± 1.01</td>
<td>0.43 ± 0.01</td>
<td>0.66 ± 0.01</td>
</tr>
<tr>
<td>B</td>
<td>♂ + ♀</td>
<td>34</td>
<td>155.09 ± 0.95</td>
<td>52.79 ± 0.60</td>
<td>130.79 ± 0.99</td>
<td>125.10 ± 0.94</td>
<td>0.44 ± 0.00</td>
<td>0.66 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>14</td>
<td>168.97 ± 1.28</td>
<td>54.42 ± 0.57</td>
<td>129.27 ± 1.80</td>
<td>123.67 ± 1.80</td>
<td>0.46 ± 0.01</td>
<td>0.65 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>20</td>
<td>152.37 ± 0.97</td>
<td>51.66 ± 0.86</td>
<td>131.65 ± 1.11</td>
<td>126.10 ± 0.97</td>
<td>0.43 ± 0.01</td>
<td>0.66 ± 0.00</td>
</tr>
<tr>
<td>M</td>
<td>♂ + ♀</td>
<td>29</td>
<td>156.15 ± 0.95</td>
<td>54.98 ± 0.91</td>
<td>130.11 ± 0.71</td>
<td>125.68 ± 0.97</td>
<td>0.44 ± 0.00</td>
<td>0.66 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>14</td>
<td>157.08 ± 1.48</td>
<td>57.23 ± 1.37</td>
<td>130.09 ± 1.03</td>
<td>126.65 ± 1.42</td>
<td>0.44 ± 0.00</td>
<td>0.66 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>15</td>
<td>155.28 ± 1.22</td>
<td>52.87 ± 0.96</td>
<td>130.12 ± 1.00</td>
<td>124.77 ± 1.32</td>
<td>0.43 ± 0.00</td>
<td>0.66 ± 0.00</td>
</tr>
<tr>
<td>D</td>
<td>♂ + ♀</td>
<td>24</td>
<td>160.02 ± 1.33</td>
<td>53.87 ± 0.89</td>
<td>132.67 ± 0.87</td>
<td>125.30 ± 1.04</td>
<td>0.43 ± 0.00</td>
<td>0.66 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>14</td>
<td>163.35 ± 1.56</td>
<td>55.67 ± 0.73</td>
<td>132.36 ± 1.08</td>
<td>125.85 ± 0.68</td>
<td>0.43 ± 0.01</td>
<td>0.66 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>10</td>
<td>155.35 ± 1.31</td>
<td>51.35 ± 1.60</td>
<td>133.10 ± 1.50</td>
<td>124.54 ± 2.22</td>
<td>0.42 ± 0.01</td>
<td>0.66 ± 0.01</td>
</tr>
<tr>
<td>TOPLAM</td>
<td>♂ + ♀</td>
<td>114</td>
<td>157.16 ± 0.56</td>
<td>53.47 ± 0.39</td>
<td>130.90 ± 0.48</td>
<td>125.15 ± 0.47</td>
<td>0.44 ± 0.00</td>
<td>0.66 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>52</td>
<td>160.50 ± 0.80</td>
<td>55.44 ± 0.53</td>
<td>130.25 ± 0.72</td>
<td>125.05 ± 0.73</td>
<td>0.44 ± 0.00</td>
<td>0.66 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>62</td>
<td>154.37 ± 0.58</td>
<td>51.82 ± 0.47</td>
<td>131.45 ± 0.63</td>
<td>125.24 ± 0.62</td>
<td>0.43 ± 0.00</td>
<td>0.66 ± 0.00</td>
</tr>
</tbody>
</table>
Tablo 4.3'ün Devamı

<table>
<thead>
<tr>
<th>KAFATIPI</th>
<th>CİNSİYET</th>
<th>n</th>
<th>V-Bo/N-Be</th>
<th>ANS-PNS</th>
<th>A-VER</th>
<th>A-HOR</th>
<th>SNA</th>
<th>ANSPNSNSNS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$X \pm S_x$</td>
<td>$X \pm S_x$</td>
<td>$X \pm S_x$</td>
<td>$X \pm S_x$</td>
<td>$X \pm S_x$</td>
<td>$X \pm S_x$</td>
</tr>
<tr>
<td>H</td>
<td>σ + φ</td>
<td>27</td>
<td>1.48 ± 0.01</td>
<td>54.73 ± 0.57</td>
<td>47.93 ± 0.54</td>
<td>54.83 ± 0.93</td>
<td>80.02 ± 0.67</td>
<td>10.79 ± 0.66</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>10</td>
<td>1.47 ± 0.02</td>
<td>57.08 ± 0.76</td>
<td>50.21 ± 0.67</td>
<td>56.59 ± 1.84</td>
<td>81.12 ± 1.04</td>
<td>9.01 ± 1.29</td>
</tr>
<tr>
<td></td>
<td>φ</td>
<td>17</td>
<td>1.49 ± 0.02</td>
<td>53.35 ± 0.56</td>
<td>46.59 ± 0.55</td>
<td>53.80 ± 0.97</td>
<td>79.37 ± 0.84</td>
<td>11.84 ± 0.63</td>
</tr>
<tr>
<td>B</td>
<td>σ + φ</td>
<td>34</td>
<td>1.42 ± 0.01</td>
<td>55.48 ± 0.52</td>
<td>48.80 ± 0.41</td>
<td>55.14 ± 0.63</td>
<td>80.62 ± 0.56</td>
<td>9.99 ± 0.53</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>14</td>
<td>1.40 ± 0.01</td>
<td>57.23 ± 0.65</td>
<td>50.30 ± 0.57</td>
<td>57.13 ± 1.06</td>
<td>80.72 ± 0.97</td>
<td>9.70 ± 0.66</td>
</tr>
<tr>
<td></td>
<td>φ</td>
<td>20</td>
<td>1.43 ± 0.01</td>
<td>54.25 ± 0.63</td>
<td>47.75 ± 0.43</td>
<td>53.74 ± 0.59</td>
<td>80.54 ± 0.66</td>
<td>10.19 ± 0.62</td>
</tr>
<tr>
<td>M</td>
<td>σ + φ</td>
<td>29</td>
<td>1.40 ± 0.01</td>
<td>57.02 ± 0.74</td>
<td>50.78 ± 0.54</td>
<td>56.11 ± 1.22</td>
<td>81.61 ± 0.85</td>
<td>8.93 ± 0.52</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>14</td>
<td>1.37 ± 0.02</td>
<td>59.22 ± 0.78</td>
<td>52.11 ± 0.66</td>
<td>59.16 ± 1.83</td>
<td>81.84 ± 1.12</td>
<td>8.59 ± 0.78</td>
</tr>
<tr>
<td></td>
<td>φ</td>
<td>15</td>
<td>1.43 ± 0.02</td>
<td>54.97 ± 0.98</td>
<td>48.53 ± 0.72</td>
<td>53.27 ± 1.28</td>
<td>81.40 ± 0.72</td>
<td>9.24 ± 0.71</td>
</tr>
<tr>
<td>D</td>
<td>σ + φ</td>
<td>24</td>
<td>1.40 ± 0.01</td>
<td>57.15 ± 0.70</td>
<td>51.51 ± 0.74</td>
<td>53.85 ± 1.23</td>
<td>80.47 ± 0.68</td>
<td>10.41 ± 0.70</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>14</td>
<td>1.38 ± 0.01</td>
<td>58.56 ± 0.91</td>
<td>52.87 ± 1.00</td>
<td>56.12 ± 1.08</td>
<td>80.92 ± 0.94</td>
<td>9.89 ± 0.94</td>
</tr>
<tr>
<td></td>
<td>φ</td>
<td>10</td>
<td>1.43 ± 0.02</td>
<td>55.18 ± 0.77</td>
<td>49.62 ± 0.81</td>
<td>50.68 ± 2.24</td>
<td>79.84 ± 0.99</td>
<td>11.12 ± 1.07</td>
</tr>
<tr>
<td>TOPLAM</td>
<td>σ + φ</td>
<td>114</td>
<td>1.43 ± 0.01</td>
<td>56.05 ± 0.32</td>
<td>49.67 ± 0.30</td>
<td>55.04 ± 0.50</td>
<td>80.70 ± 0.32</td>
<td>10.00 ± 0.30</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>52</td>
<td>1.40 ± 0.01</td>
<td>58.09 ± 0.40</td>
<td>51.46 ± 0.40</td>
<td>57.30 ± 0.73</td>
<td>81.15 ± 0.50</td>
<td>9.32 ± 0.48</td>
</tr>
<tr>
<td></td>
<td>φ</td>
<td>62</td>
<td>1.45 ± 0.01</td>
<td>54.33 ± 0.37</td>
<td>48.16 ± 0.33</td>
<td>53.15 ± 0.58</td>
<td>80.32 ± 0.40</td>
<td>10.57 ± 0.37</td>
</tr>
<tr>
<td>Kafa Tipi</td>
<td>Cinsiyet</td>
<td>n</td>
<td>ANSPNS. VER</td>
<td>A-VER/N-VER</td>
<td>B-VER</td>
<td>B-HOR</td>
<td>Cd-Gn</td>
<td>Go-Me</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----</td>
<td>-------------</td>
<td>-------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>H</td>
<td>♂ + ♀</td>
<td>27</td>
<td>94.95 ± 0.91</td>
<td>0.92 ± 0.01</td>
<td>41.81 ± 0.91</td>
<td>93.18 ± 0.91</td>
<td>119.23 ± 1.01</td>
<td>73.23 ± 0.83</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>10</td>
<td>93.72 ± 1.67</td>
<td>0.94 ± 0.03</td>
<td>43.39 ± 1.44</td>
<td>95.41 ± 2.30</td>
<td>123.33 ± 1.59</td>
<td>75.97 ± 1.43</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>17</td>
<td>95.70 ± 1.06</td>
<td>0.91 ± 0.02</td>
<td>40.88 ± 1.13</td>
<td>91.67 ± 1.62</td>
<td>116.81 ± 0.91</td>
<td>71.62 ± 0.81</td>
</tr>
<tr>
<td>B</td>
<td>♂ + ♀</td>
<td>34</td>
<td>94.31 ± 0.57</td>
<td>0.93 ± 0.01</td>
<td>42.22 ± 0.81</td>
<td>94.75 ± 1.05</td>
<td>121.04 ± 0.94</td>
<td>75.39 ± 0.71</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>14</td>
<td>94.10 ± 0.82</td>
<td>0.93 ± 0.01</td>
<td>43.78 ± 1.41</td>
<td>98.60 ± 1.82</td>
<td>124.93 ± 1.41</td>
<td>77.23 ± 1.16</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>20</td>
<td>94.45 ± 0.80</td>
<td>0.93 ± 0.01</td>
<td>41.12 ± 0.92</td>
<td>92.06 ± 0.85</td>
<td>118.31 ± 0.84</td>
<td>74.09 ± 0.79</td>
</tr>
<tr>
<td>M</td>
<td>♂ + ♀</td>
<td>29</td>
<td>94.50 ± 0.80</td>
<td>0.93 ± 0.01</td>
<td>43.72 ± 0.92</td>
<td>95.74 ± 1.32</td>
<td>123.60 ± 1.18</td>
<td>77.51 ± 0.94</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>14</td>
<td>95.14 ± 1.58</td>
<td>0.92 ± 0.02</td>
<td>45.71 ± 1.34</td>
<td>100.43 ± 1.24</td>
<td>128.49 ± 1.19</td>
<td>79.43 ± 1.33</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>15</td>
<td>93.90 ± 0.91</td>
<td>0.94 ± 0.01</td>
<td>41.86 ± 1.10</td>
<td>91.36 ± 1.60</td>
<td>119.03 ± 1.04</td>
<td>75.71 ± 1.19</td>
</tr>
<tr>
<td>D</td>
<td>♂ + ♀</td>
<td>24</td>
<td>93.04 ± 1.10</td>
<td>0.96 ± 0.02</td>
<td>45.58 ± 1.14</td>
<td>93.72 ± 1.61</td>
<td>125.30 ± 1.58</td>
<td>79.22 ± 1.13</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>14</td>
<td>93.38 ± 1.35</td>
<td>0.95 ± 0.02</td>
<td>47.38 ± 1.52</td>
<td>97.25 ± 1.73</td>
<td>129.77 ± 1.63</td>
<td>82.20 ± 1.22</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>10</td>
<td>92.57 ± 1.91</td>
<td>0.98 ± 0.03</td>
<td>43.05 ± 1.44</td>
<td>88.77 ± 2.27</td>
<td>119.04 ± 1.55</td>
<td>75.08 ± 1.25</td>
</tr>
<tr>
<td>TOPLAM</td>
<td>♂ + ♀</td>
<td>114</td>
<td>94.25 ± 0.42</td>
<td>0.93 ± 0.01</td>
<td>43.21 ± 0.48</td>
<td>94.41 ± 0.65</td>
<td>122.16 ± 0.61</td>
<td>76.22 ± 0.48</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>52</td>
<td>94.12 ± 0.67</td>
<td>0.93 ± 0.01</td>
<td>45.19 ± 0.73</td>
<td>98.12 ± 0.88</td>
<td>129.89 ± 0.79</td>
<td>78.92 ± 0.70</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>62</td>
<td>94.35 ± 0.55</td>
<td>0.93 ± 0.01</td>
<td>41.55 ± 0.55</td>
<td>91.31 ± 0.74</td>
<td>118.19 ± 0.51</td>
<td>73.96 ± 0.52</td>
</tr>
<tr>
<td>Kafa Tıplı</td>
<td>Cinsiyet</td>
<td>n</td>
<td>Pg-VER</td>
<td>Cd-Go</td>
<td>SNB</td>
<td>GoMe,SN</td>
<td>GoMe,HOR</td>
<td>CdGo,GoMe</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$X \pm S_x$</td>
<td>$X \pm S_x$</td>
<td>$X \pm S_x$</td>
<td>$X \pm S_x$</td>
<td>$X \pm S_x$</td>
<td>$X \pm S_x$</td>
</tr>
<tr>
<td>H</td>
<td>$\sigma + 9$</td>
<td>27</td>
<td>42.77 ± 1.20</td>
<td>63.32 ± 0.78</td>
<td>78.17 ± 0.66</td>
<td>32.71 ± 1.18</td>
<td>26.88 ± 1.23</td>
<td>119.86 ± 1.16</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>10</td>
<td>45.09 ± 2.00</td>
<td>65.77 ± 1.49</td>
<td>78.64 ± 1.01</td>
<td>30.01 ± 2.02</td>
<td>24.73 ± 2.28</td>
<td>119.22 ± 2.64</td>
</tr>
<tr>
<td></td>
<td>φ</td>
<td>17</td>
<td>41.40 ± 1.45</td>
<td>61.87 ± 0.88</td>
<td>78.89 ± 0.89</td>
<td>34.29 ± 1.35</td>
<td>28.15 ± 1.37</td>
<td>120.24 ± 1.07</td>
</tr>
<tr>
<td>B</td>
<td>$\sigma + 9$</td>
<td>37</td>
<td>43.22 ± 1.07</td>
<td>63.44 ± 0.93</td>
<td>78.40 ± 0.63</td>
<td>32.90 ± 1.02</td>
<td>27.22 ± 0.97</td>
<td>119.08 ± 0.96</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>14</td>
<td>45.04 ± 1.83</td>
<td>67.19 ± 1.33</td>
<td>78.68 ± 1.05</td>
<td>31.43 ± 1.78</td>
<td>25.83 ± 1.76</td>
<td>117.68 ± 1.67</td>
</tr>
<tr>
<td></td>
<td>φ</td>
<td>20</td>
<td>41.94 ± 1.25</td>
<td>60.82 ± 0.91</td>
<td>78.20 ± 0.79</td>
<td>33.94 ± 1.18</td>
<td>28.19 ± 1.08</td>
<td>120.06 ± 1.11</td>
</tr>
<tr>
<td>M</td>
<td>$\sigma + 9$</td>
<td>29</td>
<td>45.18 ± 1.19</td>
<td>63.84 ± 0.94</td>
<td>79.20 ± 0.63</td>
<td>31.49 ± 1.35</td>
<td>27.06 ± 0.98</td>
<td>119.38 ± 1.06</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>14</td>
<td>47.14 ± 1.67</td>
<td>67.20 ± 1.06</td>
<td>80.21 ± 1.06</td>
<td>30.25 ± 2.31</td>
<td>26.81 ± 1.44</td>
<td>119.87 ± 1.69</td>
</tr>
<tr>
<td></td>
<td>φ</td>
<td>15</td>
<td>43.36 ± 1.62</td>
<td>60.70 ± 1.00</td>
<td>78.27 ± 0.68</td>
<td>32.64 ± 1.50</td>
<td>27.30 ± 1.38</td>
<td>118.93 ± 1.37</td>
</tr>
<tr>
<td>D</td>
<td>$\sigma + 9$</td>
<td>24</td>
<td>47.16 ± 1.43</td>
<td>64.55 ± 1.34</td>
<td>78.02 ± 0.72</td>
<td>32.36 ± 1.42</td>
<td>25.00 ± 1.37</td>
<td>119.14 ± 1.00</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>14</td>
<td>49.33 ± 2.05</td>
<td>67.58 ± 1.67</td>
<td>79.00 ± 0.90</td>
<td>30.45 ± 1.51</td>
<td>23.94 ± 1.84</td>
<td>117.99 ± 1.29</td>
</tr>
<tr>
<td></td>
<td>φ</td>
<td>10</td>
<td>44.11 ± 1.20</td>
<td>60.31 ± 1.40</td>
<td>78.65 ± 1.08</td>
<td>35.03 ± 2.55</td>
<td>26.48 ± 2.06</td>
<td>120.75 ± 1.51</td>
</tr>
<tr>
<td>Toplam</td>
<td>$\sigma + 9$</td>
<td>114</td>
<td>44.44 ± 0.62</td>
<td>63.75 ± 0.49</td>
<td>78.47 ± 0.33</td>
<td>32.38 ± 0.61</td>
<td>26.63 ± 0.56</td>
<td>119.35 ± 0.52</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>52</td>
<td>48.57 ± 0.95</td>
<td>67.03 ± 0.69</td>
<td>79.17 ± 0.50</td>
<td>30.58 ± 0.94</td>
<td>25.38 ± 0.89</td>
<td>118.65 ± 0.87</td>
</tr>
<tr>
<td></td>
<td>φ</td>
<td>62</td>
<td>42.49 ± 0.74</td>
<td>61.00 ± 0.47</td>
<td>77.88 ± 0.42</td>
<td>33.90 ± 0.75</td>
<td>27.69 ± 0.68</td>
<td>119.95 ± 0.61</td>
</tr>
</tbody>
</table>
Tablo 4.3'ün Devamı

<table>
<thead>
<tr>
<th>Kafa Tipi</th>
<th>Cinsiyet</th>
<th>n</th>
<th>B-VER/N-VER</th>
<th>Pg-VER/N-VER</th>
<th>Go-Me/V-Bo</th>
<th>N-ANS</th>
<th>ANS-Me</th>
<th>N-Me</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X ± Sₓ</td>
<td>X ± Sₓ</td>
<td>X ± Sₓ</td>
<td>X ± Sₓ</td>
<td>X ± Sₓ</td>
<td>X ± Sₓ</td>
</tr>
<tr>
<td>H</td>
<td>♂ + ♀</td>
<td>27</td>
<td>0.80 ± 0.02</td>
<td>0.82 ± 0.03</td>
<td>0.48 ± 0.01</td>
<td>57.64 ± 0.76</td>
<td>68.42 ± 1.23</td>
<td>124.38 ± 1.41</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>10</td>
<td>0.81 ± 0.04</td>
<td>0.84 ± 0.05</td>
<td>0.47 ± 0.01</td>
<td>58.89 ± 1.40</td>
<td>70.81 ± 2.28</td>
<td>127.83 ± 2.23</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>17</td>
<td>0.80 ± 0.03</td>
<td>0.81 ± 0.03</td>
<td>0.46 ± 0.01</td>
<td>56.90 ± 0.84</td>
<td>67.02 ± 1.37</td>
<td>122.35 ± 1.68</td>
</tr>
<tr>
<td>B</td>
<td>♂ + ♀</td>
<td>34</td>
<td>0.80 ± 0.02</td>
<td>0.82 ± 0.02</td>
<td>0.49 ± 0.00</td>
<td>57.01 ± 0.53</td>
<td>70.82 ± 1.12</td>
<td>126.03 ± 1.33</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>14</td>
<td>0.81 ± 0.03</td>
<td>0.83 ± 0.04</td>
<td>0.49 ± 0.01</td>
<td>58.79 ± 0.80</td>
<td>74.05 ± 1.99</td>
<td>131.13 ± 2.13</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>20</td>
<td>0.80 ± 0.02</td>
<td>0.82 ± 0.03</td>
<td>0.49 ± 0.01</td>
<td>55.76 ± 0.56</td>
<td>68.58 ± 1.08</td>
<td>122.48 ± 1.19</td>
</tr>
<tr>
<td>M</td>
<td>♂ + ♀</td>
<td>29</td>
<td>0.80 ± 0.02</td>
<td>0.83 ± 0.02</td>
<td>0.50 ± 0.01</td>
<td>57.28 ± 0.74</td>
<td>70.50 ± 1.10</td>
<td>126.19 ± 1.47</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>14</td>
<td>0.81 ± 0.03</td>
<td>0.83 ± 0.04</td>
<td>0.51 ± 0.01</td>
<td>59.15 ± 1.00</td>
<td>72.92 ± 1.82</td>
<td>130.55 ± 2.18</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>15</td>
<td>0.79 ± 0.02</td>
<td>0.82 ± 0.03</td>
<td>0.49 ± 0.01</td>
<td>55.53 ± 0.90</td>
<td>68.24 ± 1.05</td>
<td>122.11 ± 1.33</td>
</tr>
<tr>
<td>D</td>
<td>♂ + ♀</td>
<td>24</td>
<td>0.85 ± 0.02</td>
<td>0.88 ± 0.03</td>
<td>0.50 ± 0.01</td>
<td>58.66 ± 0.76</td>
<td>71.33 ± 1.44</td>
<td>128.77 ± 1.89</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>14</td>
<td>0.85 ± 0.03</td>
<td>0.89 ± 0.04</td>
<td>0.50 ± 0.01</td>
<td>60.10 ± 0.97</td>
<td>73.50 ± 1.92</td>
<td>132.35 ± 2.30</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>10</td>
<td>0.85 ± 0.04</td>
<td>0.87 ± 0.05</td>
<td>0.48 ± 0.01</td>
<td>57.12 ± 1.06</td>
<td>69.30 ± 1.87</td>
<td>123.77 ± 2.55</td>
</tr>
<tr>
<td>TOPLAM</td>
<td>♂ + ♀</td>
<td>114</td>
<td>0.81 ± 0.01</td>
<td>0.84 ± 0.01</td>
<td>0.49 ± 0.00</td>
<td>57.62 ± 0.34</td>
<td>70.28 ± 0.61</td>
<td>126.26 ± 0.76</td>
</tr>
<tr>
<td></td>
<td>♂</td>
<td>52</td>
<td>0.82 ± 0.02</td>
<td>0.85 ± 0.02</td>
<td>0.49 ± 0.00</td>
<td>59.26 ± 0.50</td>
<td>72.97 ± 0.98</td>
<td>130.67 ± 1.10</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>62</td>
<td>0.81 ± 0.01</td>
<td>0.82 ± 0.02</td>
<td>0.48 ± 0.00</td>
<td>56.24 ± 0.40</td>
<td>68.02 ± 0.63</td>
<td>122.56 ± 0.78</td>
</tr>
<tr>
<td>KAFA TİPİ</td>
<td>CİNSİYET</td>
<td>n</td>
<td>S-Go</td>
<td>S-PNS</td>
<td>PNS-Go</td>
<td>A-VER-B-VER</td>
<td>A-HOR-B-HOR</td>
<td>A-B</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(X \pm S_x)</td>
<td>(X \pm S_x)</td>
<td>(X \pm S_x)</td>
<td>(X \pm S_x)</td>
<td>(X \pm S_x)</td>
<td>(X \pm S_x)</td>
</tr>
<tr>
<td>H</td>
<td>(\sigma + \varphi)</td>
<td>27</td>
<td>84.12 ± 1.18</td>
<td>49.19 ± 0.66</td>
<td>47.75 ± 1.09</td>
<td>6.12 ± 0.74</td>
<td>-38.34 ± 0.88</td>
<td>39.01 ± 0.89</td>
</tr>
<tr>
<td></td>
<td>(\sigma)</td>
<td>10</td>
<td>89.30 ± 1.92</td>
<td>52.05 ± 1.13</td>
<td>50.90 ± 2.20</td>
<td>6.82 ± 1.50</td>
<td>-38.81 ± 1.77</td>
<td>39.69 ± 1.70</td>
</tr>
<tr>
<td></td>
<td>(\varphi)</td>
<td>17</td>
<td>81.02 ± 0.88</td>
<td>47.51 ± 0.47</td>
<td>45.99 ± 0.93</td>
<td>5.70 ± 0.80</td>
<td>-38.07 ± 0.98</td>
<td>38.61 ± 1.03</td>
</tr>
<tr>
<td>B</td>
<td>(\sigma + \varphi)</td>
<td>34</td>
<td>84.38 ± 1.25</td>
<td>49.36 ± 0.54</td>
<td>48.95 ± 0.88</td>
<td>6.58 ± 0.72</td>
<td>-39.61 ± 0.73</td>
<td>40.37 ± 0.74</td>
</tr>
<tr>
<td></td>
<td>(\sigma)</td>
<td>14</td>
<td>90.22 ± 1.59</td>
<td>51.16 ± 0.85</td>
<td>52.41 ± 1.07</td>
<td>6.52 ± 1.34</td>
<td>-41.46 ± 1.28</td>
<td>42.25 ± 1.30</td>
</tr>
<tr>
<td></td>
<td>(\varphi)</td>
<td>20</td>
<td>80.29 ± 1.13</td>
<td>48.10 ± 0.57</td>
<td>46.53 ± 0.93</td>
<td>6.63 ± 0.82</td>
<td>-38.32 ± 0.75</td>
<td>39.05 ± 0.76</td>
</tr>
<tr>
<td>M</td>
<td>(\sigma + \varphi)</td>
<td>29</td>
<td>85.35 ± 1.22</td>
<td>50.54 ± 0.55</td>
<td>48.66 ± 0.80</td>
<td>7.06 ± 0.73</td>
<td>-39.83 ± 0.80</td>
<td>40.43 ± 0.81</td>
</tr>
<tr>
<td></td>
<td>(\sigma)</td>
<td>14</td>
<td>90.25 ± 1.27</td>
<td>52.28 ± 0.81</td>
<td>50.62 ± 1.13</td>
<td>6.40 ± 1.22</td>
<td>-41.27 ± 1.25</td>
<td>42.01 ± 1.21</td>
</tr>
<tr>
<td></td>
<td>(\varphi)</td>
<td>15</td>
<td>80.79 ± 1.13</td>
<td>48.91 ± 0.68</td>
<td>46.83 ± 0.93</td>
<td>7.67 ± 0.83</td>
<td>-38.09 ± 0.89</td>
<td>38.95 ± 0.97</td>
</tr>
<tr>
<td>D</td>
<td>(\sigma + \varphi)</td>
<td>24</td>
<td>85.83 ± 1.78</td>
<td>50.62 ± 0.68</td>
<td>50.17 ± 1.24</td>
<td>5.93 ± 0.70</td>
<td>-39.86 ± 0.97</td>
<td>40.46 ± 0.96</td>
</tr>
<tr>
<td></td>
<td>(\sigma)</td>
<td>14</td>
<td>90.36 ± 2.06</td>
<td>52.45 ± 0.74</td>
<td>53.28 ± 1.38</td>
<td>5.49 ± 0.94</td>
<td>-41.13 ± 1.28</td>
<td>41.64 ± 1.31</td>
</tr>
<tr>
<td></td>
<td>(\varphi)</td>
<td>10</td>
<td>79.50 ± 1.77</td>
<td>46.06 ± 0.06</td>
<td>45.83 ± 1.42</td>
<td>6.57 ± 1.06</td>
<td>-38.09 ± 1.35</td>
<td>38.81 ± 1.27</td>
</tr>
<tr>
<td>TOPLAM</td>
<td>(\sigma + \varphi)</td>
<td>114</td>
<td>84.87 ± 0.67</td>
<td>49.89 ± 0.30</td>
<td>48.85 ± 0.49</td>
<td>6.46 ± 0.36</td>
<td>-39.37 ± 0.42</td>
<td>40.06 ± 0.42</td>
</tr>
<tr>
<td></td>
<td>(\sigma)</td>
<td>52</td>
<td>90.10 ± 0.84</td>
<td>51.98 ± 0.40</td>
<td>51.87 ± 0.70</td>
<td>6.27 ± 0.81</td>
<td>-40.81 ± 0.68</td>
<td>41.53 ± 0.67</td>
</tr>
<tr>
<td></td>
<td>(\varphi)</td>
<td>62</td>
<td>80.48 ± 0.58</td>
<td>46.13 ± 0.30</td>
<td>46.31 ± 0.50</td>
<td>6.62 ± 0.43</td>
<td>-38.16 ± 0.46</td>
<td>38.87 ± 0.48</td>
</tr>
<tr>
<td>KAFA TİPİ</td>
<td>CİNSİYET</td>
<td>n</td>
<td>ANB</td>
<td>AB.HOR</td>
<td>ANSPNS.GoMe</td>
<td>B-VER/A-VER</td>
<td>N-ANS/N-Me</td>
<td>ANS-Me/N-Me</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X ± Sₓ</td>
<td>X ± Sₓ</td>
<td>X ± Sₓ</td>
<td>X ± Sₓ</td>
<td>X ± Sₓ</td>
<td>X ± Sₓ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>σ + 9</td>
<td>27</td>
<td>1.85 ± 0.43</td>
<td>80.92 ± 1.09</td>
<td>21.92 ± 1.18</td>
<td>0.87 ± 0.02</td>
<td>0.46 ± 0.01</td>
<td>0.55 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>10</td>
<td>2.49 ± 0.92</td>
<td>79.75 ± 2.33</td>
<td>21.01 ± 2.43</td>
<td>0.88 ± 0.03</td>
<td>0.46 ± 0.01</td>
<td>0.55 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>17</td>
<td>1.48 ± 0.42</td>
<td>81.60 ± 1.10</td>
<td>22.45 ± 1.26</td>
<td>0.88 ± 0.02</td>
<td>0.47 ± 0.01</td>
<td>0.55 ± 0.01</td>
</tr>
<tr>
<td>B</td>
<td>σ + 9</td>
<td>34</td>
<td>2.22 ± 0.43</td>
<td>80.62 ± 1.01</td>
<td>22.92 ± 0.97</td>
<td>0.87 ± 0.01</td>
<td>0.45 ± 0.00</td>
<td>0.56 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>14</td>
<td>2.05 ± 0.74</td>
<td>81.13 ± 1.80</td>
<td>21.73 ± 1.75</td>
<td>0.87 ± 0.03</td>
<td>0.45 ± 0.01</td>
<td>0.56 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>20</td>
<td>2.34 ± 0.53</td>
<td>80.27 ± 1.20</td>
<td>23.75 ± 1.11</td>
<td>0.86 ± 0.02</td>
<td>0.45 ± 0.00</td>
<td>0.56 ± 0.00</td>
</tr>
<tr>
<td>M</td>
<td>σ + 9</td>
<td>29</td>
<td>2.40 ± 0.46</td>
<td>79.86 ± 1.01</td>
<td>22.56 ± 1.22</td>
<td>0.86 ± 0.01</td>
<td>0.45 ± 0.00</td>
<td>0.56 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>14</td>
<td>1.63 ± 0.74</td>
<td>81.02 ± 1.74</td>
<td>21.67 ± 2.13</td>
<td>0.88 ± 0.02</td>
<td>0.45 ± 0.01</td>
<td>0.56 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>15</td>
<td>3.13 ± 0.50</td>
<td>78.78 ± 1.06</td>
<td>23.40 ± 1.30</td>
<td>0.84 ± 0.02</td>
<td>0.46 ± 0.01</td>
<td>0.56 ± 0.01</td>
</tr>
<tr>
<td>D</td>
<td>σ + 9</td>
<td>24</td>
<td>2.45 ± 0.37</td>
<td>81.46 ± 1.03</td>
<td>21.90 ± 1.18</td>
<td>0.88 ± 0.01</td>
<td>0.46 ± 0.00</td>
<td>0.55 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>14</td>
<td>1.92 ± 0.48</td>
<td>82.51 ± 1.24</td>
<td>20.56 ± 1.41</td>
<td>0.89 ± 0.02</td>
<td>0.45 ± 0.01</td>
<td>0.55 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td>3.19 ± 0.50</td>
<td>79.99 ± 1.72</td>
<td>23.91 ± 1.96</td>
<td>0.87 ± 0.02</td>
<td>0.46 ± 0.01</td>
<td>0.55 ± 0.01</td>
</tr>
<tr>
<td>TOPLAM</td>
<td>σ + 9</td>
<td>114</td>
<td>2.23 ± 0.21</td>
<td>80.67 ± 0.52</td>
<td>22.39 ± 0.56</td>
<td>0.87 ± 0.01</td>
<td>0.46 ± 0.00</td>
<td>0.55 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>52</td>
<td>1.99 ± 0.35</td>
<td>81.21 ± 0.86</td>
<td>21.26 ± 0.93</td>
<td>0.88 ± 0.01</td>
<td>0.45 ± 0.00</td>
<td>0.56 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>62</td>
<td>2.43 ± 0.26</td>
<td>80.23 ± 0.62</td>
<td>23.33 ± 0.66</td>
<td>0.86 ± 0.01</td>
<td>0.46 ± 0.00</td>
<td>0.55 ± 0.00</td>
</tr>
<tr>
<td>KAFA TIPI</td>
<td>CİNSİYET</td>
<td>n</td>
<td>S-Go/N-Me</td>
<td>N-Me/N-Ba</td>
<td>S-Go/N-Ba</td>
<td>Cd-Go/S-Go</td>
<td>P-P</td>
<td>Max-Max</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>----</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$x \pm s_x$</td>
<td>$x \pm s_x$</td>
<td>$x \pm s_x$</td>
<td>$x \pm s_x$</td>
<td>$x \pm s_x$</td>
<td>$x \pm s_x$</td>
</tr>
<tr>
<td>H</td>
<td>$\sigma + \vartheta$</td>
<td>27</td>
<td>0.68 ± 0.01</td>
<td>1.17 ± 0.02</td>
<td>0.79 ± 0.01</td>
<td>0.75 ± 0.01</td>
<td>161.00 ± 1.29</td>
<td>64.49 ± 0.58</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>10</td>
<td>0.70 ± 0.02</td>
<td>1.16 ± 0.03</td>
<td>0.81 ± 0.02</td>
<td>0.74 ± 0.01</td>
<td>166.43 ± 1.32</td>
<td>66.87 ± 0.66</td>
</tr>
<tr>
<td></td>
<td>ϑ</td>
<td>17</td>
<td>0.66 ± 0.01</td>
<td>1.18 ± 0.02</td>
<td>0.78 ± 0.01</td>
<td>0.76 ± 0.01</td>
<td>157.81 ± 1.42</td>
<td>63.10 ± 0.64</td>
</tr>
<tr>
<td>B</td>
<td>$\sigma + \vartheta$</td>
<td>34</td>
<td>0.67 ± 0.01</td>
<td>1.15 ± 0.01</td>
<td>0.77 ± 0.01</td>
<td>0.75 ± 0.01</td>
<td>154.97 ± 0.84</td>
<td>65.14 ± 0.52</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>14</td>
<td>0.69 ± 0.01</td>
<td>1.15 ± 0.02</td>
<td>0.79 ± 0.02</td>
<td>0.75 ± 0.01</td>
<td>157.60 ± 1.37</td>
<td>66.63 ± 0.90</td>
</tr>
<tr>
<td></td>
<td>ϑ</td>
<td>20</td>
<td>0.66 ± 0.01</td>
<td>1.15 ± 0.00</td>
<td>0.76 ± 0.01</td>
<td>0.76 ± 0.01</td>
<td>153.06 ± 0.85</td>
<td>64.09 ± 0.50</td>
</tr>
<tr>
<td>M</td>
<td>$\sigma + \vartheta$</td>
<td>29</td>
<td>0.68 ± 0.01</td>
<td>1.13 ± 0.01</td>
<td>0.77 ± 0.01</td>
<td>0.75 ± 0.00</td>
<td>154.17 ± 1.13</td>
<td>67.15 ± 0.66</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>14</td>
<td>0.69 ± 0.01</td>
<td>1.14 ± 0.02</td>
<td>0.79 ± 0.01</td>
<td>0.75 ± 0.01</td>
<td>158.38 ± 1.22</td>
<td>68.36 ± 1.00</td>
</tr>
<tr>
<td></td>
<td>ϑ</td>
<td>15</td>
<td>0.66 ± 0.01</td>
<td>1.13 ± 0.02</td>
<td>0.75 ± 0.01</td>
<td>0.75 ± 0.01</td>
<td>150.23 ± 1.18</td>
<td>66.02 ± 0.77</td>
</tr>
<tr>
<td>D</td>
<td>$\sigma + \vartheta$</td>
<td>24</td>
<td>0.67 ± 0.01</td>
<td>1.13 ± 0.02</td>
<td>0.75 ± 0.01</td>
<td>0.75 ± 0.00</td>
<td>151.63 ± 1.36</td>
<td>65.57 ± 1.12</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>14</td>
<td>0.68 ± 0.01</td>
<td>1.12 ± 0.02</td>
<td>0.76 ± 0.01</td>
<td>0.75 ± 0.01</td>
<td>154.39 ± 1.55</td>
<td>69.01 ± 0.81</td>
</tr>
<tr>
<td></td>
<td>ϑ</td>
<td>10</td>
<td>0.64 ± 0.02</td>
<td>1.14 ± 0.03</td>
<td>0.73 ± 0.01</td>
<td>0.76 ± 0.01</td>
<td>147.76 ± 1.91</td>
<td>60.74 ± 1.40</td>
</tr>
<tr>
<td>TOPLAM</td>
<td>$\sigma + \vartheta$</td>
<td>114</td>
<td>0.67 ± 0.00</td>
<td>1.15 ± 0.01</td>
<td>0.77 ± 0.00</td>
<td>0.75 ± 0.00</td>
<td>155.48 ± 0.64</td>
<td>65.59 ± 0.36</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>52</td>
<td>0.69 ± 0.01</td>
<td>1.14 ± 0.01</td>
<td>0.79 ± 0.01</td>
<td>0.74 ± 0.00</td>
<td>158.64 ± 0.89</td>
<td>67.78 ± 0.45</td>
</tr>
<tr>
<td></td>
<td>ϑ</td>
<td>62</td>
<td>0.66 ± 0.01</td>
<td>1.15 ± 0.01</td>
<td>0.76 ± 0.01</td>
<td>0.76 ± 0.00</td>
<td>152.93 ± 0.77</td>
<td>63.74 ± 0.43</td>
</tr>
<tr>
<td>KAFA TİPİ</td>
<td>CİNSİYET</td>
<td>n</td>
<td>Mand-Mand</td>
<td>V-Me</td>
<td>SEF. İNDекс</td>
<td>Max. Genişlik</td>
<td>Max. Uzunluk</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----</td>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X ± S_x</td>
<td>X ± S_x</td>
<td>X ± S_x</td>
<td>X ± S_x</td>
<td>X ± S_x</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>σ + 9</td>
<td>27</td>
<td>87.22 ± 0.91</td>
<td>219.46 ± 1.89</td>
<td>88.44 ± 0.40</td>
<td>155.00 ± 1.17</td>
<td>175.26 ± 1.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>10</td>
<td>90.56 ± 1.21</td>
<td>226.51 ± 2.18</td>
<td>88.81 ± 0.89</td>
<td>160.80 ± 1.03</td>
<td>181.10 ± 1.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>η</td>
<td>17</td>
<td>85.27 ± 0.99</td>
<td>215.31 ± 2.18</td>
<td>88.22 ± 0.83</td>
<td>151.59 ± 1.11</td>
<td>171.82 ± 1.49</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>σ + 9</td>
<td>34</td>
<td>86.36 ± 0.69</td>
<td>220.08 ± 1.82</td>
<td>83.00 ± 0.21</td>
<td>148.53 ± 0.69</td>
<td>178.71 ± 0.89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>14</td>
<td>87.74 ± 1.26</td>
<td>226.52 ± 3.16</td>
<td>82.45 ± 0.30</td>
<td>151.43 ± 0.86</td>
<td>183.14 ± 0.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>η</td>
<td>20</td>
<td>85.39 ± 0.73</td>
<td>215.57 ± 1.56</td>
<td>83.39 ± 0.25</td>
<td>146.50 ± 0.72</td>
<td>175.60 ± 0.80</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>σ + 9</td>
<td>29</td>
<td>88.92 ± 0.77</td>
<td>222.27 ± 1.98</td>
<td>79.04 ± 0.24</td>
<td>146.79 ± 0.85</td>
<td>185.86 ± 1.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>14</td>
<td>90.76 ± 0.99</td>
<td>228.70 ± 2.39</td>
<td>78.67 ± 0.40</td>
<td>149.21 ± 1.26</td>
<td>189.57 ± 1.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>η</td>
<td>15</td>
<td>87.20 ± 0.99</td>
<td>216.26 ± 2.23</td>
<td>79.39 ± 0.27</td>
<td>144.53 ± 0.79</td>
<td>182.40 ± 1.38</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>σ + 9</td>
<td>24</td>
<td>88.24 ± 1.28</td>
<td>233.07 ± 2.59</td>
<td>74.07 ± 0.71</td>
<td>143.50 ± 1.37</td>
<td>194.07 ± 0.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>14</td>
<td>91.76 ± 1.12</td>
<td>239.18 ± 2.83</td>
<td>73.47 ± 1.16</td>
<td>147.57 ± 1.13</td>
<td>201.39 ± 4.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>η</td>
<td>10</td>
<td>83.30 ± 1.69</td>
<td>224.51 ± 3.30</td>
<td>74.91 ± 0.46</td>
<td>137.80 ± 1.64</td>
<td>183.78 ± 1.90</td>
<td></td>
</tr>
<tr>
<td>TOPLAM</td>
<td>σ + 9</td>
<td>114</td>
<td>87.61 ± 0.45</td>
<td>223.22 ± 1.12</td>
<td>81.40 ± 0.51</td>
<td>148.56 ± 0.62</td>
<td>182.95 ± 1.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>52</td>
<td>90.18 ± 0.60</td>
<td>230.51 ± 1.53</td>
<td>80.24 ± 0.83</td>
<td>151.60 ± 0.85</td>
<td>189.40 ± 1.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>η</td>
<td>62</td>
<td>85.46 ± 0.52</td>
<td>217.11 ± 1.14</td>
<td>82.38 ± 0.61</td>
<td>146.02 ± 0.75</td>
<td>177.53 ± 0.89</td>
<td></td>
</tr>
</tbody>
</table>
Kız bireylerde yine Hiperbrakiselal grupta Dolikosefal gruba doğru giderek küçülen maksimum genişlik ölçümü, Brakiselal ve Mezosefal gruplar arasında istatistiksel olarak önemli bir ayrıcalık göstermektedir Hiperbrakiselal grup dizende büyük ortalama değer Brakiselal, Mezosefal ve Dolikosefal kız bireylere ait ortalama değerlerle p<0.01 düzeyinde ve yine Dolikosefal kız bireylerdeki küçük ortalama değer Mezosefal ve Brakiselal kız bireylere ait ortalama değerler ile p<0.05 düzeyinde önemli fark göstermektedir.

Maksimum uzunluk ölçümü incelendiğinde; erkek bireylerde bu boyuta ait ortalama değer Hiperbrakiselal grupta Dolikosefal gruba doğru giderek artmaktadır. Hiperbrakiselal ve Brakiselal erkek bireylere ait ortalama değerler istatistiksel olarak önemli bir fark göstermekten Dolikosefal erkek bireylere en yüksek olan ortalama değer Mezosefal ve Hiperbrakiselal gruplardaki ortalama değerler ile p<0.01, Brakiselal gruba ait ortalama değer ile p<0.05 düzeyinde anlamlı ayrıcalık yaratmaktadır. Hiperbrakiselal ve Mezosefal erkek gruplar arasında p<0.01 Brakiselal ve Mezosefal gruplar arasında ise p<0.05 düzeyinde farklılık mevcuttur. Kız bireylerde maksimum uzunluk ölçümünde yine ortalamannın Hiperbrakiselal grupta Dolikosefal gruba doğru giderek büyüdüğü değerlerin incelenmesinden anlaşılmalıdır. Hiperbrakiselal ve Brakiselal, Mezosefal ve Dolikosefal gruplar haricinde diğer tüm baş tipleri arasında istatistiksel olarak önemli düzeyde farklılık mevcuttur (p<0.01).

Lateral sefalometrik film üzerinde yapılan ölçümler değerlendirildiğinde; bireylerin doğal baş konumlarındaki kraniyoservikal açıları (NSL.CVT, NSL.OPT) ve servikal kolon konumları (OPT.HOR, CVT.HOR) baş tipleri arasında önemli bir farklılık göstermemektedir (Tablo 4.4).

OPT.HOR ve CVT.HOR açlarının ortalama değerleri, minimum değerden maksimum değere doğru sıralanıp en yüksek, en düşük ve bunlar arasındaki ortalama değerlerden gruplar oluşturularak değerlendirildiğinde (Tablo 4.6); 27 Hiperbrakiselal bireyin %33’ü OPT.HOR açısının maksimum, %30’u minimum değerlerini göstermektedir. 24 Dolikosefal bireyin %25'i OPT.HOR açısının minimum, %50’şi maksimum değerlerini göstermektedir. Yine materyalimizde küçük CVT.HOR açısına sahip bireylerin baş tiplerine bakıldığında; 24 Dolikosefal bireyin %46’sında CVT.HOR açısı küçük, diğer %21’inde büyük olduğunu görülmektedir. Hiperbrakiselal bireylerin %41’i CVT.HOR açısının maksimum değerlerine sahip iken %26’sı minimum değerlerine sahiptir. Brakiselal ve Mezosefal bireyler bu iki açıya ait minimum, maksimum ve orta değerlerini gösteren gruplara hemen hemen eşit dağılmışlardır.
Tablo 4.4: Araştırmada Kullanılan 65 Özellikin Dört Farklı Baş Tipine ve Cinsiyete Göre Uygulanan Faktöriyel Duzende Varyans Analizi Sonuçları (n=114)

<table>
<thead>
<tr>
<th>PARAMETRE ADI</th>
<th>CİNSİYET</th>
<th>Kafa TİPİ</th>
<th>H-B</th>
<th>H-M</th>
<th>H-D</th>
<th>B-M</th>
<th>B-D</th>
<th>M-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSL. VER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSL. CVT</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSL. OPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPT. CVT</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVT. HOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPT. HOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSL. VER</td>
<td>**</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSL</td>
<td>**</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Ba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Ba</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-HOR</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bo-HOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-Bo</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-VER</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSBa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sba. HOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Ba/N-Ba</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-N/N-Ba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-Bo/N-Ba</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANS-PNS</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-VER</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-HOR</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSPNS.SN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSPNS.VER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-VER/N-VER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-VER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-HOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd-Gn</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Go-Me</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pg-VER</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01
<table>
<thead>
<tr>
<th>PARAMETRE ADI</th>
<th>CİNSİYET</th>
<th>KAFA TİPİ</th>
<th>H-B</th>
<th>H-M</th>
<th>H-D</th>
<th>B-M</th>
<th>B-D</th>
<th>M-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd-Go</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNB</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GoMe. SN</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GoMe. HOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CdGo.GoMe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-VER/N-VER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pg-VER/N-VER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Go-Me/V-Bo</td>
<td>*</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-ANS</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANS-Me</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Me</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Go</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-PNS</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNS-Go</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-VER-B-VER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-HOR-B-HOR</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-B</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB.HOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSPNS. GoMe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-VER/A-VER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-ANS/N-Me</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANS-Me/N-Me</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Go/N-Me</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Me/N-Ba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Go/N-Ba</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Cd-Go/S-Go</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-P</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>Max-max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaksiyon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mand-mand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaksiyon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-Me</td>
<td>**</td>
<td>**</td>
<td></td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>

* p<0.05, ** p<0.01
Tablo 4.4:נ Devamı:

<table>
<thead>
<tr>
<th>PARAMETRE ADI</th>
<th>CİNSİYET</th>
<th>Kafa Tipli</th>
<th>H-B</th>
<th>H-M</th>
<th>H-D</th>
<th>B-M</th>
<th>B-D</th>
<th>M-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sefalik index</td>
<td></td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Maksimum genişlik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksimum uzunluk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01

Tablo 4.5: Varyans Analizi Sonucunda İnteraksiyon Çıkan Ölçümlerimize Uygulanan Duncan Testi Sonuçları (n=114)

<table>
<thead>
<tr>
<th>PARAMETRE ADI</th>
<th>CİNSİYET</th>
<th>H-P</th>
<th>H-M</th>
<th>H-D</th>
<th>B-M</th>
<th>B-D</th>
<th>M-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max-Max</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Mand-Mand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Maksimum genişlik</td>
<td></td>
<td>**</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksimum uzunluk</td>
<td></td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01

Tablo 4.6: CVT.HOR ve OPT.HOR Açılarının Minimum, Orta ve Maksimum Değerlerine Sahip Bireylerin Baş Tiplerine Göre Yüzdeleri (n=114)

<table>
<thead>
<tr>
<th></th>
<th>CVT.HOR</th>
<th>OPT.HOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Orta</td>
</tr>
<tr>
<td>Hiperbrakisefal</td>
<td>26</td>
<td>33</td>
</tr>
<tr>
<td>Brakisefal</td>
<td>35</td>
<td>26</td>
</tr>
<tr>
<td>Mezosefal</td>
<td>28</td>
<td>41</td>
</tr>
<tr>
<td>Dolikosefal</td>
<td>46</td>
<td>33</td>
</tr>
</tbody>
</table>
Bu ölçümlerimizden sadece NSL.CVT ve OPT.CVT açıllarının cinsler arasında p<0.05 düzeyinde farklık gösterdiği ve her baş tipinde de kızlarda daha büyük olduğu Tablo 4.3 ve 4.4’ün incelenmesinden anlaşılmatıdır.

Kraniyal taban açısı ile bireylerin doğal baş konumlarında ön ve arka kraniyal taban eğimleri (NSL.VER, S.Ba.HOR), baş tipleri ve cinsler arasında önemli bir farklık göstermemektedir. Ancak doğal baş konumunda orta kraniyal taban olarak düşünebileceğimiz WSL doğrusu eğiminin (WSL.VER) baş tipleri arasında farklı olduğu bulunmuştur (p<0.01). Tablo 4.4 incelendiğinde, bu açının Hiperbrakisel, Brakisel ve Dolikosefal bireylerde benzer olduğu ancak Mezosefal bireyler daha dik bir orta kraniyal taban eğimine sahip olduklarından (x=96.09±1.25), Hiperbrakisel ve Mezosefal baş tipleri arasında p<0.05, Mezosefal ve Dolikosefal baş tipleri arasında ise p<0.01 düzeyinde önemli bir farkliliğin saptandığı görülmektedir.

Kraniyal tabanın sagital yön boyutunu veren N-Ba ölçümü incelendiğinde; baş tipleri arasında p<0.01 düzeyinde önemli bir farklık gösterdiği görülmektedir. Hiperbrakisel ve Brakisel, Brakisel ve Mezosefal, Mezosefal ve Dolikosefal tipler arasında önemli bir farklık bulunamamasına rağmen, Hiperbrakisel baş tipi ile Mezosefal ve Dolikosefal baş tipleri arasında p<0.01 düzeyinde önemli farklılık ve sırası ile x=106.81±1.10, 109.37±0.92, 111.46±1.08, 114.43±1.36 mm.lik ortalama değerler kraniyal taban sagital yön boyutunun Hiperbrakisel bireylerden Dolikosefal bireylerine doğru giderek büyüğüne göstermeye olup maksimum uzunlukla benzerdir. Benzer durum ön kafa tabanının sagital yön boyutu (N-S) için de geçerlidir. Ancak, bireyler doğal baş konumlarında iken N noktasının sagital yön konumunun baş tipleri arasında benzer olduğunu N-VER ölçümüne ait bulgumuzdan anlaşılmaktadır. Arka kraniyal tabanın sagital boyutunu veren S-Ba ölçümünde baş tipleri arasında istatistiksel olarak önemli bir fark saptanamamıştır. Aynı şekilde ön ve arka kraniyal taban boyutlarının tüm kraniyal tabana oranlarını veren S-Ba/N-Ba ve N-S/N-Ba ölçümleri de baş tipleri arasında önemli bir fark göstermemektedir. Yalnız bütün baş tiplerinde tüm kraniyal kaideye göre arka kraniyal kaide uzunluğunun erkek bireylerde daha büyük olduğu S-Ba/N-Ba ölçümünün cinsler arasında gösterdiği p<0.01 düzeyinde önemli ayricalıkta ve ortalama değerlerin incelenmesinden anlaşılmaktadır.
Bulgularımız, kraniyal yüksekliğin (V-Bo), baş tipleri arasında p<0.01 düzeyinde farklı olduğunu göstermektedir. V-Bo boyutu Brakisefal ve Mezosefal, Dolikosefal ile Mezosefal ve Hiperbrakisefal baş tipleri arasında istatistiksel olarak önemli bir değişiklik göstermese de Brakisefal ve Dolikosefal bireylerarasında bulunmuş p<0.01 düzeyindeki önemli farklılık ve sırası ile x=158.34±1.13, 155.09±0.95, 156.15±0.95, 160.02±1.33 mm.lik ortalama değerler Brakisefal baş tipinden Dolikosefal baş tipine doğru kraniyal yüksekliğin arttığını göstermektedir. Ancak Hiperbrakisefal bireylerde de Dolikosefal bireylere benzer şekilde bulunmuş yüksek ortalama değer (x=158.34±1.13) nedeniyle Hiperbrakisefal ve Brakisefal gruplar arasındaki p<0.01 düzeyindeki önemli fark Hiperbrakisefal ve Dolikosefal gruplar arasında mevcut değildir. Hiperbrakisefal ile Brakisefal ve Mezosefal gruplar arasında p<0.05 düzeyinde önemli farklılık görülmemektedir. Yine bulgularımız baş tipleri arasındaki kraniyal yükseklik (V-Bo) farkının alt kraniyal yükseklikten (Bo-HOR) değil, üst kraniyal yükseklikten (V-HOR) kaynaklandığını göstermektedir. Çünkü Bo-HOR boyutunun baş tiplerinde benzer olduğu, üst kraniyal yüksekliği veren V-HOR ölçümünün, V-Bo bulgumuzda benzer sekilde gruplar arasında p<0.05 düzeyinde önemli farklı gösterdiği bulunmuştur.

Kraniyal yükseklik ve uzunluk oranına (V-Bo/N-Ba) bakıldığında, Brakisefal, Mezosefal ve Dolikosefal baş tiplinin benzer, Hiperbrakisefal bireylerde ise diğer baş tiplerinden p<0.01 düzeyinde önemli farklılık gösterecek şekilde kraniyal yüksekliğin basın olduğu anlaşılmaktadır. Yine bu oran cinsler arasında ayrıcalık gösterip, kız bireylerde kraniyal yüksekliğin kraniyal uzunluğa göre daha büyük olduğu istatistiksel olarak p<0.01 düzeyinde önemli bulunulan farktan ve ortalama değerlerden anlaşılmatmaktadır. Kraniyal taban ile ilgili bütün boyutsal ölçümler erkek bireylere karşı bireylere göre beklenildiği gibi p<0.01 düzeyinde önemli bir ayrıcalık yaratacak şekilde büyük iken, sadece V-HOR boyutunda bu farklılığın mevcut olmaması açıklamaktadır.

Çenelere ilişkin bulgularımız incelendiğinde; Maksiller bazal kaidenin sagittal yön boyutunu ifade eden ANS-PNS boyutunun baş tipleri arasında önemli bir farklılık göstermediği halde, mandibulanın sagittal yön boyutunu veren ölçümler baş tipleri arasında farklı bulunmuştur. Baş tipleri arasında Go-Me boyutunda mevcut p<0.01 düzeyinde önemli fark incelendiğinde, bunun Hiperbrakisefal ile Mezosefal ve Dolikosefal bireylere ait ortalama değerler arasında mevcut p<0.01 düzeyinde önemli, yine Brakisefal ve Dolikosefal bireylere ait ortalama değerler arasında mevcut p<0.05 düzeyinde önemli farktan kaynaklandığı anlaşılmaktadır.
Benzer bulgu Cd-Gn boyutu içinde geçerli olup ortalama değerlerin Hiperbrakiselaf gruptan Dolikosefal gruba doğru büyüdüğü görülmektedir. Ramus boyunun veren Cd-Go ölçümü ve gonal açı (CdGo.GoMe) da baş tipleri arasında benzerdir.

Baş tipleri arasında p<0.01 düzeyinde önemli ayrıcalık gösteren Go-Me/V-Bo oranının Hiperbrakiselaf bireyler ile Mezosefal ve Dolikosefal bireyler arasındaki farktan kaynaklandığı anlaşılmaktadır (p<0.01). Hiperbrakiselaf ve Dolikosefal bireylerde bu oranın benzer olmaması ise, V-Bo boyutundan ziyade Go-Me boyutundaki farktan kaynaklandığı anlaşılmaktadır.

Maksillanın sagital konumu değerlendirildiğiinde, SNA açısının baş tipleri arasında benzer olduğu görülürken, doğal baş pozisyonunda A noktasının sagital yönde konumu veren A-VER ölçümünün baş tipleri arasında p<0.01 düzeyinde önemli farklılık gösterdiği görülmektedir. Bu farkın kaynağı araştırıldığında, ortalama değerlerin Hiperbrakiselaf baş tipinden Dolikosefal baş tipine doğru giderek büyüdüğü görülmektedir ve Hiperbrakiselaf baş tipi ile Mezosefal ve Dolikosefal baş tiplerine ait ortalama değerler arası fark p<0.01 düzeyinde önemli bulunmuştur. N-VER boyutuna ait ortalama değerlerin baş tipleri arasında benzer olduğu hatırlanırsa bu bireyler doğal baş konumlarında iken klinik profilde A noktasının Dolikosefal bireylerde Hiperbrakiselaf bireylere göre daha protrüsv olduğunu düşündürmektedir. Gruplar arasındaki fark istatistikselsel olarak önemli olmasa da A-VER/N-VER oranına ait sırası ile x=0.92±0.01, 0.93±0.01, 0.93±0.01, 0.96±0.02 mm.lik ortalama değerlerde bu düşünceyi doğrulamaktadır.

Mandibulanın kafa kaidesine göre sagital yön konumunu incelediğimizde, SNB açısı yanında B-VER ve Pg-VER ölçümlerinin de gruplar arasında benzer olduğu görülmektedir. Ancak istatistikselsel açıdan önemli olmasa da B-VER ve Pg-VER ölçümlerine ait ortalama değerlerin Hiperbrakiselaf gruptan Dolikosefal gruba doğru giderek büyüdüğü dikkati çekmektedir. B-VER/N-VER, Pg-VER/N-VER oranlarına bakıldığında, Dolikosefal bireylere ait ortalama değerler diğer baş tiplerine göre daha protrüsv bir mandibulayi çagrıştırmaktadır (Tablo 4.3).

N-VER ölçümünde olduğu gibi A-VER, B-VER, Pg-VER ölçümleri de her baş tipinde erkek bireylerde kız bireylerde göre büyük bulunmuştur (p<0.01). Maksillanın sagital yönde konumunun ise cinsler arasında benzer olduğu
görülmüştür. SNB açısından bütün baş tiplerinde erkek bireylerin kız bireylere göre daha protrüsv bir mandibulaya sahip olduklarını gösteren farklılık ise (p<0.05), klinik profilde mandibulanın konumu veren B-VER/N-VER, Pğ-VER/N-VER ölçümleri için geçerli değildir.

Çene kaidelerinin eğimleri araştırıldığında; Üst ve alt çene düzlemlerinin kafa kaidesine göre eğimlerini veren GóMe.SN ve ANSPNS.SN açıkları baş tipleri arasında benzer olduğu gibi bireyler doğal baş konumlarında iken maksilla ve mandibulanın horizontal ve vertikal referans doğrularına göre eğimleri de benzer (GóMe.HOR, ANSPNS.VER) bulunmuştur. Alt çene düzleminin gerçek horizontal düzleme göre eğimini veren ortalama değerler incelendiğinde; Hiperbrakiselal ve Dolikosefal bireylerle ait ortalama değerlerin (x=26.88±1.23, 25.00±1.37) Brakiselal ve Mezosefal bireylerle ait ortalama değerlerden (x=27.22±0.97, 27.06±0.98) daha düşük olduğu dikkati çekmektedir. Ayrıca üst ve alt çene düzlemlerinin bütün baş tiplerinin hepsinde erkek bireylerde kız bireylerde göre anterior rotasyon gösterdiklerine ilişkin cinsiyet farkı (ANSPNS.SN, p<0.05 ve GoGn.SN, p<0.01) doğal baş konumunda yani klinik profilde mevcut değildir. ANSPNS.VER ve GoGn.HOR açıklarında cinsiyet farkı saptanamamıştır.

Çene kaideleri arası açı da (ANSPNS.GoMe) cinsiyet ve baş tiplerine göre fark göstermemektedir.

Çeneler arası sagital yön ilişkilerini veren ölçümlerin hiçbirinde cinsiyet farkı mevcut değildir.

Bulgularımızdan, ön ve arka yüz yükseklikleri açısından baş tipleri arasında istatistiksel olarak önemli bir ayrılık olmadığı anlaşılmıştır. Bu boyutlar bütün baş tiplerinde erkek bireylerde p<0.01 seviyede önemli olmak üzere kız bireylerde göre daha büyüktür. A ve B noktalarının gerçek horizontal referans düzleme dik uzaklıkları (A-HOR, B-HOR) ve A-B ölçüümü baş tipleri arasında benzer olup erkek bireylerde daha büyüktür. Üst ve alt ön yüz yüksekliklerinin tüm ön yüz yüksekliğine oranını veren ölçümlerin hepsinde hem cinsler hem de baş tipleri arasında benzerlik bulunmuştur. Ön ve arka yüz
yükseklikleri arası oran ise bütün baş tiplerinde benzerlik gösterirken, erkek bireylerde S-Go boyutunun N-Neo boyutuna göre daha yüksek olduğu saptanmıştır (p<0.01).

Ön ve arka yüz yükseklikleri ile kraniyal kaide uzunluğu arasındaki oranlar incelendiğinde; N-Neo/N-Ba oranı cinsler ve baş tipleri bakımından bir farklılık göstermez iken, S-Go/N-Ba oranının p<0.01 düzeyinde önemli olmak üzere erkek bireylerde daha büyük olduğu görülmektedir. Bu bulgu bütün baş tiplerinde erkek bireylerde arka yüz yüksekliğinin kraniyal uzunluğuna göre daha baskın olduğunu belirtmektedir. Ayrıca bu oran baş tipleri arasında da p<0.05 düzeyinde önemli farklılık göstermektedir. Dolikosefal bireylerle Brakiselal bireyler arasında p<0.05, Hiperbrakiselal bireyler arasında p<0.01 ve yine Hiperbrakiselal bireylerle Mezosefal bireyler arasında p<0.05 düzeyinde önemli bulunan farklılık benzer olan S-Go boyutu yanında Hiperbrakiselal bireylerden Dolikosefal bireylere doğru giderek artan N-Ba boyutu ile ilgilidir.

Ramus boyunun arka yüz yüksekliği arası bütün baş tipleri arasında benzerdir. Cinsler arasında Cd-Go/S-Go oranı için p<0.01 düzeyinde önemli bulunun fark bütün baş tiplerinde erkek bireylerde göre (x=0.74±0.00) kız bireylerde (x=0.76±0.00) arka yüz yüksekliğinde ramus boyutunun hakim olduğunu göstermektedir.

Posteroanterior filmler değerlendirildiğinde (Tablo 4.4); başın maksimum genişlik ölçümüne paralel olarak P-P boyutuna ait ortalama değer Brakiselal ve Mezosefal gruplar haricinde Mezosefal ve Dolikosefal gruplar arasında p<0.05, diğer gruplar arasında p<0.01 düzeyinde önemli fark yaratacak şekilde Hiperbrakiselal bireylerden Dolikosefal bireylere doğru giderek azalmaktadır. Bu boyut her baş tipinde erkek bireylerde daha fazla bulunmuştur.

Max-max ve mand-mand boyutlarında interaksiyon mevcut olup Duncan testi ile araştırıldığında, max-max yatay boyutunun erkek bireylerde baş tiplerine göre istatistiksel olarak önemli bir fark göstermediği saptanmıştır (Tablo 4.5). Ancak ortalama değerlerin P-P arası boyuta ait bulguların tam tersine Hiperbrakiselal gruptan Dolikosefal gruba doğru giderek arttığı dikkat çekmektedir (Tablo 4.3). Aynı bulgu kız bireyler içinde geçerlidir. Ancak Hiperbrakiselal kız bireylerden Mezosefal kız bireylerde doğru artan ortalama değer Dolikosefal kız bireylerde en küçük değeri göstermektedir ve bu nedenle Brakiselal ve Mezosefal kız bireyleri ile Dolikosefal kız bireylere ait ortalama değerler arasında p<0.01 düzeyinde önemli fark saptanmıştır. Hiperbrakiselal ve
Mezosefal kız bireyler ile Dolikosefal kız bireyler arasında p<0.05 düzeyinde farklılık mevcuttur.

Mand-mand yatay boyutuna ait ortalama değerler ise erkek bireylerde Hiperbrakisefal ile Brakisefal, Mezosefal ve Dolikosefal gruplar ile Brakisefal ile Mezosefal ve Dolikosefal gruplar arasında istatistiksel olarak önemli bir fark göstermezken Brakisefal ile Dolikosefal erkek bireyler arasında p<0.05 düzeyinde önemli fark saptanmış olup, Dolikosefal bireylere ait ortalama değer daha büyüktür. Kız bireylerde ise en büyük ortalama değere Mezosefal grup sahip olup (x=87.20±0.99) en küçük ortalama değeri gösteren Dolikosefal grup ile arasında (x=83.30±1.69) p<0.05 düzeyinde önemli farklılık mevcuttur.

V-Me boyutu incelendiğinde, p<0.01 seviyesinde olmak üzere Dolikosefal grup ile diğer bütün gruplar arasında farklılık mevcuttur ve ortalama değerler Dolikosefal gruba doğru artmaktadır.

Başın maksimum genişlik ve uzunluk ölçümleri, sefalik indeks, ayrıca kraniyal taban açısı (NSBa), kraniyal yükseklik ve kraniyal kaide uzunluğu arasındaki V-Bo/N-Ba oranı ile postural ve kraniofasial ölçümler arasındaki korelasyonlar 114 kişilik erişkin materyalin tümü için Tablo 4.7'de yer almaktadır. Tablonun incelenmesinden görüleceği gibi; sefalik indeks ile başın maksimum genişlik ölçümü arasında pozitif (r=0.550), maksimum uzunluk ölçümü arasında negatif (r=0.749) yönde olmak üzere p<0.01 düzeyinde önemli beklenen bir ilişki mevcuttur, ancak 114 kişilik genel grupta baş genişliği ile uzunluğu arasındaki ilişki beklenilenin aksine istatistiksel olarak önemli bulunmamıştır (r=0.123).

Ön, arka ve tüm kafa kaidesinin sagital yön boyutlarını veren N-S, S-Ba ve N-Ba ölçümleri ile sefalik indeks arasında mevcut olan p<0.01 düzeyinde önemli negatif ilişkiler (r=-0.431, -0.281, -0.461), sefalik indeks küçüldüğçe yani Hiperbrakisefal baş tipinden Dolikosefal baş tipine doğru gidildikçe kraniyal kaide uzunluğunu arttığını ifade etmektedir, ancak NSBa, NSL.VER ve SBA.HOR aşılarının sefalik indekse göre değişmediği görülmektedir.

V-HOR, Bo-HOR ve V-Bo ölçümleri ile sefalik indeks arasında önemli bir ilişkinin bulunmamış olması kraniyal yüksekliğinin tek başına baş tiplerini belirleyici bir faktör olmadığı göstermektedir.
Tablo 4.7: 114 Bireylik Materyalimizde NSBa, V-Bo/N-Ba, Sefalik İndeks, Maksimum Genişlik ve Uzunluk Ölçümleri ile Postural, Kraniyal ve Kraniyofasiyal Özellikler Arasında Uygulanan Korelasyon Analizi Sonuçları

<table>
<thead>
<tr>
<th></th>
<th>NSBa</th>
<th>V-Bo/N-Ba</th>
<th>Sef. Index</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSL. VER</td>
<td>.440**</td>
<td>.003</td>
<td>-.071</td>
<td>-.080</td>
<td>.039</td>
</tr>
<tr>
<td>NSL. CVT</td>
<td>.216**</td>
<td>.245**</td>
<td>.051</td>
<td>-.057</td>
<td>-.061</td>
</tr>
<tr>
<td>NSL. OPT</td>
<td>.219**</td>
<td>.202*</td>
<td>.050</td>
<td>-.036</td>
<td>-.067</td>
</tr>
<tr>
<td>OPT. CVT</td>
<td>-.017</td>
<td>.100</td>
<td>-.001</td>
<td>-.052</td>
<td>-.033</td>
</tr>
<tr>
<td>CVT. HOR</td>
<td>-.088</td>
<td>.293**</td>
<td>.118</td>
<td>-.005</td>
<td>-.129</td>
</tr>
<tr>
<td>OPT. HOR</td>
<td>-.076</td>
<td>.232**</td>
<td>.112</td>
<td>.018</td>
<td>-.107</td>
</tr>
<tr>
<td>WSL. VER</td>
<td>.200*</td>
<td>.170*</td>
<td>-.023</td>
<td>.014</td>
<td>.051</td>
</tr>
<tr>
<td>NSBa</td>
<td>1.000</td>
<td>-.338**</td>
<td>-.119</td>
<td>-.136</td>
<td>.045</td>
</tr>
<tr>
<td>S-Ba</td>
<td>-.145</td>
<td>-.558**</td>
<td>-.281**</td>
<td>.181*</td>
<td>.454**</td>
</tr>
<tr>
<td>N-Ba</td>
<td>.215**</td>
<td>-.755**</td>
<td>-.461**</td>
<td>.192*</td>
<td>.665**</td>
</tr>
<tr>
<td>V-HOR</td>
<td>.191*</td>
<td>.148</td>
<td>.003</td>
<td>.136</td>
<td>.096</td>
</tr>
<tr>
<td>Bo-HOR</td>
<td>-.348**</td>
<td>.124</td>
<td>-.111</td>
<td>.230**</td>
<td>.322**</td>
</tr>
<tr>
<td>V-Bo</td>
<td>-.114</td>
<td>.167*</td>
<td>-.123</td>
<td>.353**</td>
<td>.423**</td>
</tr>
<tr>
<td>V-Bo/N-Ba</td>
<td>-.338**</td>
<td>1.000</td>
<td>.433**</td>
<td>.057</td>
<td>-.432**</td>
</tr>
<tr>
<td>N-VER</td>
<td>-.042</td>
<td>-.515**</td>
<td>-.240**</td>
<td>.143</td>
<td>.375**</td>
</tr>
<tr>
<td>SNA</td>
<td>-.425**</td>
<td>.113</td>
<td>-.057</td>
<td>.010</td>
<td>.054</td>
</tr>
<tr>
<td>ANS-PNS</td>
<td>.063</td>
<td>-.535**</td>
<td>-.351**</td>
<td>.159</td>
<td>.524**</td>
</tr>
<tr>
<td>A-VER</td>
<td>.109</td>
<td>-.516**</td>
<td>-.471**</td>
<td>.073</td>
<td>.589**</td>
</tr>
<tr>
<td>A-VER/N-VER</td>
<td>.139</td>
<td>.095</td>
<td>-.158</td>
<td>-.091</td>
<td>.114</td>
</tr>
<tr>
<td>ANSPNS. SN</td>
<td>.362**</td>
<td>.002</td>
<td>.100</td>
<td>-.100</td>
<td>-.198*</td>
</tr>
<tr>
<td>ANSPNS. VER</td>
<td>-.167*</td>
<td>-.002</td>
<td>.140</td>
<td>.006</td>
<td>-.179*</td>
</tr>
<tr>
<td>SNB</td>
<td>-.460**</td>
<td>.085</td>
<td>.029</td>
<td>.099</td>
<td>.021</td>
</tr>
<tr>
<td>Go-Me</td>
<td>.023</td>
<td>-.478**</td>
<td>-.384**</td>
<td>.079</td>
<td>.487**</td>
</tr>
<tr>
<td>B-VER</td>
<td>.089</td>
<td>-.300**</td>
<td>-.245**</td>
<td>.101</td>
<td>.350**</td>
</tr>
<tr>
<td>Pg-VER</td>
<td>.077</td>
<td>-.288**</td>
<td>-.209*</td>
<td>.116</td>
<td>.318**</td>
</tr>
<tr>
<td>B-VER/N-VER</td>
<td>.095</td>
<td>.035</td>
<td>-.077</td>
<td>.010</td>
<td>.093</td>
</tr>
<tr>
<td>Pg-VER/N-VER</td>
<td>.084</td>
<td>-.019</td>
<td>-.076</td>
<td>.041</td>
<td>.112</td>
</tr>
<tr>
<td>GoMe. SN</td>
<td>.130</td>
<td>.220**</td>
<td>.015</td>
<td>-.207*</td>
<td>-.154</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01
<table>
<thead>
<tr>
<th>Tablo 4.7’nin Devamı</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSBa</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>GoMe. HOR</td>
</tr>
<tr>
<td>ANB</td>
</tr>
<tr>
<td>AB. HOR</td>
</tr>
<tr>
<td>B-VER/A-VER</td>
</tr>
<tr>
<td>A-VER-B-VER</td>
</tr>
<tr>
<td>A-HOR</td>
</tr>
<tr>
<td>B-HOR</td>
</tr>
<tr>
<td>A-HOR-B-HOR</td>
</tr>
<tr>
<td>A-B</td>
</tr>
<tr>
<td>ANSPNS. GoMe</td>
</tr>
<tr>
<td>N-ANS</td>
</tr>
<tr>
<td>ANS-Me</td>
</tr>
<tr>
<td>N-Me</td>
</tr>
<tr>
<td>S-Go</td>
</tr>
<tr>
<td>S-PNS</td>
</tr>
<tr>
<td>PNS-Go</td>
</tr>
<tr>
<td>Cd-Go</td>
</tr>
<tr>
<td>P-P</td>
</tr>
<tr>
<td>Max-max</td>
</tr>
<tr>
<td>Mand-mand</td>
</tr>
<tr>
<td>V-Me</td>
</tr>
<tr>
<td>Sefalik index</td>
</tr>
<tr>
<td>Maksimum genişlik</td>
</tr>
<tr>
<td>Maksimum uzunluk</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01
Kranıyal kaide yüksekliği ve uzunluğu ile ilgili ölçümlerimizin basın maksimum genişlik ve uzunluk ölçümleri ile aynı anda göstermiş oldukları pozitif yönde anlamlı ilişkiler mevcuttur. Bu uyum üst kranıyal yüksekliği veren V-HOR mesafesi için geçerli değildir.

Kranıyal yüksekliğin kranıyal uzunluğa oranı (V-Bo/N-Ba) ise maksimum uzunluk ile p<0.01 düzeyinde önemli negatif (r=-0.432) ve dolayısıyla sefalik indeks ile de p<0.01 düzeyinde önemli pozitif bir ilişki göstermektedir (r=0.433). Bu bulgu, N-Ba boyutu ile sefalik indeks arasındaki önemli negatif ilişkinin bir sonucudur.

Maksiller ölçümler incelendiğinde; A noktasının ön kafa tabanına göre sagital yöndeki konumunu veren SNA açısının sefalik indeks ile ilişkili olmadığı görülmektedir. Bireylerin doğal baş konumlarında A ve N noktasının sagital yöndeki konumlarını veren A-VER ve N-VER ölçümlerimiz ise sefalik indeks ile p<0.01 düzeyinde önemli negatif ilişkiler göstermektedirler (r=-0.471, -0.240). Yine üst çene kaidesi sagital yön boyutunu veren ANS-PNS boyutu ile sefalik indeks arasında p<0.01 düzeyinde önemli negatif ilişki mevcuttur (r=-0.351). Bu ölçümlerimizin hepsi sefalik indeksten başka basın maksimum uzunluğu ile de p<0.01 düzeyinde önemli ilişkiler göstermişlerdir. Bu, Hiperbrakisetal baş tipinden Dolikosefal baş tipine doğru başın maksimum uzunluğu artışına, N ve A noltalarının doğal baş konumunda sagital yön konumlarını veren ölçümlerin ve de ANS-PNS boyutunun artacağını veya aksini ifade etmektedir. Ancak doğal baş konumunda A noktasının N noktasına göre sagital yön konumunu veren A-VER/N-VER oranı sefalik indeks ile değişimmemektedir.

Tablo 4.7'den alt çene ile ilgili ölçümlerimizde de aynı bulguların geçerli olduğu görülmektedir. Go-Me boyutu ile B-VER ve Pg-VER ölçümlerinin basın maksimum uzunluğu ile gösterdikleri p<0.01 düzeyinde önemli pozitif (r=0.487, 0.350, 0.318), baş indisi ile gösterdikleri p<0.01 düzeyinde önemli negatif ilişkiler (r=−0.384, −0.245, −0.209) yanında SNB açısı, B-VER/N-VER ve Pg-VER/N-VER oranları sefalik indeksle önemli bir ilişki göstermemektedir.

Üst ve alt çenenin rotasyonel konumları göz önüne alındığında; ANSPNS.SN ve ANSPNS.VER açlarının sefalik indeksten bağımsız olarak basın maksimum uzunluğu arttıkça küçüldüğünü p<0.05 düzeyinde önemli negatif
ilişkiler gestormektedir \((r=-0.198, -0.179)\). Başın uzunluğu arttıkça maksillanın hem NSL düzlemine hem de doğal baş konumunda gerçek vertikal referans düzlemine göre aşağıya rotasyonu anlamındadır. Diğer yandan NSBa açısından ANSPNS.SN açısından mevcut \(p<0.01\) düzeyinde önemli pozitif ilişki \((r=0.362)\) yanı sıra NSBa açısından ANSPNS.VER açısından de \(p<0.05\) düzeyinde önemli negatif ilişki \((r=-0.167)\) göstermesi NSBa açısından artıka gerçekten üst çeninin posterior rotasyona uğradiğini veya bunun aksini göstermektedir.

Ancak NSBa açısından artıka A-HOR ve S-PNS ölçümleri arasındaki \(p<0.01\) düzeyinde önemli negatif ilişki \((r=-0.380, -0.374)\) maksillanın bu posterior rotasyonunun, NSBa açısından artıka arka üst yüz yüksekliğinin küçülmesinden kaynaklandığı, üst ön yüz yüksekliğinde bir artışın olmadığını göstermektedir.

GoMe.SN açısından ise yine baş tiplerinden bağımsız olarak başın maksimum genişliği artıka küçülmektedir. Bu ilişki \(p<0.05\) düzeyinde önemli bulunmuştur \((r=-0.207)\). Aynı ilişki GoMe.HOR açısından için de geçerli olup bu açı hem maksimum genişlik hem de uzunluk ölçümleri ile \(p<0.05\) düzeyinde negatif ilişkiler göstermektedirler \((r=-0.168, -0.196)\). Bu bulgu, baş uzunluğu artıka mandibulanın anterior rotasyona uğradiğini anlamlandır. GoMe.SN açısından ile NSBa açısından ortak NSL düzlemine rağmen herhangi bir ilişkinin olmaması hatta NSBa açısından ile GoMe.HOR açısından arasında negatif yönlü bir ilişki saptanmış olması \((r=-0.181, p<0.05)\) kraniyal kaide açısından artıka mandibulanın anterior rotasyona uğradiğini göstermektedir. NSBa açısından artıka B noktasının dik yön konumunun da azaldığı NSBa açısından ile B-HOR ölçüümü arasındaki \(p<0.01\) düzeyinde önemli negatif ilişkiden anlaşılmaktadır \((r=-0.409)\).

Alt ve üst çene arasındaki açısını (ANSPNS.GoMe) yine seفالik indeksten bağımsız olarak maksimum genişlik artıka azaldığı görülmektedir \((r=-0.172, p<0.05)\). Bu bulgu GoMe.HOR ve GoMe.SN açısından yine maksimum genişlik ölçüümü ile gösterdikleri aynı yönlü korelasyonlar ile açıklanmaktadır \((r=-0.207, -0.168, p<0.05)\).

A ve B noktasının birbirlerine göre dik yön konumları ise sefalik indeks artıka birbirlerine doğru yaklaşıktadır ve bunu (A-HOR)-(B-HOR) ölçüümü ile sefalik indeks arasındaki \(p<0.05\) düzeyinde önemli pozitif \((r=0.184)\), A-B ölçüümü ile sefalik indeks arasındaki \(p<0.05\) düzeyinde negatif ilişki göstermektedir \((r=-0.188)\). Yine alt ön yüz yüksekliği \((r=-0.213, p<0.05)\) ve buna bağlı olarak tüm
ön yüz yüksekliği de \((r=-0.240, p<0.01)\) sefalik indeks büyüdüğüçe küçülmektedir. Sefalik indeks ile üst ön yüz (N-ANS) arasında önemli bir ilişki bulunamamıştır. Buna göre genel olarak Hiperbrakisefal baş tipinden Dolikosefal baş tipine doğru çeneler arası vertikal boyutun arttıği sefalik indeksten bağımız olarak başın maksimum uzunluğu arttığa maksillanın posterior rotasyon, başın maksimum genişliği arttığa mandibulanın anterior rotasyon yaptıği söylenebilir.

Baş tiplerinden bağımız olarak kraniyal kaide açısı arttığa maksilla, S-PNS boyutunun kısa olması nedeniyle posterior rotasyon göstermekte, mandibula ise anterior rotasyon göstermektedir.

Çenelerin sagital yön ilişkilerini veren ölçümlerimiz ise (ANB, AB.HOR, B-VER/A-VER, (A-VER)-(B-VER)), başın maksimum genişlik ve uzunluk ölçümleri sefalik indeks, kraniyal taban açısı ve V-Bo/N-Ba oranı ile ilişkili bulunmamıştır.

114 kişilik materyalimizde dik yön boyutları başın maksimum genişlik ve uzunluk ölçümleri ile \(p<0.01\) düzeyinde önemli pozitif ilişkiler göstermektedir.

V-Bo/N-Ba oranı ise sefalik indeks ile \(p<0.01\) düzeyinde önemli pozitif \((r=0.433)\), başın maksimum uzunluğu ile yine \(p<0.01\) düzeyinde önemli negatif ilişki göstermektedir \((r=-0.432)\). Bu bulgu, Hiperbrakisefal baş tipinden Dolikosefal baş tipine doğru başın maksimum uzunluğu arttığa genel olarak V-Bo/N-Ba oranının küçülüğünü ifade etmektedir. Bu ölçüünün ANS-Me haricinde yüzden bütün dik yön boyutları ile gösterdiği \(p<0.01\) düzeyinde önemli negatif ilişkiler, bu oran küçülükçe dik yön boyutlarının arttığını ifade etmektedir.

V-Bo/N-Ba oranı ile GoMe.SN, GoMe.HOR ve ANSPNS.GoMe açları arasında mevcut \(p<0.01\) düzeyinde önemli ilişkiler \((r=0.220, 0.238, 0.239)\), kraniyal yükseklik ve uzunluk arasındaki oran küçülükçe, mandibulanın anterior rotasyon yaptığini ve çene kaideleri arasındaki açının da küçülüğünü göstermektedir. Maksillanın rotasyonel konumu ile bu oran arasında ise önemli bir ilişki saptanamamıştır.

V-Bo/N-Ba oranı ile servikal kolonun konumunu gösteren CVT.HOR ve OPT.HOR ölçümler arasındaki pozitif yönlü önemli ilişkiler \((r=0.293, r=0.232, p<0.01)\), bu oran küçülükçe servikal kolonun dik ve retrüzik bir konum aldığini veya bunun aksini ifade etmektedir. NSL.CVT ve NSL.OPT açları ile V-Bo/N-Ba
orarı arasındaki p<0.01 (r=0.245) ve p<0.05 (r=0.202) düzeyinde önemli pozitif ilişkiler de aynı bulguyu doğrulamaktadır. Aynı oran ile WSL.VER açısı arasındaki p<0.05 düzeyinde önemli pozitif ilişki (r=0.170), V-Bo/N-Ba oranı küçüldükçe orta kraniyal taban eğiminin diklestiğiğini, bu anlamda sfenoid kemiğin anterior rotasyona uğradığını göstermektedir.

Posteroanterior filmlere ait ölçümleri incelediğimizde; beklenildiği gibi parietaller arası yatay boytunun maksimum genişliği ile önemli pozitif ilişki göstermekte (p<0.01, r=0.803) ve dolayısı ile sefalik indeksle de aynı ilişiği sürdürmektedir (p<0.01, r=0.433). Max-max ve mand-mand yatay boyturları hem maksimum genişlik hem de maksimum uzunluk ölçümleri ile p<0.01 düzeyinde önemli pozitif ilişki göstermektedir. Max-max yatay boyutunun sefalik indeks küçüldükçe büyüğüğünü veya sefalik indeks büyüükçe küçüldüğünü gösteren negatif yönlü önemli ilişki Tablo 4.7’de görülmektedir (r=-0.222, p<0.01). Buna göre genel olarak Dolikosefal baş tipine doğru maksiller yatay boyut artmaktadır. Mandibuler yatay boyut için aynı ilişki geçerli değildir. V-Bo/N-Ba oranları ise maksiller ve mandibuler yatay boyutlar arasında p<0.01 düzeyinde önemli negatif ilişkiler görülmektedir (r=-0.365, -0.245). V-Me boyutu ile başın maksimum uzunluğu arasında p<0.01 düzeyinde önemli pozitif (r=0.555), sefalik indeks arasında p<0.01 düzeyinde önemli negatif ilişki (r=-0.377) baş uzunluğunu artıp sefalik indeks küçüldükçe yüzün dik yön boyutunun da arttığını göstermektedir. Aynı şekilde V-Me boyutu V-Bo/N-Ba oranı küçüldükçe de artmaktadır (r=-0.165, p<0.05). Hiperbrakisefal baş tipinden Dolikosefal baş tipine doğru küçülen V-Bo/N-Ba oranları ile birlikte bimaksiller ve bimandibuler boyutla birlikte V-Me boyutu da artmaktadır.

Aynı ölçümler arasındaki korelasyon analizi her baş tipi ve cinsiyet için ayrı ayrı incelediğinde; Hiperbrakisefal erkek bireylerde şu sonuçlar elde edilmiştir (Tablo 4.8).

Başın maksimum genişlik ve uzunluk ölçümleri arasında istatistiksel olarak önemli bir ilişkisin olmadığını görülmektedir. Bu grupta sefalik indeks ile maksimum uzunluk ölçüüm arasındaki p<0.01 düzeyindeki önemli negatif ilişkisinin katsayısı r=-0.803 olup sefalik indeksle maksimum genişlik arasında önemli bir ilişki saptanamamış olması Hiperbrakisefal erkeklerde x=88.81±0.89 mm.lik ortalamada değer gösteren baş indisini maksimum uzunluğun belirlendiğini ifade etmektedir.
<table>
<thead>
<tr>
<th></th>
<th>NSBa</th>
<th>V-Bo/N-Ba</th>
<th>Sef. Index</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSL. VER</td>
<td>0.558</td>
<td>-0.180</td>
<td>0.166</td>
<td>0.523</td>
<td>0.169</td>
</tr>
<tr>
<td>NSL. CVT</td>
<td>-0.032</td>
<td>-0.015</td>
<td>-0.447</td>
<td>0.549</td>
<td>0.741*</td>
</tr>
<tr>
<td>NSL. OPT</td>
<td>-0.042</td>
<td>0.024</td>
<td>-0.463</td>
<td>0.621</td>
<td>0.799**</td>
</tr>
<tr>
<td>OPT. CVT</td>
<td>0.010</td>
<td>-0.108</td>
<td>-0.169</td>
<td>0.076</td>
<td>0.200</td>
</tr>
<tr>
<td>CVT. HOR</td>
<td>-0.414</td>
<td>0.102</td>
<td>-0.664</td>
<td>0.329</td>
<td>0.802**</td>
</tr>
<tr>
<td>OPT. HOR</td>
<td>-0.498</td>
<td>0.174</td>
<td>-0.709*</td>
<td>0.356</td>
<td>0.859**</td>
</tr>
<tr>
<td>WSL. VER</td>
<td>0.295</td>
<td>0.128</td>
<td>-0.023</td>
<td>0.537</td>
<td>0.349</td>
</tr>
<tr>
<td>NSBa</td>
<td>1.000</td>
<td>-0.490</td>
<td>0.174</td>
<td>0.030</td>
<td>-0.141</td>
</tr>
<tr>
<td>SBA. HOR</td>
<td>0.594</td>
<td>-0.382</td>
<td>-0.036</td>
<td>-0.473</td>
<td>-0.325</td>
</tr>
<tr>
<td>N-S</td>
<td>-0.046</td>
<td>0.069</td>
<td>0.026</td>
<td>0.164</td>
<td>0.079</td>
</tr>
<tr>
<td>S-Ba</td>
<td>-0.083</td>
<td>-0.729*</td>
<td>-0.123</td>
<td>0.137</td>
<td>0.198</td>
</tr>
<tr>
<td>N-Ba</td>
<td>0.385</td>
<td>-0.819**</td>
<td>-0.020</td>
<td>0.163</td>
<td>0.120</td>
</tr>
<tr>
<td>V-HOR</td>
<td>0.211</td>
<td>0.139</td>
<td>-0.156</td>
<td>-0.437</td>
<td>-0.122</td>
</tr>
<tr>
<td>Bo-HOR</td>
<td>-0.399</td>
<td>0.041</td>
<td>0.047</td>
<td>0.666*</td>
<td>-0.367</td>
</tr>
<tr>
<td>V-Bo</td>
<td>-0.011</td>
<td>0.003</td>
<td>-0.200</td>
<td>0.000</td>
<td>0.188</td>
</tr>
<tr>
<td>V-Bo/N-Ba</td>
<td>-0.490</td>
<td>1.000</td>
<td>-0.127</td>
<td>-0.198</td>
<td>-0.004</td>
</tr>
<tr>
<td>N-VER</td>
<td>-0.129</td>
<td>-0.125</td>
<td>-0.203</td>
<td>-0.439</td>
<td>-0.088</td>
</tr>
<tr>
<td>SNA</td>
<td>-0.671</td>
<td>0.298</td>
<td>-0.059</td>
<td>-0.055</td>
<td>0.019</td>
</tr>
<tr>
<td>ANS-PNS</td>
<td>-0.520</td>
<td>-0.102</td>
<td>-0.253</td>
<td>0.597</td>
<td>0.603</td>
</tr>
<tr>
<td>A-VER</td>
<td>0.020</td>
<td>-0.119</td>
<td>-0.016</td>
<td>0.367</td>
<td>0.231</td>
</tr>
<tr>
<td>A-VER/N-VER</td>
<td>0.133</td>
<td>0.040</td>
<td>0.175</td>
<td>0.512</td>
<td>0.154</td>
</tr>
<tr>
<td>ANSPNS. SN</td>
<td>0.612</td>
<td>-0.690*</td>
<td>-0.117</td>
<td>-0.342</td>
<td>-0.098</td>
</tr>
<tr>
<td>ANSPNS. VER</td>
<td>-0.032</td>
<td>-0.370</td>
<td>-0.240</td>
<td>-0.733*</td>
<td>-0.228</td>
</tr>
<tr>
<td>SNB</td>
<td>-0.640</td>
<td>0.467</td>
<td>0.053</td>
<td>0.086</td>
<td>0.002</td>
</tr>
<tr>
<td>GoMe</td>
<td>-0.155</td>
<td>-0.299</td>
<td>0.495</td>
<td>0.816**</td>
<td>0.045</td>
</tr>
<tr>
<td>B-VER</td>
<td>0.208</td>
<td>0.088</td>
<td>0.255</td>
<td>0.565</td>
<td>0.107</td>
</tr>
<tr>
<td>Pg-VER</td>
<td>0.313</td>
<td>-0.080</td>
<td>0.462</td>
<td>0.516</td>
<td>-0.109</td>
</tr>
<tr>
<td>B-VER/N-VER</td>
<td>0.194</td>
<td>0.123</td>
<td>0.256</td>
<td>0.564</td>
<td>0.110</td>
</tr>
<tr>
<td>Pg-VER/N-VER</td>
<td>0.280</td>
<td>0.002</td>
<td>0.406</td>
<td>0.529</td>
<td>-0.047</td>
</tr>
<tr>
<td>GoMe. SN</td>
<td>-0.152</td>
<td>0.555</td>
<td>-0.672*</td>
<td>-0.200</td>
<td>0.493</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01
<table>
<thead>
<tr>
<th></th>
<th>NsBa</th>
<th>V-Bo/N-Bo</th>
<th>Sef. İndex</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoMe. HOR</td>
<td>-.504</td>
<td>.611</td>
<td>-.706*</td>
<td>-.523</td>
<td>.325</td>
</tr>
<tr>
<td>ANB</td>
<td>-.059</td>
<td>-.174</td>
<td>-.125</td>
<td>-.158</td>
<td>.020</td>
</tr>
<tr>
<td>AB. HOR</td>
<td>.132</td>
<td>.231</td>
<td>.181</td>
<td>.532</td>
<td>.158</td>
</tr>
<tr>
<td>B-VER/A-VER</td>
<td>.156</td>
<td>.072</td>
<td>.169</td>
<td>.525</td>
<td>.161</td>
</tr>
<tr>
<td>A-VER-B-VER</td>
<td>-.191</td>
<td>-.138</td>
<td>-.252</td>
<td>-.380</td>
<td>.000</td>
</tr>
<tr>
<td>A-HOR</td>
<td>-.691</td>
<td>.082</td>
<td>-.326</td>
<td>-.433</td>
<td>.033</td>
</tr>
<tr>
<td>B-HOR</td>
<td>-.785*</td>
<td>.404</td>
<td>-.600</td>
<td>.037</td>
<td>.571</td>
</tr>
<tr>
<td>A-HOR-B-HOR</td>
<td>.301</td>
<td>-.439</td>
<td>.441</td>
<td>-.497</td>
<td>-.706*</td>
</tr>
<tr>
<td>A-B</td>
<td>-.315</td>
<td>.429</td>
<td>-.506</td>
<td>.440</td>
<td>.731*</td>
</tr>
<tr>
<td>ANSPNS. GoMe</td>
<td>-.451</td>
<td>.828**</td>
<td>-.497</td>
<td>.015</td>
<td>.462</td>
</tr>
<tr>
<td>N-ANS</td>
<td>.104</td>
<td>-.366</td>
<td>-.249</td>
<td>-.085</td>
<td>.178</td>
</tr>
<tr>
<td>ANS-Me</td>
<td>-.413</td>
<td>.360</td>
<td>-.460</td>
<td>.566</td>
<td>.765*</td>
</tr>
<tr>
<td>N-Me</td>
<td>-.300</td>
<td>.148</td>
<td>-.562</td>
<td>.463</td>
<td>.796*</td>
</tr>
<tr>
<td>S-Go</td>
<td>-.140</td>
<td>-.495</td>
<td>.200</td>
<td>.652</td>
<td>.214</td>
</tr>
<tr>
<td>S-PNS</td>
<td>-.698*</td>
<td>.457</td>
<td>-.150</td>
<td>.169</td>
<td>.242</td>
</tr>
<tr>
<td>PNS-Go</td>
<td>.186</td>
<td>-.739*</td>
<td>.335</td>
<td>.660</td>
<td>.097</td>
</tr>
<tr>
<td>Cd-Go</td>
<td>-.241</td>
<td>-.253</td>
<td>.356</td>
<td>.512</td>
<td>-.014</td>
</tr>
<tr>
<td>P-P</td>
<td>-.046</td>
<td>-.055</td>
<td>-.234</td>
<td>.753*</td>
<td>.672*</td>
</tr>
<tr>
<td>Max-max</td>
<td>-.752*</td>
<td>.482</td>
<td>-.020</td>
<td>-.057</td>
<td>-.012</td>
</tr>
<tr>
<td>Mand-mand</td>
<td>-.198</td>
<td>.460</td>
<td>-.699*</td>
<td>-.467</td>
<td>.356</td>
</tr>
<tr>
<td>V-Me</td>
<td>-.575</td>
<td>.648</td>
<td>-.303</td>
<td>.268</td>
<td>.444</td>
</tr>
<tr>
<td>Sefalik Index</td>
<td>.174</td>
<td>-.127</td>
<td>1.000</td>
<td>.176</td>
<td>-.803**</td>
</tr>
<tr>
<td>Maksimum genişlik</td>
<td>.030</td>
<td>-.198</td>
<td>.176</td>
<td>1.000</td>
<td>.446</td>
</tr>
<tr>
<td>Maksimum uzunluk</td>
<td>-.141</td>
<td>-.004</td>
<td>-.803**</td>
<td>.446</td>
<td>1.000</td>
</tr>
</tbody>
</table>

* p<0.05, ** p<0.01
Kraniyal kaide uzunluğunu veren ölçümler bu grupta sefalik indeks, maksimum uzunluk ve genişlik ölçümleri ile istatistiksel olarak önemli bir ilişki göstermemektedir.

Aynı bulgu kraniyal yükseklik ölçümleri içinde geçerli olup ancak alt kraniyal yüksekliğin (Bo-HOR) başın maksimum genişliği ile p<0.05 düzeyinde önemli pozitif ilişki gösterdiği saptanmıştır (r=0.666).

Başın doğal konumunda N ve A noktalarının sagital yön konumlarının 114 bireylik tüm araştırma bireylerinin aksine sefalik indeksle ilişkili olmadıkları anlaşılmaktadır, hatta N-VER boyutunun önemli bulunmamış olsa da maksimum uzunluk ile değil maksimum genişlik ile ilişki katsayısı daha büyük olup üstelik negatif yöndedir (r=-0.439). A-VER boyutunun da maksimum genişlik ile ilişki katsayısı maksimum uzunluk ile ilişki katsayısından daha büyük (r=0.367). A-VER/N-VER oranının da bu grupta maksimum genişlik ölçüümü ile istatistiksel olarak önemli olmasa da ilişki katsayısı r=0.512 olup yüksek bir değer göstermektedir.

Aynı bulgular alt çeneyle ait ölçümler için de geçerlidir. Go-Me boyutu ile başın maksimum genişliği arasındaki korelasyon p<0.01 düzeyinde önemli ve pozitiftir (r=0.816). Bununla beraber B-VER, Pg-VER, B-VER/N-VER, Pg-VER/N-VER ölçümlerinin de maksimum uzunluk ölçüümünden ziyade maksimum genişlikle gösterdikleri korelasyon katsayları istatistiksel olarak önemli bulunmamış olsa da daha büyük ve pozitif değerdedir. Buna göre Hiperbrakisefal erkek bireylerde alt çenenin sagital yön boyutu ve A, B, Pg noktalarının sagital yön konumlarını gösteren ölçümler (A-VER, B-VER, Pg-VER), başın maksimum genişliği arttıkça azaltıkça azalmakta, başın maksimum uzunluğundan etkilenmemektedir.

ANSPNS.VER açısının da başın maksimum genişlik ölçüümü ile p<0.05 düzeyinde önemli negatif korelasyon gösterdiği anlaşılmaktadır (r=-0.733). Bu bulgumuz, üst çene düzleminin başın maksimum uzunluğundan ve sefalik indeksten etkilenmeyip, başın maksimum genişliği arttıkça doğal baş konumunda posterior rotasyon gösterdiği anlamındadır.
GoMe.HOR açısının sefali̇k indeks ile göstermiş olduğu p<0.05 düzeyinde önemli negatif ilişkinin kaynağını yine basın maksimum genişliği olduğunu söyleyebiliriz çünkü, her ne kadar istatistiksel olarak önemli bulunmamış olsa da GoMe.HOR açısının basın maksimum genişliği ile ilişki katsayısı r=-0.523 olup oldukça büyük bir değer göstermektedir. Buna göre alt çene düzleminin basın maksimum genişliği artıktıkça doğal baş konumunda bu kez anterior rotasyon yaptığı söylenebilir. GoMe.SN açısının sefali̇k indeks ile göstermiş olduğu p<0.05 düzeyinde önemli negatif ilişkisinin (r=-0.672) nedeni ise bu açı ile maksimum uzunluk arasındaki pozitif yönlü yüksek r değeridir (r=0.493).

Hiperbrakisefal erkek bireylerde V-Bo/N-Ba oranı sefali̇k indeks ile ilişkili bulunamamıştır. Bu oranla N-Ba boyutu arasındaki p<0.01 düzeyinde önemli negatif ilişki doğal iken (r=-0.819), V-Bo ile önemli düzeyde pozitif bir ilişki saptanmamış olması Hiperbrakisefal erkek bireylerde V-Bo/N-Ba oranını daha çok N-Ba boyutunun belirlediğini göstermektedir.

V-Bo/N-Ba oranı ile NSBa açısında 114 bireyde saptadığımız istatistiksel olarak önemli negatif ilişkinin Hiperbrakisefal erkek bireylerde önemli seviyeye ulaşmadığı görülmektedir. V-Bo/N-Ba oranı ile N-S boyutu ve NSL.VER açısından arasındaki ilişkiler önemli seviyede değil iken S-Ba boyutu arasında önemli negatif ilişki mevcuttur (r=-0.729, p<0.05). Aynı oran ile SBa.HOR açısından arasındaki ilişkinin önemli seviyeye ulaşmadığı olduğu görülmektedir. Hiperbrakisefal erkek bireylerde standart hata sınırı çok dar olan (x=1.47±0.02) V-Bo/N-Ba oranının bu değişkenliği daha çok N-Ba ölçümüne bağlıdır ve bu oran arka kraniyal taban fleksiyonu ile etkilemiyip direkt olarak S-Ba ölçümünün büyük olması nedeni ile büyük olan N-Ba boytu ile küçülme veya kısa olan S-Ba boytu yüzdenin küçük olan N-Ba boytu nedeni ile büyümektedir.

Bu oran ile S-Go boytu arasındaki negatif yönlü yüksek ilişki katsayısı (r=-0.495) ve PNS-Go ölçümü arasındaki p<0.05 düzeyinde önemli negatif ilişki (r=-0.739) Hiperbrakisefal erkeklerde V-Bo/N-Ba oranı artışa karşı olan arka kafa tabanı ile birlike arka alt yüz şekillininde kısa olacağını veya bunun aksini ifade etmektedir. Ancak arka üst yüz şekilliği (S-PNS) ile ilişkisi önemli olmasa da r=0.457'lik değerle pozitif yönlüdür.

Aynı oran ile ANS-Me boyutu arasındaki pozitif yönlü ilişkinin üst ön yüz şekilliği (N-ANS) için önemli düzeyde olmasa bile negatif yöne dönmesi bu oranla ANSPNNS.SN açısından arasındaki negatif yönlü ilişkiyi açıklamaktadır (r=-0.690, p<0.05). Bu oran büyükükle maksilla anterior rotasyon göstermektedir.
V-Bo/N-Ba oranı ile ANSPNS.GoMe açısı arasındaki 0.828’lik pozitif yönű r değeri de bu oran artıktça alt ve üst çene düzlemleri arasındaki açının da büyüyeceğini anlatmakta olup bahsedilen bulguyu doğrulamaktadır (p<0.01).

V-Bo/N-Ba oranı ile GoMe.SN ve GoMe.HOR açıları arasındaki ilişkinin pozitif yönü olması (r=0.555, 0.611) Hiperbrakisefal erkek bireylerde genellikle büyük değere sahip bu oran ile mandibulanın da posterior rotasyon gostereceği anlamlandır.

Hiperbrakisefal erkek bireylerde büyük ortalama değer gösteren basın maksimum genişliği ve V-Bo/N-Ba oranı ile kraniofasial yapıların ilişkisi gözden geçirildikten sonra değişkenlik sınırı fazla olan basın maksimum uzunluk ölçümü ile ilişkili parametreler şunlardır:

Alt ön üçün yüksekliği (ANS-Me) ile tüm ön üçün yüksekliği (N-Me) maksimum uzunluk ile p<0.05 düzeyinde önemli pozitif korelasyon gostermektedir (r=0.765, 0.796). Buna göre Hiperbrakisefal erkek bireylerde basın uzunluğu fazla ise özellikle alt üçün olmak üzere ön üçün yüksekliğinin artacağı, basın uzunluğu azaldıkça bu boyutlarda azalacağı söylenebilir. Bu bulguyu maksimum uzunluk ölçümü ile (A-HOR)-(B-HOR) ölçümü arasındaki önemli negatif (r=-0.706, p<0.05) ve A-B ölçümü arasındaki önemli pozitif (r=0.731, p<0.05) ilişkilerde doğrulamaktadır.

Maksimum uzunluk ölçümü ile OPT.HOR ve CVT.HOR açıları arasında saptanan p<0.01 düzeyinde önemli pozitif (r=0.859, 0.802) ve yine OPT.HOR açısı ile sefalik indeks arasında saptanan p<0.05 düzeyinde önemli negatif ilişki (r=-0.709) basın maksimum uzunluku artıktça daha protrusiv bir servikal kolona, azaldıkça dik ve retrüziv bir servikal kolona sahip bireyler anlamını taşımaktadır. Bu ilişki nedeniyle maksimum uzunluk ölçümü ile NSL.OPT açısı arasında p<0.01 düzeyinde önemli (r=0.799), NSL.CVT açısı arasında p<0.05 düzeyinde önemli pozitif korelasyon saptanmıştır (r=0.741).

Hiperbrakisefal erkek bireylerde yatay yön bulguları incelendiğinde; biparietal mesafe ile basın maksimum genişlik ve uzunluk ölçümleri arasında p<0.05 düzeyinde önemli pozitif ilişki mevcuttur (r=0.753, 0.672). Sefalik indeks ile bimandibuler mesafe arası negatif korelasyon basın genişliği artıktça veya basın uzunluğu azaldıkça mandibula yatay boyutunun da azalacağığini anlatmaktadır (r=-0.699, p<0.05). Max-max mesafesi ile NSBa arasındaki p<0.05 düzeyindeki
negatif korelasyon kraniyal taban açısı küçüldükçe maksilla yatay boyutunun artacağını ifade etmektedir (r=-0.752).

Hiperbrakisefal kız grubuna ait korelasyon tablosunu incelediğimizde (Tablo 4.9); erkek grubundan farklı olarak maksimum genişlik ve uzunluk ölçümleri arasında p<0.01 düzeyinde önemli pozitif korelasyon mevcuttur (r=0.867). Hiperbrakisefal erkek grubunda görülüş gibi sefalik indeks ile maksimum uzunluk arasında bu sefer p<0.05 düzeyinde önemli negatif korelasyon mevcuttur (r=-0.538). Bu grupta da sefalik indeksi maksimum uzunluk ölçümünün etkilediği görülmektedir.

Kraniyal taban sagittal uzunluğunu veren N-Ba boyutu başına maksimum genişlik ve uzunluk ölçümleri ile p<0.05 düzeyinde pozitif ilişki gösterip (r=0.524, 0.512), ayrıca anterior kraniyal taban uzunluğu (N-S), başına maksimum genişliği ile p<0.05 düzeyinde önemli pozitif ilişki içindedir (r=0.534).

Kraniyal yükseklik ölçümlerinden total kraniyal yükseklik (V-Bo) başına maksimum genişlik ve uzunluk ölçümleri ile bir sefer p<0.01 düzeyinde pozitif korelasyon göstermektedir (r=0.756, 0.643). Bu korelasyonlar, başına maksimum genişlik ve uzunluk ölçümleri artığında, özellikle anterior kraniyal taban olmak üzere total kraniyal taban uzunluğunun ve üst kraniyal yüksekliğinde artacağına veya aksini ifade etmektedir.

Maksilla ve mandibulayi ilgilendiren ölçümlerden hiçbirı maksimum genişlik ve uzunlukla ilişkili bulunamamıştır. Çeneler arası vertikal ilişkiyi veren ANSPNS.GoMe açısı maksimum uzunluk ile p<0.05 düzeyinde önemli negatif bir ilişki gösterirken (r=-0.503) aynı açı maksimum genişlik ölçümü ile de aynı yönlü bir ilişki sergilemektedir (r=-0.429).

Posterior alt yüz yüksekliği yine başına maksimum genişlik ve uzunluk ölçümleri ile pozitif yönlü ilişkiler göstermektedir (r=0.523, 0.493, p<0.05). Buna göre başına maksimum genişlik ve uzunluk ölçümleri artarken posterior alt yüz yüksekliği artmakta ve çeneler arası açı küçülmektedir.

V-Bo/N-Ba oranı kraniyal yükseklik ölçümlerinin hiçbir ile ilişkili değil iken N-Ba boyutu ile beklenen negatif ilişkiyi mevcuttur (r=-0.791, p<0.01). Bu oranı ile ayrıca NSBa açısı arasında p<0.05 düzeyinde önemli negatif ilişki olması (r=-0.562), bu oranın büyümesinde NSBa açısının küçülmesi sonucunda kısalan N-Ba boyutunun etkili olduğunu düşündürmektedir.
<table>
<thead>
<tr>
<th></th>
<th>NSBa</th>
<th>V-Bo/N-Ba</th>
<th>Sef. İndex</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSL. VER</td>
<td>.725**</td>
<td>-.465</td>
<td>-.130</td>
<td>-.040</td>
<td>.033</td>
</tr>
<tr>
<td>NSL. CVT</td>
<td>.361</td>
<td>.178</td>
<td>-.139</td>
<td>-.420</td>
<td>-.285</td>
</tr>
<tr>
<td>NSL. OPT</td>
<td>.548'</td>
<td>.034</td>
<td>-.118</td>
<td>-.360</td>
<td>-.245</td>
</tr>
<tr>
<td>OPT. CVT</td>
<td>-.403</td>
<td>.221</td>
<td>-.010</td>
<td>-.023</td>
<td>-.014</td>
</tr>
<tr>
<td>CVT. HOR</td>
<td>-.271</td>
<td>.545*</td>
<td>-.018</td>
<td>-.346</td>
<td>-.284</td>
</tr>
<tr>
<td>OPT. HOR</td>
<td>-.040</td>
<td>.418</td>
<td>-.012</td>
<td>-.333</td>
<td>-.276</td>
</tr>
<tr>
<td>WSL. VER</td>
<td>.283</td>
<td>.029</td>
<td>.019</td>
<td>.239</td>
<td>.194</td>
</tr>
<tr>
<td>NSBa</td>
<td>1.000</td>
<td>-.562'</td>
<td>-.063</td>
<td>-.037</td>
<td>.001</td>
</tr>
<tr>
<td>Sba. HOR</td>
<td>.756**</td>
<td>-.370</td>
<td>.033</td>
<td>-.014</td>
<td>-.029</td>
</tr>
<tr>
<td>N-S</td>
<td>-.022</td>
<td>-.379</td>
<td>.044</td>
<td>.534*</td>
<td>.422</td>
</tr>
<tr>
<td>S-Ba</td>
<td>-.013</td>
<td>-.402</td>
<td>-.263</td>
<td>.204</td>
<td>.304</td>
</tr>
<tr>
<td>N-Ba</td>
<td>.461</td>
<td>-.791**</td>
<td>-.149</td>
<td>.524*</td>
<td>.512'</td>
</tr>
<tr>
<td>V-HOR</td>
<td>.161</td>
<td>.188</td>
<td>.159</td>
<td>.446</td>
<td>.293</td>
</tr>
<tr>
<td>Bo-HOR</td>
<td>-.527'</td>
<td>.178</td>
<td>-.263</td>
<td>.261</td>
<td>.355</td>
</tr>
<tr>
<td>V-Bo</td>
<td>-.075</td>
<td>-.334</td>
<td>-.012</td>
<td>.756**</td>
<td>.643**</td>
</tr>
<tr>
<td>V-Bo/N-Ba</td>
<td>-.562'</td>
<td>1.000</td>
<td>.127</td>
<td>-.038</td>
<td>-.093</td>
</tr>
<tr>
<td>N-VER</td>
<td>-.021</td>
<td>-.274</td>
<td>.124</td>
<td>.411</td>
<td>.277</td>
</tr>
<tr>
<td>SNA</td>
<td>-.581*</td>
<td>.481</td>
<td>-.241</td>
<td>-.285</td>
<td>-.119</td>
</tr>
<tr>
<td>ANS-PNS</td>
<td>.362</td>
<td>-.483*</td>
<td>-.223</td>
<td>-.157</td>
<td>-.023</td>
</tr>
<tr>
<td>A-VER</td>
<td>.354</td>
<td>-.387</td>
<td>-.443</td>
<td>-.088</td>
<td>.142</td>
</tr>
<tr>
<td>A-VER/N-VER</td>
<td>.232</td>
<td>-.031</td>
<td>-.373</td>
<td>-.376</td>
<td>-.129</td>
</tr>
<tr>
<td>ANSPNS. SN</td>
<td>.252</td>
<td>-.142</td>
<td>-.012</td>
<td>.328</td>
<td>.287</td>
</tr>
<tr>
<td>ANSPNS. VER</td>
<td>-.508'</td>
<td>.337</td>
<td>.110</td>
<td>.230</td>
<td>.139</td>
</tr>
<tr>
<td>SNB</td>
<td>-.489'</td>
<td>.341</td>
<td>-.137</td>
<td>-.181</td>
<td>-.085</td>
</tr>
<tr>
<td>Go-Me</td>
<td>.390</td>
<td>-.489*</td>
<td>-.305</td>
<td>.201</td>
<td>.320</td>
</tr>
<tr>
<td>B-VER</td>
<td>.403</td>
<td>-.372</td>
<td>-.318</td>
<td>-.083</td>
<td>.086</td>
</tr>
<tr>
<td>Pg-VER</td>
<td>.357</td>
<td>-.421</td>
<td>-.299</td>
<td>.039</td>
<td>.180</td>
</tr>
<tr>
<td>B-VER/N-VER</td>
<td>.330</td>
<td>-.187</td>
<td>-.314</td>
<td>-.231</td>
<td>-.037</td>
</tr>
<tr>
<td>Pg-VER/N-VER</td>
<td>.304</td>
<td>-.262</td>
<td>-.312</td>
<td>-.100</td>
<td>.072</td>
</tr>
<tr>
<td>GoMe. SN</td>
<td>.147</td>
<td>.033</td>
<td>.262</td>
<td>-.248</td>
<td>-.336</td>
</tr>
</tbody>
</table>

* p<0.05, ** p<0.01
<table>
<thead>
<tr>
<th></th>
<th>NSBa</th>
<th>V-Bo/N-Ba</th>
<th>Sef. İndex</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoMe. HOR</td>
<td>-.364</td>
<td>.359</td>
<td>.349</td>
<td>-.217</td>
<td>-.355</td>
</tr>
<tr>
<td>ANB</td>
<td>-.138</td>
<td>.251</td>
<td>-.197</td>
<td>-.193</td>
<td>-.063</td>
</tr>
<tr>
<td>AB. HOR</td>
<td>.310</td>
<td>-.277</td>
<td>-.084</td>
<td>-.053</td>
<td>-.002</td>
</tr>
<tr>
<td>B-VER/A-VER</td>
<td>.333</td>
<td>-.282</td>
<td>-.159</td>
<td>-.064</td>
<td>.024</td>
</tr>
<tr>
<td>A-VER-B-VER</td>
<td>-.324</td>
<td>.257</td>
<td>.143</td>
<td>.056</td>
<td>-.024</td>
</tr>
<tr>
<td>A-HOR</td>
<td>-.472</td>
<td>.240</td>
<td>.050</td>
<td>-.188</td>
<td>-.183</td>
</tr>
<tr>
<td>B-HOR</td>
<td>-.387</td>
<td>.207</td>
<td>.182</td>
<td>-.087</td>
<td>-.162</td>
</tr>
<tr>
<td>A-HOR-B-HOR</td>
<td>.169</td>
<td>-.103</td>
<td>-.251</td>
<td>-.043</td>
<td>.085</td>
</tr>
<tr>
<td>A-B</td>
<td>-.210</td>
<td>.135</td>
<td>.247</td>
<td>.041</td>
<td>-.085</td>
</tr>
<tr>
<td>ANSPNS. GoMe</td>
<td>.032</td>
<td>.106</td>
<td>.287</td>
<td>-.429</td>
<td>-.503*</td>
</tr>
<tr>
<td>N-ANS</td>
<td>.291</td>
<td>-.358</td>
<td>-.236</td>
<td>.006</td>
<td>.125</td>
</tr>
<tr>
<td>ANS-Me</td>
<td>.025</td>
<td>.056</td>
<td>.220</td>
<td>-.072</td>
<td>-.165</td>
</tr>
<tr>
<td>N-Me</td>
<td>.157</td>
<td>-.154</td>
<td>.062</td>
<td>.010</td>
<td>-.018</td>
</tr>
<tr>
<td>S-Go</td>
<td>-.047</td>
<td>-.145</td>
<td>-.236</td>
<td>.206</td>
<td>.296</td>
</tr>
<tr>
<td>S-PNS</td>
<td>-.282</td>
<td>-.168</td>
<td>-.260</td>
<td>-.268</td>
<td>-.098</td>
</tr>
<tr>
<td>PNS-Go</td>
<td>.080</td>
<td>-.041</td>
<td>-.097</td>
<td>.523*</td>
<td>.493*</td>
</tr>
<tr>
<td>Cd-Go</td>
<td>-.079</td>
<td>-.088</td>
<td>-.149</td>
<td>.269</td>
<td>.303</td>
</tr>
<tr>
<td>P-P</td>
<td>-.025</td>
<td>-.045</td>
<td>-.024</td>
<td>.915**</td>
<td>.783**</td>
</tr>
<tr>
<td>Max-max</td>
<td>.315</td>
<td>-.314</td>
<td>-.262</td>
<td>.048</td>
<td>.166</td>
</tr>
<tr>
<td>Mand-mand</td>
<td>-.026</td>
<td>-.285</td>
<td>.376</td>
<td>.134</td>
<td>-.075</td>
</tr>
<tr>
<td>V-Me</td>
<td>.105</td>
<td>.253</td>
<td>.417</td>
<td>.246</td>
<td>.001</td>
</tr>
<tr>
<td>Sefalik index</td>
<td>-.063</td>
<td>.127</td>
<td>1.000</td>
<td>-.046</td>
<td>-.538*</td>
</tr>
<tr>
<td>Maksimum genişlik</td>
<td>-.037</td>
<td>-.038</td>
<td>-.046</td>
<td>1.000</td>
<td>.867**</td>
</tr>
<tr>
<td>Maksimum uzunluk</td>
<td>.001</td>
<td>-.093</td>
<td>-.538*</td>
<td>.867**</td>
<td>1.000</td>
</tr>
</tbody>
</table>

* p<0.05, ** p<0.01
Aynı oran ile maksilla ve mandibula sagital uzunluklarını veren ANS-PNS ve Go-Me boyutları arasında p<0.05 düzeyinde önemli negatif ilişkiler olması (r=-0.483, -0.489), bu oranın değişmesinde rol oynayan N-Ba boyutunun maksilla ve mandibula sagital boyutları ile büyük bir beraberlik gösterdiğini ifade etmektedir. A-VER, B-VER, Pg-VER ile bu oran arasındaki önemli seviyede ulaşmamış olsa da yüksek ve negatif yönlü r değerleri yine aynı anlamladır (r=-0.387, -0.372, -0.421).

Kraniyal taban açısı ile NSL.VER ve SBa.HOR açıları arasında p<0.01 düzeyinde önemli pozitif ilişkiler kraniyal taban açısının artış veya azalıştan hem ön hem de arka kraniyal taban eğimlenmesinin etkisi olduğunu anlatmaktadır (r=0.725, 0.756). Kraniyal taban açısı ile Bo-HOR boyutu arasında mevcut negatif yönüli ilişki ise (r=-0.527, p<0.05), bu açı büyükçüce alt kraniyal yükseklüğün azalacağı anlamındadır.

Kraniyal taban açısı ile maksilla ve mandibula sagital yön konumlarını veren SNA ve SNB açıları arasındaki p<0.05 düzeyinde önemli negatif korelasyonlar ortak NSL düzlemine bağlı topografik korelasyonlar olarak değerlendirilmelidir.

Kraniyal taban açısı ile ANSPNS.VER açısı arasında mevcut p<0.05 düzeyinde önemli negatif korelasyon bu açı büyükçüce maksillanın posterior rotasyon yaptığı anlamaktadır (r=-0.508). ANSPNS.SN açısı ile NSBa arasında ortak NSL düzlemine rağmen önemli bir ilişki saptanamamıştır.

Postüral parametrelerimizden servikal postürü belirleyen CVT.HOR açısı ile V-Bo/N-Ba oranı arasındaki p<0.05 düzeyindeki pozitif korelasyon (r=0.545), mevcuttur.

Yatay yön ölçümlerimizden biparietal mesafe, Hiperbrakiselaf erkek grubunda olduğu gibi bu grupta da basın maksimum uzunluk ve genişlik ölçümleri ile p<0.01 düzeyinde önemli pozitif korelasyon göstermektedir (r=0.915, 0.783).

14 kişilik Brakisefal erkek grubun korelasyon tablosunu incelediğimizde (Tablo 4.10); sefalik indeks ile basın maksimum genişlik ve uzunluk ölçümleri arasındaki ilişkinin önemli seviyede olmadığı görülmektedir. Maksimum genişlik ve uzunluk ölçümleri arasında ise önemli düzeyde pozitif korelasyon mevcuttur (r=0.708, p<0.01). Bu bulğu Brakisefal erkek grupta baş genişliği arttıkça uzunluğunun da artacağını veya aksini belirtmektedir.
Tablo 4.10: 14 Bireylik Brakisefal Erkek Grubunda NSBa, V-Bo/N-Ba, Sefalik İndeks, Maksimum Genişlik ve Uzunluk Ölçümleri ile Postural, Kraniyal ve Kraniyofasial Özellikler Arasında Uygulanan Korelasyon Analizi Sonuçları

<table>
<thead>
<tr>
<th></th>
<th>NSBa</th>
<th>V-Bo/N-Ba</th>
<th>Sef. INDEX</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSL. VER</td>
<td>.223</td>
<td>.023</td>
<td>.023</td>
<td>-.362</td>
<td>-.621**</td>
</tr>
<tr>
<td>NSL. CVT</td>
<td>.131</td>
<td>.268</td>
<td>.107</td>
<td>-.352</td>
<td>-.495</td>
</tr>
<tr>
<td>NSL. OPT</td>
<td>.296</td>
<td>.040</td>
<td>.032</td>
<td>-.340</td>
<td>-.402</td>
</tr>
<tr>
<td>OPT. CVT</td>
<td>-.403</td>
<td>.662**</td>
<td>.220</td>
<td>-.113</td>
<td>-.357</td>
</tr>
<tr>
<td>CVT. HOR</td>
<td>.049</td>
<td>.297</td>
<td>.112</td>
<td>-.240</td>
<td>-.286</td>
</tr>
<tr>
<td>OPT. HOR</td>
<td>.217</td>
<td>.032</td>
<td>.024</td>
<td>-.200</td>
<td>-.146</td>
</tr>
<tr>
<td>WSL. VER</td>
<td>.297</td>
<td>.072</td>
<td>.036</td>
<td>-.208</td>
<td>-.395</td>
</tr>
<tr>
<td>NSBa</td>
<td>1.000</td>
<td>-.559*</td>
<td>-.574*</td>
<td>-.276</td>
<td>.073</td>
</tr>
<tr>
<td>SBa. HOR</td>
<td>.903**</td>
<td>-.570*</td>
<td>-.584*</td>
<td>-.117</td>
<td>.346</td>
</tr>
<tr>
<td>N-S</td>
<td>-.127</td>
<td>-.350</td>
<td>.024</td>
<td>.491</td>
<td>.312</td>
</tr>
<tr>
<td>S-Ba</td>
<td>-.338</td>
<td>.253</td>
<td>.370</td>
<td>-.225</td>
<td>-.346</td>
</tr>
<tr>
<td>N-Ba</td>
<td>.628*</td>
<td>-.615*</td>
<td>-.256</td>
<td>-.111</td>
<td>.003</td>
</tr>
<tr>
<td>V-HOR</td>
<td>.650*</td>
<td>-.022</td>
<td>-.381</td>
<td>-.251</td>
<td>.055</td>
</tr>
<tr>
<td>Bo-HOR</td>
<td>-.670**</td>
<td>.542*</td>
<td>.752**</td>
<td>.087</td>
<td>-.398</td>
</tr>
<tr>
<td>V-Bo</td>
<td>-.076</td>
<td>.658*</td>
<td>.450</td>
<td>-.337</td>
<td>-.547*</td>
</tr>
<tr>
<td>V-Bo/N-Ba:</td>
<td>-.559*</td>
<td>1.000</td>
<td>.572*</td>
<td>-.195</td>
<td>-.453</td>
</tr>
<tr>
<td>N-VER</td>
<td>.470</td>
<td>-.482</td>
<td>-.586*</td>
<td>-.080</td>
<td>.262</td>
</tr>
<tr>
<td>SNA</td>
<td>-.315</td>
<td>.069</td>
<td>.325</td>
<td>.407</td>
<td>.329</td>
</tr>
<tr>
<td>ANS-PNS</td>
<td>.536*</td>
<td>-.362</td>
<td>-.288</td>
<td>-.121</td>
<td>-.050</td>
</tr>
<tr>
<td>A-VER</td>
<td>.244</td>
<td>-.357</td>
<td>.036</td>
<td>.145</td>
<td>-.033</td>
</tr>
<tr>
<td>A-VER/N-VER</td>
<td>-.129</td>
<td>.094</td>
<td>.433</td>
<td>.122</td>
<td>-.239</td>
</tr>
<tr>
<td>ANSPNS. SN</td>
<td>.103</td>
<td>-.126</td>
<td>-.220</td>
<td>-.190</td>
<td>-.250</td>
</tr>
<tr>
<td>ANSPNS. VER</td>
<td>-.093</td>
<td>-.171</td>
<td>-.281</td>
<td>.126</td>
<td>.306</td>
</tr>
<tr>
<td>SNB</td>
<td>-.508</td>
<td>.401</td>
<td>.477</td>
<td>.241</td>
<td>.091</td>
</tr>
<tr>
<td>Go-Me</td>
<td>-.172</td>
<td>.453</td>
<td>.463</td>
<td>-.070</td>
<td>-.341</td>
</tr>
<tr>
<td>B-VER</td>
<td>-.218</td>
<td>.317</td>
<td>.357</td>
<td>-.087</td>
<td>-.351</td>
</tr>
<tr>
<td>Pg-VER</td>
<td>-.157</td>
<td>.195</td>
<td>.273</td>
<td>-.039</td>
<td>-.307</td>
</tr>
<tr>
<td>B-VER/N-VER</td>
<td>-.334</td>
<td>.421</td>
<td>.494</td>
<td>-.044</td>
<td>-.381</td>
</tr>
<tr>
<td>Pg-VER/N-VER</td>
<td>-.233</td>
<td>.285</td>
<td>.384</td>
<td>-.032</td>
<td>-.352</td>
</tr>
<tr>
<td>GoMe, SN</td>
<td>-.174</td>
<td>.208</td>
<td>.065</td>
<td>-.038</td>
<td>-.128</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01
Tablo 4.10'nun Devamı

<table>
<thead>
<tr>
<th></th>
<th>NSBa</th>
<th>V-Bo/N-Ba</th>
<th>Sef. İndex</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoMe. HOR</td>
<td>-.276</td>
<td>.200</td>
<td>.055</td>
<td>.125</td>
<td>.150</td>
</tr>
<tr>
<td>ANB</td>
<td>.309</td>
<td>-.482</td>
<td>-.251</td>
<td>.194</td>
<td>.305</td>
</tr>
<tr>
<td>AB. HOR</td>
<td>-.402</td>
<td>.530</td>
<td>.454</td>
<td>-.109</td>
<td>-.386</td>
</tr>
<tr>
<td>B-VER/A-VER</td>
<td>-.304</td>
<td>.457</td>
<td>.340</td>
<td>-.173</td>
<td>-.372</td>
</tr>
<tr>
<td>A-VER-B-VER</td>
<td>.332</td>
<td>-.484</td>
<td>-.358</td>
<td>.153</td>
<td>.353</td>
</tr>
<tr>
<td>A-HOR</td>
<td>-.565*</td>
<td>.369</td>
<td>.251</td>
<td>.195</td>
<td>.220</td>
</tr>
<tr>
<td>B-HOR</td>
<td>-.671**</td>
<td>.418</td>
<td>.431</td>
<td>.293</td>
<td>.090</td>
</tr>
<tr>
<td>A-HOR-B-HOR</td>
<td>.481</td>
<td>-.284</td>
<td>-.403</td>
<td>-.255</td>
<td>.056</td>
</tr>
<tr>
<td>A-B</td>
<td>-.429</td>
<td>.183</td>
<td>.336</td>
<td>.288</td>
<td>.023</td>
</tr>
<tr>
<td>ANSPNS. GoMe</td>
<td>-.234</td>
<td>.281</td>
<td>.188</td>
<td>.066</td>
<td>.008</td>
</tr>
<tr>
<td>N-ANS</td>
<td>-.375</td>
<td>.277</td>
<td>.302</td>
<td>-.149</td>
<td>-.445</td>
</tr>
<tr>
<td>ANS-Me</td>
<td>-.408</td>
<td>.392</td>
<td>.346</td>
<td>.265</td>
<td>.062</td>
</tr>
<tr>
<td>N-Me</td>
<td>-.577*</td>
<td>.514</td>
<td>.488</td>
<td>.206</td>
<td>-.136</td>
</tr>
<tr>
<td>S-Go</td>
<td>-.475</td>
<td>.337</td>
<td>.485</td>
<td>.292</td>
<td>.018</td>
</tr>
<tr>
<td>S-PNS</td>
<td>-.694**</td>
<td>.440</td>
<td>.661*</td>
<td>.302</td>
<td>.053</td>
</tr>
<tr>
<td>PNS-Go</td>
<td>-.012</td>
<td>.073</td>
<td>.164</td>
<td>.273</td>
<td>.145</td>
</tr>
<tr>
<td>Cd-Go</td>
<td>-.223</td>
<td>.028</td>
<td>.131</td>
<td>.494</td>
<td>.310</td>
</tr>
<tr>
<td>P-P</td>
<td>.076</td>
<td>-.267</td>
<td>.053</td>
<td>.428</td>
<td>.529</td>
</tr>
<tr>
<td>Max-max</td>
<td>.131</td>
<td>-.206</td>
<td>-.139</td>
<td>.312</td>
<td>.410</td>
</tr>
<tr>
<td>Mand-mand</td>
<td>.046</td>
<td>-.207</td>
<td>-.365</td>
<td>-.014</td>
<td>.423</td>
</tr>
<tr>
<td>V-Me</td>
<td>-.215</td>
<td>.488</td>
<td>.461</td>
<td>-.042</td>
<td>-.110</td>
</tr>
<tr>
<td>Sefalik Index</td>
<td>-.574*</td>
<td>.572*</td>
<td>1.000</td>
<td>.274</td>
<td>-.384</td>
</tr>
<tr>
<td>Maksimum genişlik</td>
<td>-.276</td>
<td>-.195</td>
<td>.274</td>
<td>1.000</td>
<td>.708**</td>
</tr>
<tr>
<td>Maksimum uzunluk</td>
<td>.073</td>
<td>-.453</td>
<td>-.384</td>
<td>.708**</td>
<td>1.000</td>
</tr>
</tbody>
</table>

* p<0.05, ** p<0.01
Kraniyal taban uzunluk ve kraniyal yükseklik boyutları ile maksimum genişlik ve uzunluk ölçümleri arasındaki ilişkiler önemli seviyede değil iken, sadece V-Bo boyutu maksimum uzunlukla p<0.05 düzeyinde önemli negatif ilişki göstermektedir (r=-0.547).

Sefalik indeks ile NSBa ve SBA.HOR açılıarı arasında p<0.05 düzeyinde negatif korelasyon bulunması (r=-0.574, -0.584) ve sefalik indeks ile NSL.VER açısı arasında korelasyon bulunmaması sefalik indeks artarken kraniyal taban eğiminin azallığını bununda ön kraniyal taban eğiminden bağımsız arka kraniyal taban eğiminden meydana geldiğini anlatmaktadır.

Sefalik indeks ile alt kraniyal yükseklik arasındaki p<0.01 düzeyinde önemli pozitif ilişki, sefalik indeks değeri arttıkça alt kraniyal yüksekliğin artacağını göstermektedir (r=0.752, p<0.01). Ayrıca sefalik indeks ile N-VER boyutu arasındaki negatif (r=-0.586, p<0.05) ve S-PNS boyutu arasındaki pozitif yönlü ilişkiler ise (r=0.661, p<0.05), sefalik indeks değeri arttıkça N noktasıının daha geride konumlanacağını ve arka üst yüz yüksekliğinin de artacağını göstermektedir.

Maksimum genişlik ve uzunluk ölçümleri ile V-Bo/N-Ba oranı arasında önemli bir ilişki bulunmamıştır, ancak bu oran ile sefalik indeks arasında p<0.05 düzeyinde pozitif bir ilişki görülmektedir (r=0.572).

Bu oranla total kraniyal taban uzunluğu (N-Ba) arasında p<0.05 düzeyinde önemli negatif bir ilişki olup (r=-0.615) aynı zamanda V-Bo ve Bo-HOR boyutları arasında p<0.05 düzeyinde önemli pozitif bir ilişkiler saptanmıştır (r=0.658, 0.542). V-Bo/N-Ba oranını hem total kraniyal taban uzunluğu hem de alt kraniyal yükseklik etkilemektedir. Ayrıca bu oran ile NSBa ve SBA.HOR açılıarı arasında p<0.05 düzeyinde önemli negatif ilişkilerin (r=-0.559, -0.570) mevcut olmaması arka kraniyal taban fleksiyonu sonucunda N-Ba mesafesinin arttığını göstermektedir.

Kraniyal taban açısı ile NSL.VER açısı arasında bir ilişki saptanmaz iken, SBA.HOR açısı ile yüksek düzeyde pozitif ilişki (r=0.903, p<0.01), bu açısın artış veya azalışından tamamen arka kraniyal taban eğimlenmesinin sorumlulu olacağını göstermektedir. NSBa ile N-Ba arasındaki pozitif korelasyon da bu bulguyu desteklemektedir (r=0.628, p<0.05).
Alt, üst ve total kraniyal yükseklik parametrelerimizden üst kraniyal yüksekliği veren V-HOR, kraniyal kaide açısı ile p<0.05 düzeyinde pozitif korelasyon gösterirken alt kraniyal yükseklik ölçümü olan Bo-HOR aynı açı ile p<0.01 düzeyinde önemli negatif korelasyon göstermektedir (r=0.650, -0.670).

Kraniyal taban açısı ile maksillanın sagital uzunluğunu veren ANS-PNS ölçümü arasında da pozitif bir ilişki saptanmıştır (r=0.536, p<0.01).

A ve B noktalarının vertikal konumlanması gösteren A-HOR ve B-HOR boyutları ile NSBa açısı arasında p<0.05 ve p<0.01 düzeylerinde önemli negatif ilişkiler mevcuttur (r=-0.565, -0.671), yanı kraniyal taban açısı büyüdükçe A ve B noktası daha yukarıda konulanmaktadır. Ayrıca bu açı ile N-Me boyutu arasındaki negatif ilişki bu bulguları desteklemektedir (r=-0.577, p<0.05). Bununla birlikte arka yüz yüksekliği ile NSBa açısı arasındaki p<0.01 düzeyindeki negatif ilişki de dikkate alınırsa (r=-0.694); NSBa açısı büyüküğçe arka kraniyal tabanın yukarı fleksiyonunda, ön yüz yüksekliği azalırken, A ve B noktalarının daha yukarıda yer aldıkları ancak arka üst yüz yüksekliğinin de aynı şekilde küçüldüğünü söyleyebilir.

Bu grupta postüral parametrelerimizden NSL.VER açısı sefalik indeksten bağımsız olarak maksimum uzunluk ile拒绝 negatif korelasyon göstermektedir (r=0.621, p<0.05). Servikal kolon kurvaturasını veren OPT.CVT açısı ile V-Bo/N-Ba oranı arasında da önemli pozitif korelasyon saptanmıştır (r=0.662, p<0.01) ve yine bu açı r değeri önemli seviyeye ulaşmasa da NSBa açısı ile negatif bir ilişki içindedir (r=-0.403). Buna göre; Brakiselal erkek grupta kraniyal taban açısı düzeyiğinde yanı arka kraniyal tabanın yukarı fleksiyonunda, küçülen V-Bo/N-Ba oranı ile bireylerin servikal kolon kurvatürleri de küçülmekte veya bunun aksi olmaktadır.

Brakiselal erkek bireylerde, yatay yönü gösteren parametrelerden hiçbirı maksimum genişlik ve uzunluk ölçümleri ile ilişkili bulunamamıştır. Ancak bipariyetal mesafe maksimum genişlik ve uzunluk ölçümleri ile istatistik açıdan önemli olmasa da yüksek r değerleri göstermektedirler (r=0.428, 0.529).

Brakiselal kız grubunda da erkek grubunda olduğu gibi sefalik indeks ile maksimum genişlik ve uzunluk ölçümleri arasında önemli düzeyde bir ilişki bulunamamış ve yine erkek grubunda görülen maksimum genişlik ve uzunluk arasındaki pozitif ilişki bu grupta da saptanmıştır (r=0.809, p<0.01, Tablo 4.11).
Tablo 4.11: 20 Bireylik Brakisefal Kız Grubunda NSBa, V-Bo/N-Ba, Sefalik İndeks, Maksimum Genişlik ve Uzunluk Ölçümleri ile Postural, Kraniyal ve Kraniyofasial Özellikler Arasında Uygulanan Korelasyon Analizi Sonuçları

<table>
<thead>
<tr>
<th></th>
<th>NSBa</th>
<th>V-Bo/N-Ba</th>
<th>Sef. Index</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSL. VER</td>
<td>.492*</td>
<td>-.205</td>
<td>.291</td>
<td>.380</td>
<td>.208</td>
</tr>
<tr>
<td>NSL. CVT</td>
<td>.210</td>
<td>.150</td>
<td>.392</td>
<td>.282</td>
<td>.040</td>
</tr>
<tr>
<td>NSL. OPT</td>
<td>.036</td>
<td>.180</td>
<td>.266</td>
<td>.208</td>
<td>.041</td>
</tr>
<tr>
<td>OPT. CVT</td>
<td>.502*</td>
<td>-.038</td>
<td>.429</td>
<td>.267</td>
<td>.007</td>
</tr>
<tr>
<td>CVT. HOR</td>
<td>-.007</td>
<td>.248</td>
<td>.272</td>
<td>.119</td>
<td>-.053</td>
</tr>
<tr>
<td>OPT. HOR</td>
<td>-.198</td>
<td>.272</td>
<td>.122</td>
<td>.023</td>
<td>-.058</td>
</tr>
<tr>
<td>WSL. VER</td>
<td>.177</td>
<td>.148</td>
<td>.503*</td>
<td>.224</td>
<td>-.083</td>
</tr>
<tr>
<td>NSBa</td>
<td>1.000</td>
<td>-.382</td>
<td>.401</td>
<td>-.069</td>
<td>-.314</td>
</tr>
<tr>
<td>SBa. HOR</td>
<td>.831**</td>
<td>-.307</td>
<td>.274</td>
<td>-.321</td>
<td>-.493*</td>
</tr>
<tr>
<td>N-S</td>
<td>-.054</td>
<td>-.553*</td>
<td>-.354</td>
<td>.268</td>
<td>.478</td>
</tr>
<tr>
<td>S-Ba</td>
<td>-.184</td>
<td>-.383</td>
<td>-.355</td>
<td>-.319</td>
<td>-.099</td>
</tr>
<tr>
<td>N-Ba</td>
<td>.299</td>
<td>-.773**</td>
<td>-.276</td>
<td>-.050</td>
<td>.117</td>
</tr>
<tr>
<td>V-HOR</td>
<td>.250</td>
<td>.369</td>
<td>.140</td>
<td>-.075</td>
<td>-.164</td>
</tr>
<tr>
<td>Bo-HOR</td>
<td>-.492*</td>
<td>.287</td>
<td>.004</td>
<td>.369</td>
<td>.372</td>
</tr>
<tr>
<td>V-Bo</td>
<td>-.197</td>
<td>.458*</td>
<td>-.032</td>
<td>.277</td>
<td>.303</td>
</tr>
<tr>
<td>V-Bo/N-Ba</td>
<td>-.382</td>
<td>1.000</td>
<td>.248</td>
<td>.234</td>
<td>.089</td>
</tr>
<tr>
<td>N-VER</td>
<td>.117</td>
<td>-.455*</td>
<td>-.354</td>
<td>-.301</td>
<td>-.090</td>
</tr>
<tr>
<td>SNA</td>
<td>-.511*</td>
<td>.589**</td>
<td>-.034</td>
<td>-.066</td>
<td>-.012</td>
</tr>
<tr>
<td>ANS-PNS</td>
<td>.206</td>
<td>-.362</td>
<td>-.177</td>
<td>.103</td>
<td>.212</td>
</tr>
<tr>
<td>A-VER</td>
<td>.101</td>
<td>-.223</td>
<td>-.338</td>
<td>-.189</td>
<td>.020</td>
</tr>
<tr>
<td>A-VER/N-VER</td>
<td>-.085</td>
<td>.407</td>
<td>.177</td>
<td>.234</td>
<td>.133</td>
</tr>
<tr>
<td>ANSPNS. SN</td>
<td>.472*</td>
<td>.126</td>
<td>.553*</td>
<td>.166</td>
<td>-.180</td>
</tr>
<tr>
<td>ANSPNS. VER</td>
<td>-.012</td>
<td>.256</td>
<td>.206</td>
<td>-.163</td>
<td>-.299</td>
</tr>
<tr>
<td>SNB</td>
<td>-.622**</td>
<td>.473*</td>
<td>-.106</td>
<td>-.206</td>
<td>-.138</td>
</tr>
<tr>
<td>Go-Me</td>
<td>.041</td>
<td>-.338</td>
<td>-.027</td>
<td>.048</td>
<td>.056</td>
</tr>
<tr>
<td>B-VER</td>
<td>-.226</td>
<td>.040</td>
<td>-.142</td>
<td>-.193</td>
<td>-.101</td>
</tr>
<tr>
<td>Pg-VER</td>
<td>-.256</td>
<td>.017</td>
<td>-.191</td>
<td>-.149</td>
<td>-.025</td>
</tr>
<tr>
<td>B-VER/N-VER</td>
<td>-.277</td>
<td>.333</td>
<td>.122</td>
<td>.038</td>
<td>-.029</td>
</tr>
<tr>
<td>Pg-VER/N-VER</td>
<td>-.300</td>
<td>.230</td>
<td>.008</td>
<td>.019</td>
<td>.022</td>
</tr>
<tr>
<td>GoMe. SN</td>
<td>.299</td>
<td>.121</td>
<td>.207</td>
<td>.334</td>
<td>.205</td>
</tr>
</tbody>
</table>

* p<0.05, ** p<0.01
Tablo 4.11'in Devamı

<table>
<thead>
<tr>
<th></th>
<th>NSBa</th>
<th>V-Bo/N-Ba</th>
<th>Sef. Index</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoMe. HOR</td>
<td>.047</td>
<td>.250</td>
<td>.062</td>
<td>.149</td>
<td>.106</td>
</tr>
<tr>
<td>ANB</td>
<td>.267</td>
<td>.058</td>
<td>.115</td>
<td>.221</td>
<td>.151</td>
</tr>
<tr>
<td>AB. HOR</td>
<td>-.361</td>
<td>.202</td>
<td>-.006</td>
<td>-.082</td>
<td>-.073</td>
</tr>
<tr>
<td>B-VER/A-VER</td>
<td>-.304</td>
<td>.135</td>
<td>.006</td>
<td>-.123</td>
<td>-.122</td>
</tr>
<tr>
<td>A-VER-B-VER</td>
<td>.305</td>
<td>-.162</td>
<td>-.019</td>
<td>.116</td>
<td>.123</td>
</tr>
<tr>
<td>A-HOR</td>
<td>-.435</td>
<td>.169</td>
<td>-.225</td>
<td>.002</td>
<td>.133</td>
</tr>
<tr>
<td>B-HOR</td>
<td>-.672**</td>
<td>.231</td>
<td>-.432</td>
<td>.074</td>
<td>.334</td>
</tr>
<tr>
<td>A-HOR-B-HOR</td>
<td>.420</td>
<td>-.129</td>
<td>.314</td>
<td>-.082</td>
<td>-.274</td>
</tr>
<tr>
<td>A-B</td>
<td>-.362</td>
<td>.100</td>
<td>-.307</td>
<td>.105</td>
<td>.292</td>
</tr>
<tr>
<td>ANSPNS. GoMe</td>
<td>.054</td>
<td>.058</td>
<td>-.089</td>
<td>.263</td>
<td>.320</td>
</tr>
<tr>
<td>N-ANS</td>
<td>.366</td>
<td>-.255</td>
<td>.176</td>
<td>.319</td>
<td>.208</td>
</tr>
<tr>
<td>ANS-Me</td>
<td>-.184</td>
<td>-.150</td>
<td>-.258</td>
<td>.263</td>
<td>.419</td>
</tr>
<tr>
<td>N-Me</td>
<td>-.067</td>
<td>-.230</td>
<td>-.193</td>
<td>.311</td>
<td>.426</td>
</tr>
<tr>
<td>S-Go</td>
<td>-.451*</td>
<td>-.228</td>
<td>-.397</td>
<td>-.122</td>
<td>.123</td>
</tr>
<tr>
<td>S-PNS</td>
<td>-.378</td>
<td>.170</td>
<td>-.358</td>
<td>.254</td>
<td>.475*</td>
</tr>
<tr>
<td>PNS-Go</td>
<td>-.098</td>
<td>-.406</td>
<td>-.101</td>
<td>.019</td>
<td>.074</td>
</tr>
<tr>
<td>Cd-Go</td>
<td>-.348</td>
<td>-.010</td>
<td>-.332</td>
<td>-.282</td>
<td>-.079</td>
</tr>
<tr>
<td>P-P</td>
<td>-.143</td>
<td>.052</td>
<td>.068</td>
<td>.692**</td>
<td>.647**</td>
</tr>
<tr>
<td>Max-max</td>
<td>-.548*</td>
<td>-.141</td>
<td>-.567**</td>
<td>.017</td>
<td>.363</td>
</tr>
<tr>
<td>Mand-mand</td>
<td>-.088</td>
<td>.142</td>
<td>.065</td>
<td>.168</td>
<td>.127</td>
</tr>
<tr>
<td>V-Me</td>
<td>-.629**</td>
<td>.397</td>
<td>-.280</td>
<td>.095</td>
<td>.259</td>
</tr>
<tr>
<td>Sefalik Index</td>
<td>.401</td>
<td>.248</td>
<td>1.000</td>
<td>.319</td>
<td>-.298</td>
</tr>
<tr>
<td>Maksimum genişlik</td>
<td>-.069</td>
<td>.234</td>
<td>.319</td>
<td>1.000</td>
<td>.809**</td>
</tr>
<tr>
<td>Maksimum uzunluk</td>
<td>-.314</td>
<td>.089</td>
<td>-.298</td>
<td>.809**</td>
<td>1.000</td>
</tr>
</tbody>
</table>

* p<0.05, ** p<0.01
Kraniyal taban uzunluk ve yüksekliğini veren parametreler; maksimum uzunluk, genişlik ölçümleri ve sefalik indeks ile önemli seviyede ilişki göstermemiştir.

Maksimum uzunlukla SBA.HOR açısı arasındaki p<0.05 düzeyinde önemli negatif ilişki (r=-0.493), maksimum uzunluk arttırıcık arka kraniyal tabanın dikleşeceğini göstermektedir.

Bu grupta sefalik indeks ile ANSPNS.SN açısı arasında p<0.05 düzeyinde önemli pozitif korelasyon mevcuttur yani sefalik indeks değeri arttırıcık maksilla posterior rotasyona uğramaktadır (r=0.553).

V-Bo/N-Ba oranı; N-Ba boyutu ile beklenen negatif korelasyonu gösterirken (r=-0.773, p<0.01), aynı zamanda ön kraniyal taban uzunluğu (N-S) ile de p<0.05 düzeyinde önemli negatif korelasyon göstermektedir (r=-0.553). V-Bo/N-Ba oranı V-Bo boyutu ile de yine beklenen pozitif korelasyonu göstermiştir (r=0.458, p<0.05). Aynı oranla N-VER ölçümü arasındaki negatif ilişki, V-Bo/N-Ba oranı ile N-S doğrusu arasındaki ilişkiye doğrulamaktadır (r=-0.455, p<0.05). V-Bo/N-Ba oranı ile maksilla ve mandibulanın sagittal konumlarının gösteren SNA ve SNB açıları arasındaki p<0.01 ve p<0.05 düzeylerinde pozitif ilişkilerin nedeni de aynı şekilde açıklanabilir (r=0.589, 0.473).

NSBa açısının hem NSL.VER hem de SBA.HOR açıları ile pozitif ilişki içinde bulunması bu açının artış veya azalşından ön ve daha etkili olmak üzere arka kraniyal taban eğimlerinin her ikisininde etkili olduğunu düşündürmektedir (r=0.492, p<0.05, r=0.831, p<0.01).

Kraniyal taban sagittal uzunlukları ile NSBa açısı arasındaki ilişkiler önemli seviyede değil iken, kraniyal yükseklik ölçümlerinden Bo-HOR boyutu bu açı ile p<0.05 düzeyinde önemli negatif ilişki içindedir (r=-0.492).

SNA, SNB ve ANSPNS.SN açıları ile kraniyal taban açısı arasında mevcut önemli ilişkiler, ortak NSL düzleminden dolayı topografik ilişkiler olarak değerlendirilebilir (r=-0.511, 0.472, p<0.05, r=-0.622, p<0.01).
Brakisefal erkek grubunda olduğu gibi NSBa açısı ile B-HOR boyutun arasındaki negatif korelasyona bu grupta \(r = -0.672, p < 0.01 \), arka yüz yüksekliği de ilişkili etmiştir. S-Go boyutu NSBa açısı ile negatif ilişki göstermektedir \(r = -0.451, p < 0.05 \). Buna göre kraniyal kaide açısı büyükçe arka yüz yüksekliği azalacak B noktasi daha yukarıda konumlanacaktır.

Postural parametrelerden hiçbir maksimum genişlik ve uzunluk ölçümleri ile ilişkili bulunamamıştır. NSL.VER ve OPT.CVT açıları ile kraniyal kaide açısı arasında ise pozitif bir ilişki mevcuttur \(r = 0.492, 0.502, p < 0.05 \). Orta kraniyal taban eğimini veren WSL.VER açısı ise sefalik indeksle önemli pozitif korelasyon göstermiştir \(r = 0.503 \).

Transversal yön incelendiğinde; Genel grupta olduğu gibi biparietal mesafe hem maksimum genişlik hem de uzunlukla \(p < 0.01 \) düzeyinde pozitif korelasyon göstermektedir \(r = 0.692, 0.647 \). Bimaksiller mesafe NSBa açısı ile \(p < 0.05 \) sefalik indeksle \(p < 0.01 \) düzeyinde önemli negatif korelasyon göstermektedir \(r = -0.548, -0.567 \). V-Me boyutu ise, NSBa açısıyla negatif yönlü bir ilişki göstermekte, bu açı büyümenken V-Me boyutu azalmaktadır \(r = -0.629, p < 0.01 \).

Mezosefal erkek grubuna ait korelasyon tablosunu incelediğimizde (Tablo 4.12); sefalik indeks ile maksimum uzunluk arasındaki ilişki önemli düzeyde değil iken maksimum genişlikle \(p < 0.01 \) düzeyinde önemli pozitif korelasyon ortaya çıkılmıştır \(r = 0.674 \). Maksimum genişlik ve uzunluk arasında da \(p < 0.01 \) düzeyinde önemli pozitif korelasyon mevcuttur \(r = 0.803 \).

Kraniyal kaide uzunluk ve yükseklik ölçümleri ile sefalik indeks arasındaki ilişkiler istatistik açıdan önemli seviyeye ulaşmamıştır. Ön kraniyal taban uzunluğu (N-S) maksimum uzunluk ölçüümü ile \(p < 0.05 \) düzeyinde önemli pozitif korelasyon gösterirken \(r = 0.632 \), total kraniyal taban uzunluğu (N-Ba) maksimum genişlik ölçüümü ile \(p < 0.05 \) düzeyinde önemli pozitif ilişki içindedir \(r = 0.548 \).

Maksillanın doğal baş konumunda sagital konumunu veren A-VER boyutu sefalik indeksten bağımsız olarak maksimum genişlik ve uzunluk ile \(p < 0.05 \) ve \(p < 0.01 \) düzeylerinde önemli pozitif ilişkidedir \(r = 0.571, 0.668 \). Buna göre maksimum genişlik ve uzunluk arttıkça maksilla klinik profilde daha prognatik bir konum alacaktır.
Tablo 4.12: 14 Bireylik Mezosefal Erkek Grubunda NSBa, V-Bo/N-Ba, Sefalik İndeks, Maksimum Genişlik ve Uzunluk Ölçümleri ile Postural, Kraniyal ve Kraniyofasisal Özellikler Arasında Uygulanan Korelasyon Analizi Sonuçları

<table>
<thead>
<tr>
<th></th>
<th>NSBa</th>
<th>V-Bo/N-Ba</th>
<th>Sef. İndex</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSL. VER</td>
<td>.494</td>
<td>-.131</td>
<td>.058</td>
<td>.063</td>
<td>.025</td>
</tr>
<tr>
<td>NSL. CVT</td>
<td>.494</td>
<td>.162</td>
<td>.076</td>
<td>-.194</td>
<td>-.339</td>
</tr>
<tr>
<td>NSL. OPT</td>
<td>.433</td>
<td>.265</td>
<td>-.022</td>
<td>-.235</td>
<td>-.315</td>
</tr>
<tr>
<td>OPT. CVT</td>
<td>-.055</td>
<td>-.356</td>
<td>.229</td>
<td>.194</td>
<td>.085</td>
</tr>
<tr>
<td>CVT. HOR</td>
<td>-.029</td>
<td>.505</td>
<td>.026</td>
<td>-.413</td>
<td>-.580*</td>
</tr>
<tr>
<td>OPT. HOR</td>
<td>.009</td>
<td>.664**</td>
<td>-.120</td>
<td>-.482</td>
<td>-.560*</td>
</tr>
<tr>
<td>WSL. VER</td>
<td>.323</td>
<td>.134</td>
<td>.214</td>
<td>-.077</td>
<td>-.291</td>
</tr>
<tr>
<td>NSBa</td>
<td>1.000</td>
<td>-.327</td>
<td>.546*</td>
<td>.526</td>
<td>.253</td>
</tr>
<tr>
<td>SBa. HOR</td>
<td>.163</td>
<td>-.088</td>
<td>.330</td>
<td>.310</td>
<td>.156</td>
</tr>
<tr>
<td>N-S</td>
<td>-.258</td>
<td>-.587*</td>
<td>-.105</td>
<td>.401</td>
<td>.632*</td>
</tr>
<tr>
<td>S-Ba</td>
<td>.197</td>
<td>-.697*</td>
<td>.324</td>
<td>.333</td>
<td>.190</td>
</tr>
<tr>
<td>N-Ba</td>
<td>.229</td>
<td>-.794**</td>
<td>.260</td>
<td>.548*</td>
<td>.531</td>
</tr>
<tr>
<td>V-HOR</td>
<td>-.198</td>
<td>.213</td>
<td>-.014</td>
<td>-.006</td>
<td>.010</td>
</tr>
<tr>
<td>Bo-HOR</td>
<td>.084</td>
<td>.112</td>
<td>.013</td>
<td>-.162</td>
<td>-.235</td>
</tr>
<tr>
<td>V-Bo</td>
<td>.126</td>
<td>.321</td>
<td>.045</td>
<td>-.132</td>
<td>-.211</td>
</tr>
<tr>
<td>V-Bo/N-Ba</td>
<td>-.327</td>
<td>1.000</td>
<td>-.245</td>
<td>-.623*</td>
<td>-.642*</td>
</tr>
<tr>
<td>N-VER</td>
<td>-.290</td>
<td>-.370</td>
<td>-.081</td>
<td>.159</td>
<td>.228</td>
</tr>
<tr>
<td>SNA</td>
<td>-.473</td>
<td>.217</td>
<td>.061</td>
<td>.051</td>
<td>.036</td>
</tr>
<tr>
<td>ANS-PNS</td>
<td>-.334</td>
<td>-.670**</td>
<td>-.171</td>
<td>.231</td>
<td>.461</td>
</tr>
<tr>
<td>A-VER</td>
<td>-.101</td>
<td>-.631*</td>
<td>.140</td>
<td>.571*</td>
<td>.668**</td>
</tr>
<tr>
<td>A-VER/N-VER</td>
<td>.334</td>
<td>.003</td>
<td>.211</td>
<td>.210</td>
<td>.108</td>
</tr>
<tr>
<td>ANSPNS. SN</td>
<td>.260</td>
<td>-.535*</td>
<td>.016</td>
<td>.378</td>
<td>.494</td>
</tr>
<tr>
<td>ANSPNS. VER</td>
<td>-.376</td>
<td>-.130</td>
<td>-.051</td>
<td>.122</td>
<td>.218</td>
</tr>
<tr>
<td>SNB</td>
<td>-.402</td>
<td>.171</td>
<td>.293</td>
<td>.070</td>
<td>-.124</td>
</tr>
<tr>
<td>Go-Me</td>
<td>-.128</td>
<td>-.442</td>
<td>.206</td>
<td>.349</td>
<td>.311</td>
</tr>
<tr>
<td>B-VER</td>
<td>.201</td>
<td>-.385</td>
<td>.528</td>
<td>.442</td>
<td>.176</td>
</tr>
<tr>
<td>Pg-VER</td>
<td>.136</td>
<td>-.251</td>
<td>.509</td>
<td>.324</td>
<td>.033</td>
</tr>
<tr>
<td>B-VER/N-VER</td>
<td>.365</td>
<td>-.086</td>
<td>.464</td>
<td>.275</td>
<td>-.005</td>
</tr>
<tr>
<td>Pg-VER/N-VER</td>
<td>.301</td>
<td>-.041</td>
<td>.474</td>
<td>.216</td>
<td>-.091</td>
</tr>
<tr>
<td>GoMe. SN</td>
<td>.389</td>
<td>-.085</td>
<td>-.160</td>
<td>-.120</td>
<td>-.050</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01
Tablo 4.12'nin Devamı

<table>
<thead>
<tr>
<th></th>
<th>NSBa</th>
<th>V-Bo/N-Ba</th>
<th>Sef. Index</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoMe. HOR</td>
<td>.072</td>
<td>.009</td>
<td>-322</td>
<td>-.263</td>
<td>-.107</td>
</tr>
<tr>
<td>ANB</td>
<td>-.136</td>
<td>.082</td>
<td>-327</td>
<td>-.022</td>
<td>.232</td>
</tr>
<tr>
<td>AB. HOR</td>
<td>.303</td>
<td>-.066</td>
<td>.444</td>
<td>.111</td>
<td>-.209</td>
</tr>
<tr>
<td>B-VER/A-VER</td>
<td>.256</td>
<td>-.123</td>
<td>.500</td>
<td>.207</td>
<td>-.122</td>
</tr>
<tr>
<td>A-VER-B-VER</td>
<td>-.275</td>
<td>.082</td>
<td>-.502</td>
<td>-.176</td>
<td>.166</td>
</tr>
<tr>
<td>A-HOR</td>
<td>-.355</td>
<td>-.204</td>
<td>-.054</td>
<td>.162</td>
<td>.272</td>
</tr>
<tr>
<td>B-HOR</td>
<td>-.280</td>
<td>-.211</td>
<td>-.349</td>
<td>-.101</td>
<td>.148</td>
</tr>
<tr>
<td>A-HOR-B-HOR</td>
<td>-.241</td>
<td>-.089</td>
<td>.268</td>
<td>.336</td>
<td>.251</td>
</tr>
<tr>
<td>A-B</td>
<td>.203</td>
<td>.087</td>
<td>-.349</td>
<td>-.359</td>
<td>-.216</td>
</tr>
<tr>
<td>ANSPNS. GoMe</td>
<td>.327</td>
<td>.102</td>
<td>-.180</td>
<td>-.268</td>
<td>-.234</td>
</tr>
<tr>
<td>N-ANS</td>
<td>.246</td>
<td>-.651*</td>
<td>.013</td>
<td>.414</td>
<td>.563*</td>
</tr>
<tr>
<td>ANS-Me</td>
<td>.255</td>
<td>-.125</td>
<td>-.215</td>
<td>-.166</td>
<td>.063</td>
</tr>
<tr>
<td>N-Me</td>
<td>.336</td>
<td>-.388</td>
<td>-.133</td>
<td>.064</td>
<td>.180</td>
</tr>
<tr>
<td>S-Go</td>
<td>-.240</td>
<td>-.225</td>
<td>.084</td>
<td>.220</td>
<td>.242</td>
</tr>
<tr>
<td>S-PNS</td>
<td>-.207</td>
<td>-.148</td>
<td>-.053</td>
<td>.157</td>
<td>.256</td>
</tr>
<tr>
<td>PNS-Go</td>
<td>-.312</td>
<td>-.209</td>
<td>-.010</td>
<td>.267</td>
<td>.383</td>
</tr>
<tr>
<td>Cd-Go</td>
<td>-.294</td>
<td>-.087</td>
<td>-.129</td>
<td>.063</td>
<td>.202</td>
</tr>
<tr>
<td>P-P</td>
<td>.574*</td>
<td>-.251</td>
<td>.354</td>
<td>.431</td>
<td>.292</td>
</tr>
<tr>
<td>Max-max</td>
<td>-.220</td>
<td>-.361</td>
<td>-.283</td>
<td>.283</td>
<td>.618*</td>
</tr>
<tr>
<td>Mand-mand</td>
<td>.107</td>
<td>-.294</td>
<td>-.198</td>
<td>.221</td>
<td>.457</td>
</tr>
<tr>
<td>V-Me</td>
<td>.068</td>
<td>-.511</td>
<td>.023</td>
<td>.249</td>
<td>.318</td>
</tr>
<tr>
<td>Sefalik index</td>
<td>.546*</td>
<td>-.245</td>
<td>1.000</td>
<td>.674**</td>
<td>.100</td>
</tr>
<tr>
<td>Maksimum genişlik</td>
<td>.526</td>
<td>-.623*</td>
<td>.674**</td>
<td>1.000</td>
<td>.803**</td>
</tr>
<tr>
<td>Maksimum uzunluk</td>
<td>.253</td>
<td>-.642*</td>
<td>.100</td>
<td>.803**</td>
<td>1.000</td>
</tr>
</tbody>
</table>

* p<0.05, ** p<0.01
Üst ön yüz yüksekliği ile maksimum uzunluk ölçümü arasındaki pozitif ilişki, bu grupta basın maksimum uzunluğu arttıkça üst ön yüz yüksekliğinin artacağını göstermektedir \((r=0.563, p<0.05)\).

Mezosefal erkek bireylerde, V-Bo/N-Ba oranının sefalik indeksten bağımsız olarak maksimum genişlik ve uzunluk ölçümleri ile \(p<0.05\) düzeyinde önemli negatif ilişki içinde olduğu görürmektedir \((r=-0.623, -0.642)\).

V-Bo/N-Ba oranı ile kraniyal yükseklik ölçümleri arasındaki ilişkiler önemli düzeyde değil, kraniyal uzunluk ölçümleri olan N-S, S-Ba ve N-Ba boyutları sırasında \(p<0.05\), \(p<0.01\), \(p<0.01\) düzeyinde önemli olmak üzere bu oranla negatif ilişki içindedirler \((r=-0.587, -0.697, -0.794)\). Aynı oran ile NSL.VER, NSBa, SBa.HOR açıkları arasında bir ilişki bulunmaması bu oran, kraniyal taban sagittal yön boyutlarının artış veya azalşının etkilediğini düşünülmektedir.

Maksillanın uzunluğunu gösteren ANS-PNS boyutu ve konumunu veren A-VER ölçümü ile V-Bo/N-Ba oranı arasında \(p<0.01\) ve \(p<0.05\) düzeylerinde önemli negatif ilişkiler mevcuttur \((r=-0.670, -0.631)\). Bu bulgu kraniyal taban uzunluğu artıp V-Bo/N-Ba oran küçüldükçe maksillanın uzunluğunun artıp protrüsv bir konum alacağına göstermektedir. ANSPNS.SN açısı ile V-Bo/N-Ba arasındaki önemli negatif korelasyon ise N-Ba mesafesi kıstaldıkça maksilla sagittal uzunluğunun azalacağı ve posterior rotasyon yapacağına göstermektedir \((r=-0.535, p<0.05)\). Bu oran ile N-ANS boyutu arasındaki negatif korelasyon da yukarıdaki bulguyu desteklemektedir \((r=-0.651, p<0.05)\).

Kraniyal taban açısı ile sefalik indeks arasında önemli seviyede pozitif bir ilişki bulunması \((r=0.546, p<0.05)\), aynı açı ile maksimum genişlik ölçümü arasındaki ilişkinin önemli seviye ulaşmamış olsa da büyük olan \(r\) değeri basın maksimum genişliği arttıkça kraniyal taban açısının da artacağını veya aksini göstermektedir \((r=0.526)\).

Postůral parametrelerimizden servikal postürü belirleyen CVT.HOR ve OPT.HOR açıkları ile maksimum uzunluk ölçümü arasındaki \(p<0.05\) düzeyinde önemli negatif korelasyon maksimum uzunluk arttıkça bu açıkları küçülmemesini yani retruziv bir servikal kolonu veya aksını ifade etmektedir \((r=-0.580, -0.560)\). OPT.HOR açısının V-Bo/N-Ba oranı ile gösterdiği \(p<0.01\) düzeyinde önemli pozitif
korelasyon N-Ba mesafesi arttığında servikal kolonun retrüviz bir duruma geleçğini gösterir (r=0.664). Bunu maksimum uzunluk ölçümü ile N-S ve N-Ba boyutları arasındaki yüksek r değerleri de desteklemektedir (r=0.632, p<0.01, r=0.531).

Yatay yön parametrelerimizden biparietal mesafe kraniyal taban açısıyla pozitif korelasyon gösterirken (r=0.574, p<0.05), bimaksiller mesafe maksimum uzunluk ölçümü ile aynı yönlü ilişki içindedir (r=0.618, p<0.05).

Mezosefal kız grubunda (Tablo 4.13); erkek grubunda olduğu gibi maksimum genişlik ve uzunluk ölçümleri arasında p<0.01 düzeyinde önemli pozitif ilişki mevcuttur (r=0.855). Sefalik indeks ile maksimum genişlik ve uzunluk ölçümleri arasındaki ilişkiler istatistik açıdan önemli düzeyeye ulaşmamıştır.

Kraniyal kaide uzunluk ve yükseklilik boyutları ile sefalik indeks arasındaki r değerlerinin ise oldukça düşük olduğu göze çarpmaktadır.

Maksimum uzunluk ölçümü ile ANSPNS.SN açısı arasındaki p<0.05 düzeyinde önemli negatif ilişki (r=−0.555), aynı açı ile maksimum genişlik ölçümü arasında da mevcut olup, r değeri önemli seviyeye ulaşmasa da yüksek ve negatif yönlüdür (r=−0.510). Buna göre, maksimum uzunluk ve genişlik arttıklça maksilla anterior rotasyon göstermektedir.

Başın doğal konumunda mandibuler prognatizmi veren B-VER/N-VER ve Pg-VER/N-VER ölçümleri ile maksimum uzunluk arasında önemli seviyeye ulaşmada da yüksek r değerleri gösteren negatif bir ilişki mevcuttur (r=−0.533, p<0.05, r=−0.509). Bu bulgu başın maksimum uzunluğunu arttıklça B ve Pg noktalarının geride konumlanacağı göstermekte olup, yine B-VER/A-VER ve (A-VER)-(B-VER) ölçümleri ile maksimum uzunluk ölçümü arasındaki negatif ve pozitif yönlü p<0.05 düzeyinde önemli ilişkiler bu bulguyu destekler niteliktedir (r=−0.531, 0.539). B-HOR ve (A-HOR)-(B-HOR) ölçümleri de yine maksimum uzunluk ölçümü ile önemli ilişkiler göstermektedir (r=−0.657, p<0.01, r=0.585, p<0.05). Ayrıca B-HOR ölçümü sefalik indeks ile p<0.05 düzeyinde negatif ilişkilidir (r=−0.625). Bu bulgu maksimum uzunluk arttıklça B noktasının daha aşağıda konumlanacağını göstermektedir. Ayrıca A-B mesafesi ile maksimum uzunluk arasındaki pozitif ve p<0.01 düzeyinde önemli ilişki yukarıdaki bulguyu desteklemektedir (r=0.684).
Tablo 4.13: 15 Bireylik Mezosefal Kiz Grubunda NSBa, V-Bo/N-Ba, Sefalik İndeks, Maksimum Çiğnemlik ve Uzunluk Ölçümleri ile Postural, Kraniyal ve Kraniyofasiyal Özellikler Arasında Uygulanan Korelasyon Analizi Sonuçları

<table>
<thead>
<tr>
<th></th>
<th>NSBa</th>
<th>V-Bo/N-Ba</th>
<th>Sef. İndex</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSL VER</td>
<td>.221</td>
<td>.254</td>
<td>.696**</td>
<td>-.207</td>
<td>-.446</td>
</tr>
<tr>
<td>NSL CVT</td>
<td>.303</td>
<td>.183</td>
<td>.555*</td>
<td>.272</td>
<td>.048</td>
</tr>
<tr>
<td>NSL OPT</td>
<td>.239</td>
<td>.128</td>
<td>.479</td>
<td>.355</td>
<td>.108</td>
</tr>
<tr>
<td>OPT. CVT</td>
<td>-.027</td>
<td>.221</td>
<td>-.148</td>
<td>-.122</td>
<td>-.173</td>
</tr>
<tr>
<td>CVT. HOR</td>
<td>.157</td>
<td>-.024</td>
<td>.002</td>
<td>.540*</td>
<td>.498</td>
</tr>
<tr>
<td>OPT. HOR</td>
<td>.117</td>
<td>-.026</td>
<td>.070</td>
<td>.416</td>
<td>.411</td>
</tr>
<tr>
<td>WSL VER</td>
<td>-.329</td>
<td>-.373</td>
<td>.417</td>
<td>-.062</td>
<td>-.216</td>
</tr>
<tr>
<td>NSBa</td>
<td>1.000</td>
<td>-.441</td>
<td>.317</td>
<td>.111</td>
<td>-.080</td>
</tr>
<tr>
<td>SBa. HOR</td>
<td>.576*</td>
<td>-.549*</td>
<td>-.342</td>
<td>.259</td>
<td>.313</td>
</tr>
<tr>
<td>N-S</td>
<td>-.373</td>
<td>-.352</td>
<td>-.397</td>
<td>.173</td>
<td>.280</td>
</tr>
<tr>
<td>S-Ba</td>
<td>.244</td>
<td>-.616*</td>
<td>-.064</td>
<td>-.201</td>
<td>-.253</td>
</tr>
<tr>
<td>N-Ba</td>
<td>.277</td>
<td>-.713**</td>
<td>-.176</td>
<td>.112</td>
<td>.081</td>
</tr>
<tr>
<td>V-HOR</td>
<td>-.209</td>
<td>.190</td>
<td>-.224</td>
<td>.104</td>
<td>.069</td>
</tr>
<tr>
<td>Bo-HOR</td>
<td>-.141</td>
<td>.523*</td>
<td>.258</td>
<td>.049</td>
<td>.077</td>
</tr>
<tr>
<td>V-Bo</td>
<td>-.332</td>
<td>.672**</td>
<td>.008</td>
<td>.115</td>
<td>.130</td>
</tr>
<tr>
<td>V-Bo/N-Ba</td>
<td>-.441</td>
<td>1.000</td>
<td>.145</td>
<td>.005</td>
<td>.028</td>
</tr>
<tr>
<td>N-VER</td>
<td>-.061</td>
<td>-.481</td>
<td>-.482</td>
<td>.004</td>
<td>.221</td>
</tr>
<tr>
<td>SNA</td>
<td>.033</td>
<td>-.257</td>
<td>-.562*</td>
<td>.129</td>
<td>.338</td>
</tr>
<tr>
<td>ANS-PNS</td>
<td>.165</td>
<td>-.447</td>
<td>-.091</td>
<td>-.043</td>
<td>.057</td>
</tr>
<tr>
<td>A-VER</td>
<td>.314</td>
<td>-.537</td>
<td>-.160</td>
<td>-.125</td>
<td>-.003</td>
</tr>
<tr>
<td>A-VER/N-VER</td>
<td>.433</td>
<td>.055</td>
<td>.397</td>
<td>-.132</td>
<td>-.262</td>
</tr>
<tr>
<td>ANSPNS. SN</td>
<td>.206</td>
<td>.183</td>
<td>.273</td>
<td>-.510</td>
<td>-.555*</td>
</tr>
<tr>
<td>ANSPNS. VER</td>
<td>-.107</td>
<td>-.166</td>
<td>-.633*</td>
<td>-.146</td>
<td>.109</td>
</tr>
<tr>
<td>SNB</td>
<td>.053</td>
<td>-.428</td>
<td>-.415</td>
<td>.112</td>
<td>.180</td>
</tr>
<tr>
<td>Go-Me</td>
<td>.379</td>
<td>-.572*</td>
<td>.042</td>
<td>-.218</td>
<td>-.284</td>
</tr>
<tr>
<td>B-VER</td>
<td>.400</td>
<td>-.498</td>
<td>.341</td>
<td>-.231</td>
<td>-.409</td>
</tr>
<tr>
<td>Pg-VER</td>
<td>.363</td>
<td>-.437</td>
<td>.427</td>
<td>-.229</td>
<td>-.421</td>
</tr>
<tr>
<td>B-VER/N-VER</td>
<td>.460</td>
<td>-.201</td>
<td>.651**</td>
<td>-.203</td>
<td>-.533*</td>
</tr>
<tr>
<td>Pg-VER/N-VER</td>
<td>.404</td>
<td>-.232</td>
<td>.647**</td>
<td>-.209</td>
<td>-.509</td>
</tr>
<tr>
<td>GoMe. SN</td>
<td>-.095</td>
<td>.542*</td>
<td>.259</td>
<td>.030</td>
<td>.024</td>
</tr>
</tbody>
</table>

* p<0.05, ** p<0.01
Tablo 4.13’ün Devamı

<table>
<thead>
<tr>
<th></th>
<th>NSBa</th>
<th>V-Bo/N-Ba</th>
<th>Sef. İndex</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoMe. HOR</td>
<td>-0.279</td>
<td>.383</td>
<td>-0.275</td>
<td>.198</td>
<td>.383</td>
</tr>
<tr>
<td>ANB</td>
<td>-0.024</td>
<td>.200</td>
<td>-0.262</td>
<td>.037</td>
<td>.250</td>
</tr>
<tr>
<td>AB. HOR</td>
<td>0.238</td>
<td>-0.097</td>
<td>0.603*</td>
<td>-0.104</td>
<td>-0.442</td>
</tr>
<tr>
<td>B-VER/A-VER</td>
<td>0.307</td>
<td>-0.291</td>
<td>0.555*</td>
<td>-0.211</td>
<td>-0.531*</td>
</tr>
<tr>
<td>A-VER-B-VER</td>
<td>-0.261</td>
<td>.199</td>
<td>-0.591*</td>
<td>-0.198</td>
<td>0.539*</td>
</tr>
<tr>
<td>A-HOR</td>
<td>-0.168</td>
<td>-0.102</td>
<td>-0.572*</td>
<td>-0.038</td>
<td>0.275</td>
</tr>
<tr>
<td>B-HOR</td>
<td>-0.303</td>
<td>.206</td>
<td>-0.625*</td>
<td>0.248</td>
<td>0.585*</td>
</tr>
<tr>
<td>A-HOR-B-HOR</td>
<td>0.303</td>
<td>-0.518*</td>
<td>0.302</td>
<td>-0.500</td>
<td>-0.657**</td>
</tr>
<tr>
<td>A-B</td>
<td>-0.301</td>
<td>.485</td>
<td>-0.361</td>
<td>0.493</td>
<td>0.684**</td>
</tr>
<tr>
<td>ANSPNS. GoMe</td>
<td>-0.223</td>
<td>.526*</td>
<td>0.150</td>
<td>0.314</td>
<td>0.332</td>
</tr>
<tr>
<td>N-ANS</td>
<td>0.086</td>
<td>.185</td>
<td>0.027</td>
<td>-0.422</td>
<td>-0.303</td>
</tr>
<tr>
<td>ANS-Me</td>
<td>-0.176</td>
<td>.426</td>
<td>-0.234</td>
<td>0.530*</td>
<td>0.691**</td>
</tr>
<tr>
<td>N-Me</td>
<td>-0.073</td>
<td>.445</td>
<td>-0.135</td>
<td>0.118</td>
<td>0.300</td>
</tr>
<tr>
<td>S-Go</td>
<td>0.016</td>
<td>-0.096</td>
<td>-0.510</td>
<td>0.147</td>
<td>0.373</td>
</tr>
<tr>
<td>S-PNS</td>
<td>-0.313</td>
<td>.115</td>
<td>-0.480</td>
<td>0.096</td>
<td>0.339</td>
</tr>
<tr>
<td>PNS-Go</td>
<td>0.110</td>
<td>-0.249</td>
<td>-0.500</td>
<td>0.101</td>
<td>0.218</td>
</tr>
<tr>
<td>Cd-Go</td>
<td>-0.026</td>
<td>.024</td>
<td>-0.455</td>
<td>0.132</td>
<td>0.346</td>
</tr>
<tr>
<td>P-P</td>
<td>-0.060</td>
<td>.063</td>
<td>0.046</td>
<td>0.688**</td>
<td>0.569*</td>
</tr>
<tr>
<td>Max-max</td>
<td>0.015</td>
<td>-0.216</td>
<td>-0.236</td>
<td>-0.033</td>
<td>0.016</td>
</tr>
<tr>
<td>Mand-mand</td>
<td>-0.111</td>
<td>-0.040</td>
<td>0.004</td>
<td>0.229</td>
<td>0.314</td>
</tr>
<tr>
<td>V-Me</td>
<td>-0.030</td>
<td>.086</td>
<td>-0.632*</td>
<td>0.245</td>
<td>0.475</td>
</tr>
<tr>
<td>Sefalik Index</td>
<td>0.317</td>
<td>.145</td>
<td>1.000</td>
<td>-0.044</td>
<td>-0.473</td>
</tr>
<tr>
<td>Maksimum genişlik</td>
<td>0.111</td>
<td>.005</td>
<td>-0.044</td>
<td>1.000</td>
<td>0.855**</td>
</tr>
<tr>
<td>Maksimum uzunluk</td>
<td>-0.080</td>
<td>.028</td>
<td>-0.473</td>
<td>0.855*</td>
<td>1.000</td>
</tr>
</tbody>
</table>

* p<0.05, ** p<0.01
ANS-Me boyutu ile maksimum genişlik ve uzunluk ölçümleri arasındaki p<0.05 ve p<0.01 düzeylerinde önemli pozitif ilişkiler, maksimum uzunluk artırmış B noktasının aşağıda konumlanması ve dolayısıyla alt yüz yükseklik artışını ifade etmektedir (r=0.530, 0.691). Sefalik indeks ile B-VER/N-VER, Pg-VER/N-VER, B-VER/A-VER, A-VER-B-VER, B-HOR boyカルarı arasındaki önemli pozitif ve negatif yönü mevcut ilişkiler, maksimum uzunluk ile mevcut korelasyonları destekler niteliktedir (r=0.651, 0.647, 0.555, -0.591).

Sefalik indeksle ayrıca SNA ve ANSPNS.VER açıları arasındaki p<0.05 düzeyinde önemli negatif ilişkiler sefatikinde değer artırmış makslların anterior rotasyon yapacağını göstermektedir (r=-0.562, -0.633). AB.HOR ve A-HOR ölçümleri ile sefatik indeks arasında mevcut p<0.05 düzeyinde önemli pozitif ve negatif korelasyonlar bu bulguları desteklerken (r=0.603, -0.572), sefatik indeks artışça makslların anterior rotasyonuna maksllarının ön bölgesinin neden olduğunu düşündürmektedir.

Bu grupta, V-Bo/N-Ba oranı ile sefatik indeks, maksimum genişlik ve uzunluk ölçümleri arasındaki ilişkilerin önemli seviyede olmadıkları görülmektedir.

Aynı oran ile kraniyal kaide uzunluklarından S-Ba ve N-Ba arasında p<0.05 ve p<0.01 düzeyinde önemli negatif ilişkiler mevcut iken (r=-0.616, -0.713), kraniyal yükseklik ölçümlerinden Bo-HOR ve V-Bo boyカルarı arasında p<0.05 ve p<0.01 düzeyinde önemli pozitif ilişkiler saptanmıştır (r=0.523, 0.672). V-Bo/N-Ba oranı özellikle posterior kraniyal taban uzunluğu olmak üzere total kraniyal uzunlukta etkilenirken, ayrıca alt kraniyal yükseklik olmak üzere total kraniyal yükseklikten de etkilenmektedir. V-Bo/N-Ba oranı ile SBa.HOR açısı arasındaki önemli negatif ilişki bu oranın değişiminde, arka kraniyal tabanın uzunluğundan çok, fleksiyonunun etkili olduğu göstermektedir (r=-0.549, p<0.05). NSL.VER açısı ile bu oran arasında bir ilişki bulunmaması ön kraniyal taban fleksiyonunun N-Ba boyカルuna etki etmediğini düşündürmektedir.

Mandibulun sagital yön (Go-Me) boyutu ile birlikte (r=-0.572, p<0.05), B-VER, Pg-VER boyカルarıının da V-Bo/N-Ba oranı ile negatif ilişki gösterdikleri söylenebilir. Çünkü r değerleri önemli düzeyde olmasa da yüksek bulunmuştur. GoMe.SN açısı ile V-Bo/N-Ba oranı arasındaki pozitif yönü ilişki de bunu doğrulamaktadır (r=0.542, p<0.05). Ayrıca V-Bo/N-Ba oranı ile ANSPNS.GoMe açısı ve (A-HOR)-(B-HOR) ölçümleri arasındaki p<0.05 düzeyinde önemli pozitif ve negatif yönü ilişkiler bu oran büyündükçe mandibulanın arkaya rotasyon yaptığı desteklemektedir (r=0.526, -0.518).
Kranıyal taban ile SBa.HOR açıları arasındaki pozitif ilişki \(r=0.576, p<0.05 \), kranıyal taban açısını arka kranıyal taban eğimlenmesinin etkilediğini anlatmaktadır. Kranıyal taban açısı ile ön kranıyal taban eğimini veren NSL.VER açısı arasındaki ilişki önemli seviyeye ulaşmamıştır.

Yatay ölçümlere baktığımızda; biparietal mesafe maksimum genişlik ve uzunlukta \(p<0.01, p<0.05 \) düzeyinde önemli pozitif ilişki göstermektedir \(r=0.688, 0.569 \). V-Me mesafesiyle safalık indeks arasında da \(p<0.01 \) düzeyinde önemli negatif ilişki olması maksimum genişlik arttıkça veya maksimum uzunluk azaldıkça vertikal boyutun azalacağına göstermektedir \(r=-0.632 \).

Dolikosefal erkek bireylere ait korelasyon tablosunu incelediğimizde (Tablo 4.14); maksimum uzunluk ve genişlik ölçümleri arasındaki ilişkinin \(r \) değeri istatistik açıdan önemli seviyeye ulaşmamıştır. Safalik indeks ile maksimum uzunluk arasında Hiperbrakiselaf erkek grubunda olduğu gibi önemli negatif bir ilişki mevcut iken \(r=-0.936, p<0.01 \) maksimum genişlik ile safalik indeks arasında bir ilişki söz konusu değildir. Bu grupta ortalama safalik indeksi değeri \(x=73.47±1.16 \) olup safalik indeksi maksimum uzunluk ölçümünün etkilediği anlaşılmaktadır.

Arka ve total kranıyal taban uzunlukları \(p<0.05 \) düzeyinde maksimum uzunluk \(r=0.541, 0.541 \) ve genişlik ölçümleri ile \(p<0.05 \) düzeyinde önemli pozitif \(r=0.534, 0.754 \) korelasyonlar gösterirken, ön kranıyal taban uzunluğunun sadece maksimum genişlikle pozitif ilişki gösterdiği saptanmıştır \(r=0.693, p<0.01 \). Total kranıyal yükseklik ölçümü yine maksimum genişlik ölçümü ile \(p<0.05 \) düzeyinde önemli ilişki içindedir \(r=0.627 \).

Bu grupta doğal baş konumunda maksillerin ve mandibulanın sagital yön konumlarını veren A-VER, B-VER, Pg-VER ve Go-Me boyutları maksimum uzunluk ölçümü ile önemli bir ilişki göstermez iken maksimum genişlik ölçümü ile önemli pozitif korelasyonlar gösterdikleri saptanmıştır \(r=0.536, 0.678, 0.714, 0.537 \). Bunların yanı sıra B-VER/A-VER, Pg-VER/N-VER oranları da maksimum genişlik ölçümü ile önemli pozitif korelasyon gösterip \(r=0.539, 0.596, p<0.05 \) maksimum genişlik arttıkça prognotik, azaldıkça retrognatik alt çene görünümü ortaya çıkacaktır. Maksimum genişlik ölçümü ile GoMe.HOR açısı arasında mevcut önemli negatif korelasyon da bu bulguyu desteklemektedir \(r=-0.641, p<0.05 \).
Tablo 4.14: 14 Bireylik Dolikosefal Erkek Grubunda NSBa, V-Bo/N-Ba, Sefalik İndeks, Maksimum Genişlik ve Uzunluk Ölçümleri ile Postural, Kraniyal ve Kraniyofasial Özellikler Arasında Uygulanan Korelasyon Analizi Sonuçları

<table>
<thead>
<tr>
<th></th>
<th>NSBa</th>
<th>V-Bo/N-Ba</th>
<th>Sef. İndex</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSL. VER</td>
<td>.691**</td>
<td>.030</td>
<td>-.474</td>
<td>.432</td>
<td>.564*</td>
</tr>
<tr>
<td>NSL. CVT</td>
<td>.488</td>
<td>.225</td>
<td>-.446</td>
<td>.413</td>
<td>.551*</td>
</tr>
<tr>
<td>NSL. OPT</td>
<td>.344</td>
<td>.295</td>
<td>-.325</td>
<td>.440</td>
<td>.450</td>
</tr>
<tr>
<td>OPT. CVT</td>
<td>.502</td>
<td>-.248</td>
<td>-.423</td>
<td>-.100</td>
<td>.351</td>
</tr>
<tr>
<td>CVT. HOR</td>
<td>.035</td>
<td>.308</td>
<td>-.193</td>
<td>.184</td>
<td>.260</td>
</tr>
<tr>
<td>OPT. HOR</td>
<td>-.156</td>
<td>.359</td>
<td>-.010</td>
<td>.197</td>
<td>.095</td>
</tr>
<tr>
<td>WSL. VER</td>
<td>.299</td>
<td>-.220</td>
<td>-.598*</td>
<td>.492</td>
<td>.706**</td>
</tr>
<tr>
<td>NSBa</td>
<td>1.000</td>
<td>-.219</td>
<td>-.229</td>
<td>.142</td>
<td>.244</td>
</tr>
<tr>
<td>SBa, HOR</td>
<td>.318</td>
<td>-.308</td>
<td>.340</td>
<td>-.393</td>
<td>-.441</td>
</tr>
<tr>
<td>N-S</td>
<td>.267</td>
<td>-.543*</td>
<td>-.137</td>
<td>.693**</td>
<td>.339</td>
</tr>
<tr>
<td>S-Ba</td>
<td>-.339</td>
<td>-.464</td>
<td>-.387</td>
<td>.534*</td>
<td>.541*</td>
</tr>
<tr>
<td>N-Ba</td>
<td>.382</td>
<td>-.641*</td>
<td>-.330</td>
<td>.754**</td>
<td>.541*</td>
</tr>
<tr>
<td>V-HOR</td>
<td>.101</td>
<td>.067</td>
<td>.213</td>
<td>.267</td>
<td>-.112</td>
</tr>
<tr>
<td>Bo-HOR</td>
<td>.212</td>
<td>.166</td>
<td>-.432</td>
<td>.340</td>
<td>.494</td>
</tr>
<tr>
<td>V-Bo</td>
<td>.261</td>
<td>.237</td>
<td>-.226</td>
<td>.627*</td>
<td>.400</td>
</tr>
<tr>
<td>V-Bo/N-Ba</td>
<td>-.219</td>
<td>1.000</td>
<td>.186</td>
<td>-.306</td>
<td>.272</td>
</tr>
<tr>
<td>N-VER</td>
<td>-.097</td>
<td>-.547*</td>
<td>-.031</td>
<td>.341</td>
<td>.157</td>
</tr>
<tr>
<td>SNA</td>
<td>-.627**</td>
<td>.269</td>
<td>.408</td>
<td>-.222</td>
<td>-.432</td>
</tr>
<tr>
<td>ANS-PNS</td>
<td>.181</td>
<td>-.155</td>
<td>-.331</td>
<td>.465</td>
<td>.479</td>
</tr>
<tr>
<td>A-VER</td>
<td>.096</td>
<td>-.050</td>
<td>.193</td>
<td>.536*</td>
<td>.364</td>
</tr>
<tr>
<td>A-VER/N-VER</td>
<td>.136</td>
<td>.398</td>
<td>-.165</td>
<td>.320</td>
<td>.256</td>
</tr>
<tr>
<td>ANSPNS. SN</td>
<td>.683**</td>
<td>-.069</td>
<td>.175</td>
<td>-.197</td>
<td>-.228</td>
</tr>
<tr>
<td>ANSPNS. VER</td>
<td>-.117</td>
<td>-.074</td>
<td>.526</td>
<td>-.506</td>
<td>-.640</td>
</tr>
<tr>
<td>SNB</td>
<td>-.574*</td>
<td>.098</td>
<td>.605*</td>
<td>-.071</td>
<td>-.566*</td>
</tr>
<tr>
<td>Go-Me</td>
<td>-.277</td>
<td>-.197</td>
<td>.123</td>
<td>.537*</td>
<td>.078</td>
</tr>
<tr>
<td>B-VER</td>
<td>.226</td>
<td>-.105</td>
<td>.024</td>
<td>.678**</td>
<td>.202</td>
</tr>
<tr>
<td>Pg-VER</td>
<td>.197</td>
<td>-.114</td>
<td>.022</td>
<td>.714**</td>
<td>.213</td>
</tr>
<tr>
<td>B-VER/N-VER</td>
<td>.258</td>
<td>.132</td>
<td>.050</td>
<td>.539*</td>
<td>.126</td>
</tr>
<tr>
<td>Pg-VER/N-VER</td>
<td>.223</td>
<td>.071</td>
<td>.035</td>
<td>.596*</td>
<td>.156</td>
</tr>
<tr>
<td>GoMe. SN</td>
<td>.261</td>
<td>.029</td>
<td>-.296</td>
<td>-.450</td>
<td>.134</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01
<table>
<thead>
<tr>
<th></th>
<th>NSBa</th>
<th>V-Bo/N-Ba</th>
<th>Sef. İndex</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoMe. HOR</td>
<td>-.220</td>
<td>.004</td>
<td>.055</td>
<td>-.641*</td>
<td>-.244</td>
</tr>
<tr>
<td>ANB</td>
<td>-.159</td>
<td>.345</td>
<td>-.330</td>
<td>-.306</td>
<td>.209</td>
</tr>
<tr>
<td>AB. HOR</td>
<td>.317</td>
<td>-.105</td>
<td>.151</td>
<td>.519</td>
<td>.026</td>
</tr>
<tr>
<td>B-VER/A-VER</td>
<td>.254</td>
<td>-.118</td>
<td>.196</td>
<td>.583*</td>
<td>.004</td>
</tr>
<tr>
<td>A-VER-B-VER</td>
<td>-.264</td>
<td>.116</td>
<td>-.244</td>
<td>-.527</td>
<td>.061</td>
</tr>
<tr>
<td>A-HOR</td>
<td>-.358</td>
<td>.000</td>
<td>.514</td>
<td>-.214</td>
<td>-.500</td>
</tr>
<tr>
<td>B-HOR</td>
<td>.063</td>
<td>-.018</td>
<td>.032</td>
<td>-.055</td>
<td>-.006</td>
</tr>
<tr>
<td>A-HOR-B-HOR</td>
<td>-.218</td>
<td>.022</td>
<td>.389</td>
<td>-.105</td>
<td>-.413</td>
</tr>
<tr>
<td>A-B</td>
<td>.185</td>
<td>-.022</td>
<td>-.396</td>
<td>.055</td>
<td>.404</td>
</tr>
<tr>
<td>ANSPNS. GoMe</td>
<td>-.175</td>
<td>.077</td>
<td>-.433</td>
<td>-.351</td>
<td>.296</td>
</tr>
<tr>
<td>N-ANS</td>
<td>.861*</td>
<td>-.112</td>
<td>-.002</td>
<td>.251</td>
<td>.085</td>
</tr>
<tr>
<td>ANS-Me</td>
<td>.139</td>
<td>-.154</td>
<td>-.451</td>
<td>.340</td>
<td>.556*</td>
</tr>
<tr>
<td>N-Me</td>
<td>.473</td>
<td>-.195</td>
<td>-.343</td>
<td>.431</td>
<td>.481</td>
</tr>
<tr>
<td>S-Go</td>
<td>.287</td>
<td>-.152</td>
<td>-.100</td>
<td>.733**</td>
<td>.348</td>
</tr>
<tr>
<td>S-PNS</td>
<td>-.028</td>
<td>-.119</td>
<td>.002</td>
<td>.417</td>
<td>.132</td>
</tr>
<tr>
<td>PNS-Go</td>
<td>.261</td>
<td>-.213</td>
<td>-.109</td>
<td>.755**</td>
<td>.363</td>
</tr>
<tr>
<td>Cd-Go</td>
<td>.306</td>
<td>-.240</td>
<td>.101</td>
<td>.765**</td>
<td>.170</td>
</tr>
<tr>
<td>P-P</td>
<td>.174</td>
<td>-.056</td>
<td>.179</td>
<td>.524</td>
<td>.018</td>
</tr>
<tr>
<td>Max-max</td>
<td>-.045</td>
<td>-.215</td>
<td>-.183</td>
<td>-.014</td>
<td>.164</td>
</tr>
<tr>
<td>Mand-mand</td>
<td>-.038</td>
<td>-.340</td>
<td>-.043</td>
<td>.011</td>
<td>.037</td>
</tr>
<tr>
<td>V-Me</td>
<td>.307</td>
<td>-.278</td>
<td>-.080</td>
<td>.599*</td>
<td>.305</td>
</tr>
<tr>
<td>Sefalik Index</td>
<td>-.229</td>
<td>.186</td>
<td>1.000</td>
<td>-.077</td>
<td>-.936**</td>
</tr>
<tr>
<td>Maksimum genişlik</td>
<td>.142</td>
<td>-.306</td>
<td>.077</td>
<td>1.000</td>
<td>.419</td>
</tr>
<tr>
<td>Maksimum uzunluk</td>
<td>.244</td>
<td>-.272</td>
<td>-.936**</td>
<td>.419</td>
<td>1.000</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01
Çeneler arası sagittal ilişkiye veren B-VER/A-VER oranı yine maksimum uzunluk ile değil, maksimum genişlik ölçüümü ile p<0.01 düzeyinde önemli pozitif ilişki göstermektedir (r=0.583). Bu bulğu maksimum genişlik artmasıyla Klas III eğilim olacağını göstermektedir.

Bu grupta, alt ön yüz yüksekliği malsımuzuzunluk ölçümü ile p<0.05 düzeyinde önemli pozitif ilişki göstermiştir (r=0.556). Ayrıca total posterior yüz yüksekliği, arka alt yüz yüksekliği ve ramus yüksekliği Tablo 4.14'de görüldüğü gibi maksimum uzunluk ölçümü ile değil, yine maksimum genişlik ölçümü ile önemli pozitif ilişkiler göstermektedirler (r=0.733, 0.755, 0.765, p<0.01).

V-Bo/N-Ba oranını incelediğimizde, sefalik indeks, maksimum genişlik ve uzunluk ölçümleri ile bu oran arasında önemli düzeyde bir ilişki mevcut değildi.

Bu oran ile N-S, N-Ba boyutları arasında önemli negatif bir ilişki mevcut iken (r=-0.543, -0.641, p<0.05), kraniyal yükseklik ölçümleri ile beklenen pozitif ilişki saptanamamıştır. Aynı oran ile N-VER boyutu arasındaki p<0.05 düzeyinde önemli negatif ilişki de (r=-0.547), bu oran değişiminden daha çok kraniyal tabanın sorumlu olduğunu düşündürmektedir. Bu grupta kraniyal taban açısı ile NSL.VER açısı arasında saptanan önemli pozitif ilişki (r=0.691, p<0.01), kraniyal kaidenin açısının daha çok ön kraniyal taban fleksiyonu ile değiştiğini düşündürmektedir.

Kraniyal taban açısı ile maksillanın sagittal konumunu veren SNA (r=-0.627, p<0.01) ve vertikal konumunu veren ANSPNS.SN açları (r=0.683, p<0.01) arasındaki önemli ilişkilerin ortak NSL düzümlendirin dönel olduğu söylenebilir, yine ortak NSL düzümlene bağlı olarak SNB açısı ile NSBa açısı arasında da önemli düzeyde negatif bir ilişki bulunmuştur (r=-0.574, p<0.05).

NSBa açısı ile N-ANS boyutu arasında p<0.01 düzeyinde önemli pozitif korelasyonla birlikte (r=0.861), NSL.VER açısı arasındaki korelasyon da göz önüne alındığında (r=0.691, p<0.01), bu açı, ön kraniyal tabanın yukarı fleksiyonu ile öncülüğünde, üst ön yüz yüksekliğinininde artacağı veya aksi anlaşılmaktadır.

Dolikosefal erkek grubunda değişkenlik sınırı çok fazla olan maksimum uzunluk ölçümü ile NSL.VER, NSL.CVT ve WSL.VER açları arasında önemli pozitif korelasyonlar bulunmuştur (r=0.564, p<0.05, r=0.551, p<0.05, r=0.706, p<0.01). Bu grupta, maksimum uzunluk ve sefalik indeks ile yatay yön parametreleri arasında bir ilişki mevcut değil iken maksimum genişlikle V-Me mesafesi arasında pozitif bir ilişki saptanmıştır (r=0.599, p<0.05).
Dolikosefal erkek grubunun aksine kız grubunda maksimum uzunluk ve genişlik ölçümleri arasında \(p<0.01 \) düzeyinde önemli pozitif bir korelasyon mevcut iken (\(r=0.856 \)), bu parametreler ile sefali indeks arasında önemli bir ilişki saptanamamıştır (Tablo 4.15). Maksimum genişlik ve uzunluk ölçümleri ile hiçbir ölçüm arasında istatistik açıdan önemli bir ilişki bulunamamıştır. Sadece arka üst yüz yüksekliği ile maksimum genişlik ölçümü arasında \(p<0.05 \) düzeyinde pozitif yönlü bir korelasyon bulunmuştur (\(r=0.675 \)).

V-Bo/N-Ba oranı ile N-Ba boyutu arasında önemli bir ilişki saptanmaz iken, V-Bo ve Bo-HOR ölçümleri arasında önemli düzeyde pozitif ilişkiler bulunmuş olması (\(r=0.672, p<0.05, r=0.802, p<0.01 \)), özellikle alt kraniyal yükseklik olmak üzere total kraniyal yüksekliğinin bu oranı belirlediğini göstermektedir. Ancak bu oran ile Sba.HOR açısı arasındaki ilşkinin önemli bulunmamış olsa da negatif yönlü yüksek \(r \) değerleri (\(r=-0.590 \), arka kraniyal taban eğiminin de bu oranı etkileye bileceğini düştüürmüştür.

V-Bo/N-Ba oranı ile N-VER ölçümü arasındaki \(p<0.05 \) düzeyinde önemli ilişki (\(r=-0.780 \)), bu oran büyük ölçüde N noktasının klinik profilde geride yer alacağıını düşüdürürmektedir. Ayrıca bu oran ile NSL.VER ve WSL.VER açları arasında pozitif yüksek \(r \) değerleri saptanmıştır (\(r=0.505, 0.473 \)).

Dolikosefal kız bireylerde, yatay yön parametrelerimizden sadece biparietal mesafenin sefali indeks ile \(p<0.05 \) düzeyinde önemli pozitif korelasyon gösterdiği bulunmuştur (\(r=0.708 \)).

Çalışmamızda, ayrıca 114 kişilik araştırma materyalimiz ve dört baş tiplerinde başın maksimum uzunluk ve genişlik ölçümlerinin değişkenliğini görebilmek için; her grupta genişlik ölçümünün ortalama değerine göre uzunluk ölçümünün minimum, maksimum ve ortalama değerlerini gösteren, yine uzunluk ölçümünün ortalama değerine göre genişlik ölçümünün minimum, maksimum ve ortalama değerlerini gösteren şemalar hazırlanmıştır (Şekil 4.1-4.10). Bu şemaların incelenmesinden, baş tipi dikkate alınmadığında genel olarak bireylerde başın uzunluk ölçümü genişlik ölçümüne göre çok büyük değişkenlik gösterdiği anlaşılmaktadır. Baş tipleri ayrı ayrı incelendiğinde ise Dolikosefal bireyler dışındaki diğer baş tiplerinde, başın maksimum uzunluk ve genişlik ölçümlerinin değişkenliği benzer iken Dolikosefal bireylerde maksimum genişlik ölçümüne göre uzunluk ölçümünün çok büyük değişkenlik gösterdiği anlaşılmaktadır.
Tablo 4.15: 10 Bireylik Dolikosefal Kız Grubunda NSBa, V-Bo/N-Ba, Sefalik İndeks, Maksimum Genişlik ve Uzunluk Ölçümleri ile Postural, Kraniyal ve Kraniyofasial Özellikler Arasında Uygulanana Korelasyon Analizi Sonuçları

<table>
<thead>
<tr>
<th></th>
<th>NSBa</th>
<th>V-Bo/N-Ba</th>
<th>Sef. İndex</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSL. VER</td>
<td>.115</td>
<td>.505</td>
<td>.086</td>
<td>-.287</td>
<td>-.385</td>
</tr>
<tr>
<td>NSL. CVT</td>
<td>-.150</td>
<td>.392</td>
<td>.182</td>
<td>.093</td>
<td>-.005</td>
</tr>
<tr>
<td>NSL. OPT</td>
<td>-.112</td>
<td>.337</td>
<td>.103</td>
<td>-.032</td>
<td>-.100</td>
</tr>
<tr>
<td>OPT. CVT</td>
<td>-.051</td>
<td>-.004</td>
<td>.169</td>
<td>.353</td>
<td>.303</td>
</tr>
<tr>
<td>CVT. HOR</td>
<td>-.309</td>
<td>.053</td>
<td>.164</td>
<td>.394</td>
<td>.354</td>
</tr>
<tr>
<td>OPT. HOR</td>
<td>-.220</td>
<td>.042</td>
<td>.063</td>
<td>.171</td>
<td>.158</td>
</tr>
<tr>
<td>WSL. VER</td>
<td>.012</td>
<td>.473</td>
<td>.122</td>
<td>-.045</td>
<td>-.131</td>
</tr>
<tr>
<td>NSBa</td>
<td>1.000</td>
<td>-.261</td>
<td>-.412</td>
<td>-.125</td>
<td>.095</td>
</tr>
<tr>
<td>SBa. HOR</td>
<td>.583</td>
<td>-.590</td>
<td>-.349</td>
<td>.150</td>
<td>.380</td>
</tr>
<tr>
<td>N-S</td>
<td>-.252</td>
<td>-.329</td>
<td>-.203</td>
<td>.142</td>
<td>.048</td>
</tr>
<tr>
<td>S-Ba</td>
<td>-.219</td>
<td>-.400</td>
<td>.158</td>
<td>-.041</td>
<td>-.136</td>
</tr>
<tr>
<td>N-Ba</td>
<td>.352</td>
<td>-.015</td>
<td>-.040</td>
<td>-.034</td>
<td>-.012</td>
</tr>
<tr>
<td>V-HOR</td>
<td>.586</td>
<td>-.323</td>
<td>-.014</td>
<td>-.171</td>
<td>-.187</td>
</tr>
<tr>
<td>Bo-HOR</td>
<td>-.515</td>
<td>.802**</td>
<td>.408</td>
<td>.018</td>
<td>-.224</td>
</tr>
<tr>
<td>V-Bo</td>
<td>-.017</td>
<td>.672*</td>
<td>.574</td>
<td>-.115</td>
<td>-.474</td>
</tr>
<tr>
<td>V-Bo/N-Ba</td>
<td>-.261</td>
<td>1.000</td>
<td>.440</td>
<td>-.072</td>
<td>-.347</td>
</tr>
<tr>
<td>N-VER</td>
<td>.075</td>
<td>-.780*</td>
<td>-.298</td>
<td>.219</td>
<td>.432</td>
</tr>
<tr>
<td>SNA</td>
<td>-.072</td>
<td>-.144</td>
<td>-.200</td>
<td>.148</td>
<td>.289</td>
</tr>
<tr>
<td>ANS-PNS</td>
<td>.058</td>
<td>-.601</td>
<td>-.564</td>
<td>.043</td>
<td>.382</td>
</tr>
<tr>
<td>A-VER</td>
<td>.377</td>
<td>-.560</td>
<td>-.639</td>
<td>-.089</td>
<td>.274</td>
</tr>
<tr>
<td>A-VER/N-VER</td>
<td>.049</td>
<td>.510</td>
<td>-.015</td>
<td>-.231</td>
<td>-.262</td>
</tr>
<tr>
<td>ANSPNS. SN</td>
<td>.310</td>
<td>.154</td>
<td>-.361</td>
<td>-.612</td>
<td>-.488</td>
</tr>
<tr>
<td>ANSPNS. VER</td>
<td>.064</td>
<td>-.393</td>
<td>-.283</td>
<td>-.069</td>
<td>.093</td>
</tr>
<tr>
<td>SNB</td>
<td>-.231</td>
<td>-.167</td>
<td>-.133</td>
<td>.383</td>
<td>.519</td>
</tr>
<tr>
<td>Go-Me</td>
<td>.274</td>
<td>-.053</td>
<td>-.249</td>
<td>-.067</td>
<td>.070</td>
</tr>
<tr>
<td>B-VER</td>
<td>.043</td>
<td>-.052</td>
<td>-.333</td>
<td>.109</td>
<td>.317</td>
</tr>
<tr>
<td>Pg-VER</td>
<td>-.050</td>
<td>.005</td>
<td>-.169</td>
<td>.119</td>
<td>.324</td>
</tr>
<tr>
<td>B-VER/N-VER</td>
<td>-.095</td>
<td>.458</td>
<td>-.004</td>
<td>.005</td>
<td>.003</td>
</tr>
<tr>
<td>Pg-VER/N-VER</td>
<td>-.154</td>
<td>.446</td>
<td>.070</td>
<td>.083</td>
<td>.048</td>
</tr>
<tr>
<td>GoMe. SN</td>
<td>.128</td>
<td>.304</td>
<td>-.089</td>
<td>-.480</td>
<td>-.499</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01
Tablo 4.15'in Devamı

<table>
<thead>
<tr>
<th></th>
<th>NSBa</th>
<th>V-Bo/N-Ba</th>
<th>Sef. İndex</th>
<th>Mak. Gen.</th>
<th>Mak. Uz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoMe. HOR</td>
<td>.057</td>
<td>-.070</td>
<td>-.186</td>
<td>-.340</td>
<td>-.278</td>
</tr>
<tr>
<td>ANB</td>
<td>.354</td>
<td>.076</td>
<td>-.104</td>
<td>-.535</td>
<td>-.550</td>
</tr>
<tr>
<td>AB. HOR</td>
<td>-.199</td>
<td>.436</td>
<td>.128</td>
<td>.240</td>
<td>.193</td>
</tr>
<tr>
<td>B-VER/A-VER</td>
<td>-.190</td>
<td>.310</td>
<td>-.017</td>
<td>.187</td>
<td>.218</td>
</tr>
<tr>
<td>A-VER-B-VER</td>
<td>.227</td>
<td>-.355</td>
<td>-.032</td>
<td>-.215</td>
<td>-.221</td>
</tr>
<tr>
<td>A-HOR</td>
<td>-.036</td>
<td>-.396</td>
<td>-.130</td>
<td>.085</td>
<td>.179</td>
</tr>
<tr>
<td>B-HOR</td>
<td>.005</td>
<td>-.123</td>
<td>.108</td>
<td>.181</td>
<td>.144</td>
</tr>
<tr>
<td>A-HOR-B-HOR</td>
<td>-.069</td>
<td>-.450</td>
<td>-.397</td>
<td>-.163</td>
<td>.055</td>
</tr>
<tr>
<td>A-B</td>
<td>.091</td>
<td>.445</td>
<td>.422</td>
<td>.155</td>
<td>-.078</td>
</tr>
<tr>
<td>ANSPNS. GoMe</td>
<td>-.003</td>
<td>.310</td>
<td>.081</td>
<td>-.289</td>
<td>-.382</td>
</tr>
<tr>
<td>N-ANS</td>
<td>.139</td>
<td>.136</td>
<td>-.184</td>
<td>-.436</td>
<td>-.392</td>
</tr>
<tr>
<td>ANS-Me</td>
<td>.098</td>
<td>.381</td>
<td>.432</td>
<td>.069</td>
<td>-.183</td>
</tr>
<tr>
<td>N-Me</td>
<td>.129</td>
<td>.322</td>
<td>.248</td>
<td>-.098</td>
<td>-.264</td>
</tr>
<tr>
<td>S-Go</td>
<td>-.064</td>
<td>.007</td>
<td>.553</td>
<td>.675</td>
<td>.443</td>
</tr>
<tr>
<td>S-PNS</td>
<td>-.449</td>
<td>.248</td>
<td>.571</td>
<td>.308</td>
<td>.017</td>
</tr>
<tr>
<td>PNS-Go</td>
<td>.106</td>
<td>.102</td>
<td>.592</td>
<td>.537</td>
<td>.263</td>
</tr>
<tr>
<td>Cd-Go</td>
<td>-.064</td>
<td>-.152</td>
<td>.448</td>
<td>.626</td>
<td>.449</td>
</tr>
<tr>
<td>P-P</td>
<td>-.368</td>
<td>.449</td>
<td>.708</td>
<td>.348</td>
<td>-.024</td>
</tr>
<tr>
<td>Max-max</td>
<td>-.130</td>
<td>.311</td>
<td>.147</td>
<td>.582</td>
<td>.578</td>
</tr>
<tr>
<td>Mand-mand</td>
<td>-.297</td>
<td>-.024</td>
<td>.425</td>
<td>.341</td>
<td>.141</td>
</tr>
<tr>
<td>V-Me</td>
<td>.197</td>
<td>.594</td>
<td>.326</td>
<td>-.195</td>
<td>-.422</td>
</tr>
<tr>
<td>Sefallık Index</td>
<td>-.412</td>
<td>.440</td>
<td>1.000</td>
<td>.481</td>
<td>-.042</td>
</tr>
<tr>
<td>Maksimum genişlik</td>
<td>-.125</td>
<td>-.072</td>
<td>.481</td>
<td>1.000</td>
<td>.856**</td>
</tr>
<tr>
<td>Maksimum uzunluk</td>
<td>.095</td>
<td>-.347</td>
<td>-.042</td>
<td>.856**</td>
<td>1.000</td>
</tr>
</tbody>
</table>

* p<0.05, ** p<0.01
Şekil 4.1: 114 Bireylik Araştırma Materyalinde Başın Maksimum Genişlik Ortalamasına Göre Maksimum Uzunluk Ölçümüne Ait Minimum, Maksimum ve Ortalama Değerleri Horizontal Planda Gösteren Şema

Şekil 4.2: 114 Bireylik Araştırma Materyalinde Başın Maksimum Uzunluk Ortalamasına Göre Maksimum Genişlik Ölçümüne Ait Minimum, Maksimum ve Ortalama Değerleri Horizontal Planda Gösteren Şema

Şekil 4.3: 27 Bireylik Hiperbrakisefal Grubunda Başın Maksimum Genişlik Ortalamasına Göre Maksimum Uzunluk Ölçümüne Ait Minimum, Maksimum ve Ortalama Değerleri Horizontal Planda Gösteren Şema

Şekil 4.4: 27 Bireylik Hiperbrakisefal Grubunda Başın Maksimum Uzunluk Ortalamasına Göre Maksimum Genişlik Ölçümüne Ait Minimum, Maksimum ve Ortalama Değerleri Horizontal Planda Gösteren Şema
Şekil 4.5: 34 Bireylik Brakisefal Grubunda Başın Maksimum Genişlik Ortalamasına Göre Maksimum Uzunluk Ölçümüne Ait Minimum, Maksimum ve Ortalama Değerleri Horizontal Planda Gösteren Şema

Şekil 4.6: 34 Bireylik Brakisefal Grubunda Başın Maksimum Uzunluk Ortalamasına Göre Maksimum Genişlik Ölçümüne Ait Minimum, Maksimum ve Ortalama Değerleri Horizontal Planda Gösteren Şema

Şekil 4.7: 29 Bireylik Mezosefal Grubunda Başın Maksimum Genişlik Ortalamasına Göre Maksimum Uzunluk Ölçümüne Ait Minimum, Maksimum ve Ortalama Değerleri Horizontal Planda Gösteren Şema

Şekil 4.8: 29 Bireylik Mezosefal Grubunda Başın Maksimum Uzunluk Ortalamasına Göre Maksimum Genişlik Ölçümüne Ait Minimum, Maksimum ve Ortalama Değerleri Horizontal Planda Gösteren Şema
Şekil 4.9: 24 Bireylik Dolikosefal Grubunda Başın Maksimum Genişlik Ortalamasına Göre Maksimum Uzunluk Ölçümüne Ait Minimum, Maksimum ve Ortalama Değerleri Horizontal Planda Gösteren Şema

Şekil 4.10: 24 Bireylik Dolikosefal Grubunda Başın Maksimum Uzunluk Ortalamasına Göre Maksimum Genişlik Ölçümüne Ait Minimum, Maksimum ve Ortalama Değerleri Horizontal Planda Gösteren Şema
TARTIŞMA

Farklı baş tiplerinin kraniyofasiyal morfolojilerini bireylerin doğal baş ve boyun pozisyonlarını dikkate alarak değerlendirirken amaçladığımız çalışmamızda, sefalik indeksleri saptanmış 114 bireynin doğal baş ve boyun pozisyonunda elde edilmiş lateral ve posteroanterior sefalometrik filmleri kullanılmıştır.

Hiperbrakisefal, Brakisefal, Mezosefal ve Dolikosefal olmak üzere dört baş tipi üzerinde yürütüğümüz çalışma çalısmamızda, büyüme ve gelişim etkenini ortadan kaldırmak amacı ile gruplarımızı oluşturan bireylerin yaş ortalamaları 19 ile 29 yıl arasında tutulmuştur.

Björk (10), yaptığı longitudinal araştırma sonucunda baş ve yüzde yapılan direkt antropolojik ölçümlerin 20 yaş civarında uygulanmasının doğru olduğunu bildirmiş, birçok araştırmacı da kraniyofasiyal gelişimin puberteden geç dönemlerine kadar sürdüğüğini göstermiştir (12,61,65,79).

Baş tiplerinin kraniyofasiyal morfolojilerinin, hem intrakraniyal hem de ekstrakraniyal referans düzlemlerle incelenmesi ayrıca morfolojik ve postural ilişkilerin ortaya çıkarması hedeflendiğinden sefalometrik filmler doğal baş ve boyun postüründe alınmıştır.

Doğal baş postürüne sonunun fonksiyonu, yer çekimi sonucu kasların propriozeptif stimuli ile başlayan refleksler ve görme refleksi ile kontrol edildiği (21,26,64,73,66,87) ayrıca doğal baş pozisyonunun fizyolojik, patolojik ve psikolojik faktörlerden etkilenebilceği göz önüne alınarak bu pozisyonu tespit etmek amacıyla özel bir odada görüşmeler yapılmıştır.
Bireylerin doğal baş ve boyun pozisyonunu saptamak amacı ile Showfety (66) ve arkadaşlarının önerdiği ve Özbek'in (57) modifiye edip uyguladığı yöntem kullanılmıştır. Bu bağlamda, doğal baş ve boyun postürünü tespit etmek için mika bir bant üzerine monte edilmiş su terazisinden yararlanılmıştır.

Sefalometrik filmler elde edilirken metodumuzda da bahsedildiği gibi kulak çubukları kullanılmıştır. Bunun doğal baş pozisyonunu bozabileceğini düşüncesi ile su terazisi kullanımları ile doğacak hatalar elime edilmeye çalışılmıştır.

Moorees ve Kean (51), kulak çubuklarını kullanmadan santral X-ışınının ayarlanmasının zor olabileceğini belirtmişlerdir.

Cooke ve arkadaşları (16), kısa zaman diliminde yapılan tekrarlamalarda kulak çubukları olmadan ve sefatostatsız çekilen filmlerde metod hatasının küçük olduğunu ancak uzun dönemde bu bulguların tersine döndüğünü belirtmişlerdir. Ayrıca kulak çubukları kullanmadan elde edilen filmlerin kalitesinin düşük olduğunu gözlemişlerdir.

Birçok araştırmada eksternal destek olarak kullanılan ayna, bireyin kendi denge konumunu hedeflediğinden bu çalışmada kullanılmamıştır.

Ayna ve ayna olmadan alınan filmler üzerinde yapılan çalışmalarında ayna kullanılan bireylerin başlarını yukarı kaldırdıkları gösterilmiştir (74,75,76).

Diş Hekimiği ve antropolojide baş ve boyun postürünün tekrarlanabilirliği önemlidir. Konuya hakim olmaları sebebi ile doğal baş ve boyun postürünün yüksek tekrarlanabilirlikte elde edilmesi için materyalimizi Diş Hekimiği Fakültesi öğrencilerinin oluşturmasını bir avantaj olduğunu düşünülürse de konu ile ilgili çalışmalararda, her iki cinsiyette ve çeşitli yaş gruplarında (cocuk, genç erişkin, erişkin) olumsuz sonuçlar elde edilmiştir (13,20,57,66,68,86).
Bizim çalışmamızda da postural ölçümlerin tekrarlama katsayısı diğer araştırmalarda olduğu gibi yüksek bulunmuştur (Tablo 4.2).

Bu çalışmada, sefalik indekse göre sınıflandırılmış baş tiplerinin kraniyofasial morfolojilerinin değerlendirilmesinde intrakraniyal referans düzlemlerine dayanan ölçümlerin yanı sıra doğal baş pozisyonundaki ekstrakraniyal referans düzlemlerine dayanana ölçümler de kullanılmış, elde edilen bulgular birlikte değerlendirilerek geçmiş çalışmalarla mukayese edilmiştir. Ekstrakraniyal referans düzlemi kullanımı ile literatürlerde (77), ortak referans noktası veya doğrusu içeren ölçümler arasında "topografik korelasyonlar" olarak tanımlanmış korelasyonların biyolojik koordinasyon mekanizması olarak değerlendirilme tehlikesielden geldiğince elimine edilmiştir.

İstatistiksel olarak bulgularımız değerlendirildiğinde; Hiperbrakisefal, Brakisefal, Mezosefal ve Dolikosefal baş tiplerinde, bireylerin doğal baş konumlarının benzer olduğunu söylenebilir. Başın ekstansiyonu veya fleksiyonu ile birlikte Sella ve Nasion noktarlarının vertikal yöndeki anatomi lokalizasyonlarını da yansıtacak şekilde NSL.VER, NSL.OPT ve NSL.CV'Tı vs. tüm gruplar arasında istatistiksel olarak önemli bir farklılık gösterememektedir (Tablo 4.4). Ancak ortalama değerleri inccelemiştik (Tablo 4.3), NSL düzlemi ile servikal kolon konumu ifade eden CV'Tı ve OPT düzlemleri arasındaki açıların gruplara ait ortalama değerleri birbirine çok yakın iken NSL.VER açısının Hiperbrakisefal, Brakisefal ve Mezosefal bireylerindeki $x=95.81\pm 0.81$, 95.68 ± 0.79, 94.43 ± 0.97 derecelik ortalama değerlerine göre Dolikosefal bireylerindeki $x=97.36 \pm 1.01$ derecelik ortalama değeri büyüktür. Bunun yanı sıra servikal kolon eğimini veren CV'Tı.HOR açısı $x=94.04\pm 1.16$ derecelik ortalama değeri ile Dolikosefal bireylerde diğer baş tiplerine göre en küçük ortalama değer gösterektedir. Benzer şekilde OPT.HOR açısının da Dolikosefal bireylerdeki ortalama değeri $x=88.33\pm 1.31$ derece olup diğer baş tiplerinden küçüktür.

Diğer yandan CV'Tı.HOR açısının ortalama değerleri her baş tipi grupları içinde minimum değerden maksimum değere doğru sıralandığında, Tablo 4.6'dan da anlaşılabacağı gibi Dolikosefal bireylerin %50'si küçük CV'Tı.HOR açısına sahip iken Hiperbrakisefal bireylerin sadece %26'sı küçük değerlerdedir. Büyük ortalama değere ise Hiperbrakisefal bireylerin %41'i, Dolikosefal bireylerin ise %21'i katılmaktadır. Benzer bulgular OPT.HOR açısı için de geçerli olup
küçük ortalama değere %30 Hiperbrakisefal ve %50 Dolikosefal birey dahildir. Büyük ortalama değere ise %33 Hiperbrakisefal ve %25 Dolikosefal birey ıstirak etmektedir. Buna göre istatistiksel olarak önemli bir farklık bulunmaya da Dolikosefal bireylerin diğer baş tiplerine göre çoğunlukla basin fleksiyonunu ifade eden dik servikal kolona sahip olduklarını halde, NSL.VER açısının bu bireylerde daha büyük olduğu ve kraniyoservikal açılarının ise diğer baş tipleri ile benzer bulunduğu görülmektedir. Diğer yandan Nasion ve Sella noktalarının birbirlerine göre vertikal yöndeki anatominik lokalizasyonlarını elimine eden WSL.VER açısına baktığımızda, bu açının Hiperbrakisefal, Brakisefal ve Dolikosefal bireylerde benzer ortalama değerlere sahip olduğu görülmektedir. Mezosefal bireylerde bu açı küçüktü bulunmuştur. Bu durum, Hiperbrakisefal ve Dolikosefal baş tipleri ile Mezosefal baş tipi arasında istatistiksel olarak p<0.01 düzeyinde farklık yaratmıştır.

Bu bulgularımıza göre, Lundström (44), Özbek (57), Özbek ve Köklü'nün (58) bulguları ile benzer şekilde, doğal baş pozisyonunda NSL düzleminin gerçek vertikal referans düzlemine göre eğiminin başın ekstansiyon veya fleksiyonuna değil daha çok Sella ve Nasion noktalarının vertikal lokalizasyonuna bağlı olduğunu ve bu nedenle NSL.OPT ve NSL.CVT açlarının da etkilenebileceğini, kraniyofasiyal morfoloji ile postür arası ilişkilerde dik veya protrüïsiv servikal kolondan bahsetmenin daha doğru olacağı söyleyebiliriz.

Kraniyal pozisyondaki değişikliklere en çok servikal kolon eğiminin eşlik ettiği ileri süren Hellising (26), eksternal referans kullanılarak elde edilen filmlerdeki üç derecelik NSL.VER farkının öncelikle OPT.HOR açısından kaynaklandığını söleyen Solow ve Tallgren (76) ve kraniyofasiyal morfolojinin daha çok kraniyoservikal ve servikal kolonun eğimi ile ilişkide olup başın gerçek vertikale göre konumunun daha çok kraniyoservikal açı, servikal kolon eğimi ile ilişkide olduğunu ileri süren Solow ve Nielsen'in (73) bulguları da göz önüne alınırsa, Dolikosefal bireylerin çoğunluğundaki dik servikal kolona birlikte basin fleksiyonu sonucu NSL.VER açısının bir ölçüde etkilenip bu grupta x=97.36±1.01 derece ile küçülmuş bir ortalama değer göstermiş olabileceği ve bu şekilde düşünüldüğünde Sella Tursikanın Dolikosefal bireylerde Nasion noktasına göre vertikal yönde daha aşağıda yer aldığı söylenebilib.
değerleri de benzerdir. Total ve ön kafa tabanı uzunluklarını veren N-Ba ve N-S ölçümlerine ait ortalama değerlerin baş tiplerinde önemli ayrıcalık yaratıca eğilimde Hiperbrakisefal bileylerden Dolikosefal bileylerde doğru artriği görülmektedir (p<0,01). NSL-VER açısından Dolikosefal bileylerdeki ortalama değerinin asında daha da yüksek olabileceğini ancak başın fleksiyonu nedeni ile küçük bulunduğu görüşi, NSBa açısından diğer baş tiplerine göre Dolikosefal bileylerdeki X=132,67±0,87 derecelik yüksek ortalama değeri ve N-VER boyutunun baş tipleri arasında ayrıcalık göstermemesi ile de desteklenmektedir. Ön ve total kraniyal taban uzunluğu Dolikosefal bileylerde Hiperbrakisefal ve Brakisefal bileylerde göre önemli ölçüde büyük olduğu halde, doğal baş konumunda yan klinik profillerinde Nasion noktasıının sağittal yöndeki konumunu veren N-VER boyutunun benzer olması Dolikosefal bileylerde N-S ve buna bağlı olarak N-Ba boyutunun büyük olmasına, Nasion ve Sella noktasının en az sağittal yönde olduğu kadar vertikal yöndeki lokalizasyonlarının da sebep olduğunu ifade etmektedir. Buna göre, Dolikosefal bileylerde başın maksimum uzunluk artışı ile birlikte kraniyal taban uzunluklarının ve NSBa açısının büyük olacağı veya tam tersi Hiperbrakisefal gruba doğru başın maksimum uzunlugu azalırken kraniyal taban uzunluklarının ve NSBa açısının küçük olacağı şekilde bir yargida bulunulurken dikdatri olunmalıdır.

114 kişilik toplam materyalımızde N-S, S-Ba ve N-Ba boyutları ile başın maksimum uzunluğu arasındaki p<0,01 düzeyindeki önemli pozitif (r=0,652, 0,454, 0,665), başın maksimum genişliği arasındaki p<0,05 düzeyinde önemli pozitif korelasyonlar (r=0,230, 0,181, 0,192) nedeni ile bu boyutların sefalik indeksle göstermiş oldukları p<0,01 düzeyinde önemli negatif korelasyonlar (r=-0,431, -0,281, -0,461), baş indisi küçültükçe yani Dolikosefal baş tipe doğru kraniyal taban uzunluklarının artacağını göstermektedir (Tablo 4.7). Ancak detaylı incelendiğinde bütün baş tiplerinde her iki cinsle birden bu korelasyonların söz konusu olmadığını görmekteyiz. Hatta Dolikosefal erkek bileylerde başın hem maksimum uzunluk hem de genişlik ölçümleri ile aynı anda pozitif korelasyon gösteren N-Ba boyutunun maksimum uzunlk ile gösterdiği ilişki (r=0,541, p<0,05) düzeyinde önemli iken maksimum genişlik ile gösterdiği ilişki p<0,01 düzeyinde önemlidir (r=0,754). Yine aynı grupta N-S ölçümünün ise başın maksimum uzunluk ölçümü ile değil maksimum genişlik ölçümü ile ilişkisi önemli bulunmuştur (r=0,693, p<0,01, Tablo 4.14). O halde başın maksimum uzunluğunu büyük bileylerde kraniyal taban uzunluklarının da büyük olacaği şeklinde bir görüş baş tipleri dikkate alınmadiğında genel olarak geçerlidir (48,65).
Kraniyal taban büyüme ve gelişimi ile hem fasiyal hem de kraniyal bölgelerin etkilendiği görüldüğünden, baş tiplerinin özellikleri arastıran pek çok çalışmada kraniyal taban ve eğimi üzerinde durulmuştur (4,7,19,40,41,65).

Dolikosefal bireylerde geniş, Brakisefal bireylerde ise dar kraniyal taban açısının mevcut olduğunu ve baş tipleri ile kraniyal taban açısı arasındaki beraberliği siren çalışmaların aksine (19,33,40,41,63), gerek uygulanan Varyans Analizi sonuçlarına göre (Tablo 4.4) gerekse toplam materyalimiz ve her iki cinstle birden olmak üzere baş tiplerine ait alt gruplarda yürütülmüş olduğumuz Korelasyon Analizleri sonuçlarına göre NSBa açısının baş tipleri arasında önemli bir farklılık göstermediği ve ilişkili olmadığını söylenebilir. Brakisefal ve Mezosefal erkekler dışındaki bütün gruplarda olduğu gibi 114 kişilik toplam materyalimizde sefalık indeks ile NSBa açısın arasında önemli bir ilişki saptanamamıştır (Tablo 4.7-4.15).

Tablo 4.7 incelence olursa, NSBa açıs ile NSL.VER ve SBa.HOR açıları arasında aynı anda görülen ve olması gerek p<0.01 düzeyindeki önemli pozitif korelasyonlar (r=0.440, 0.629) baş tiplerine ilişkin diğer gruplarda da aynı anda mevcut ve yüksek r değerleri gösterirken Brakisefal erkeklerde NSBa ile NSL.VER açıs arasındaki ilişkinin r değeri çok düşüktür (r=0.223). SBa.HOR açısını arasındaki ilişki katsayısı ise r=0.903 gibi çok yüksek bir değer göstermektedir (p<0.01). Bu bulgu NSBa açısının Brakisefal erkek bireylerde daha çok arka kraniyal taban eğimi ile degeşçeğini ifade etmektedir. Bu grupta SBA.HOR açısının aynı zamanda sefalık indeksle de ilişkisinin p<0.05 düzeyinde ve negatif yönlü olduğu saptanmıştır (r=0.584). Buna göre Brakisefal erkeklerde sefalık indeks ile NSBa açısı arasında bulunan p<0.05 düzeyinde (r=0.574) önemli ilişki altında SBA.HOR açısının sefalık indeks ile olan ilişkisinin bir görüntüsdür. Çünkü Sella, Nasion ve basion noktalarının birbirlerine göre lokalizasyonlarının çok değişik şekillerde olabileceği ve bu değişik alternatiflerle NSBa açısının de farklı farklı olabileceği düşünülürse, bütün bu alternatifler göz ardı edilerek sadece NSBa açısın değerinin sefalık indekse göre değiştiğini kabul etmek doğru olmayacaktır. O nedenle bu bulgu Brakisefal erkeklerde sefalık indeks büyüükçe arka kraniyal tabanın anterior rotasyona uğrayacağı ve bununla birlikte kraniyal taban açısının küçük olacağı veya sefalık
indeks küçüldükçe arka kraniyal tabanın posterior rotasyona uğrayacağı bununla birlikte de kraniyal taban açısının büyümeyeceği şeklinde yorumlanabilir.

Mezosefal erkeklerde ise (Tablo 4.12), NSBa açısının maksimum uzunluğu göre genişlik ölçümü ile gösterdiği pozitif yönlü yüksek r değeri (r=0.526) nedeni ile safalik indeksle arasındaki p<0.05 düzeyinde önemli ilişki pozitif yönlüdür (r=0.546). Bu ilişki, genellikle inanışın aksine Mezosefal erkeklerde safalik indeks büyüükçe kraniyal tabanın düzleşeceğini veya safalik indeks küçüükçe kraniyal tabanın eğilmeyeceği ifade etmektedir.

Dolikosefal erkek bireylerde ise NSBa açısı ile NSL.VER arasındaki ilişki p<0.01 düzeyinde önemli iken (r=0.691), SBA,HOR arasındaki ilişkinin r değeri küçük (r=0.318). Bu da NSBa açısının Dolikosefal bireylerdeki daha yüksek ortalama değerinin, arka kraniyal taban fleksiyonundan ziyade ön kafa tabanının yakı_connector rotasyonu nedeni ile olduğu göstermektedir.

Bizim bulgularımızda benzer olarak Anderson ve Popovich de (4), safalik indeks ile kraniyal taban açısı arasında bir ilişki bulunamamışlardır.

Diğer yandan gruplarınımda NSL.VER açısı ile NSBa açısı arasında saptamış olduğumuz pozitif yönlü bu yüksek ilişkiler Solow ve Tallgren'in (77) ileri sürdüğü gibi basın ekstansiyonunda büyük kraniyal taban açısı, fleksiyonunda ise küçük kraniyal taban açısının beklenemeceği şeklinde değil, topografik korelasyonlar olarak değerlendirilmelidir. Özbek (57), Özbek ve Köklü'nün de (58) bildirdikleri gibi gerek 114 kişilik toplam materyalımızde ve gerekse dört baş tipine sahip kız ve erkek gruplarınımda NSBa açısı ile servikal kolon eğiminin veren OPT,HOR ve CVT,HOR açıları arasında önemli bir ilişki saptanamamıştır. Sadece Brakiselik kız grubunda kraniyal taban açısı büyüükçe servikal kolon kurvatureının arttığı, OPT,CVT açısı ile NSBa açısı arasındaki p<0.05 düzeyinde önemli pozitif ilişkiden anlaşılmaktadır (r=0.502).

Konu diğer bir şekilde İrdelenirse, kraniyal taban yükseklikleri ile ilgili ölçümlerimiz değerlendirildiğinde (Tablo 4.4), alt kraniyal yüksekliğinin (Bo-HOR) baş tiplerinde benzer olduğu görülmektedir. Total (V-Bo) ve üst kraniyal yükseklikler (V-HOR) ise, Dolikosefal ve Hiperbrakiselik bireylerde diğer baş tiplerinden önemli ölçüde büyük ve birbirleri ile benzer bulunmuştur (Tablo 4.4). Anderson ve Popovich (4) bütün gelişim dönemlerinde küçük kraniyal taban açısı
bireylerin büyük kraniyal taban açılı bireylere göre daha büyük bir V-Bo boyutuna sahip olduklarını bulmuşlardır. Gruplarımız arasında kraniyal taban açısı farklılık göstermemiş olduğu halde V-Bo boyutu farklı bulunmuştur ve yine hem alt gruplarımızda hem de 114 kişilik toplam materyalimizde kraniyal taban açısı ile V-Bo boyutu arasında önemli bir ilişki saptanamamıştır. Yine aynı araştırcılar kraniyal taban açısı küçük bireylerde alt kraniyal yüksekliğinin büyük, üst kraniyal yüksekliğinin ise daha küçük bulunduğu yani kraniyal taban açısı büyüükçe Sellanın alçaldığını bildirmişlerdir (4).

Tablo 4.7 incelendiğinde; 114 kişilik toplam materyalimizde aynı ilişkinin söz konusu olduğu görülmemektedir. Ancak genel grupta NSBa açısı ile V-HOR boyutu arasında bulunmuş önemli pozitif (r=0.191, p<0.05), Bo-HOR boyutu arasında bulunmuş önemli negatif ilişkilerin (r=-0.348, p<0.01) Brakisetal erkekler dışında Dolikosefal ve Mezosefal bireylerde her iki cinsten birden ve yine Hiperbrakisetal erkeklerde mevcut olmamış görülmektedir. Hiperbrakisetal ve Brakisetal kız bireylerde ise NSBa açısı büyüükçe sadece alt kraniyal taban yüksekliğine bağlıktır. NSBa açısı ile V-HOR boyutu arasında ise önemli seviyede bir ilişki bulunmamıştır (Tablo 4.8-4.15). Buna göre dar kraniyal taban açısına sahip bireylerde arka kraniyal tabanın daha dik konumlanması sebebi ile total kraniyal yüksekliğinin daha büyük olabileceği ancak kraniyal taban açısı arttıkça V-Bo boyutunun da küçük olacağı şeklinde bir ilkişinin olmadığı söylenebilir. Yine genel olarak daha çok Brakisetal erkek bireylerde olmak üzere Sella naktasının Nasion naktasına göre aşağıda veya yukarıda konumlanmış olması nedeni ile büyük veya küçük olan NSBa açısı ile birlikte alt kraniyal yüksekliğinin azalıp, üst kraniyal yüksekliğinin artmış veya alt kraniyal yüksekliğinin artıp, üst kraniyal yüksekliğinin azalmış olduğu söylenebilir. Hiperbrakisetal erkek, Mezosefal kız ve erkek bireylerde ve özellikle de NSBa açısının farklı değerlerinden ön kraniyal taban eğiminin sorulu olduğu Dolikosefal bireylerde ise, böyle bir ilişkinin söz konusu olmadığı görülmemektedir. Bulgularımız, kraniyal taban yükseklikleri ile kraniyal taban açısı arasında bu tür bir ilkişinin bütün baş tıpleri için geçerli olmagını düşündürümektedir.

Yalnız kraniyal taban açısının farklı değerleri ile değil, aynı zamanda ön ve arka kraniyal taban boyutları ile değişebilecek N-Ba boyutu ile kraniyal yükseklik arasındaki oran değerendirilerek konu incelendiğinde; yani kraniyal taban yükseklikleri ve fleksiyonu arasındaki ilişki bir kez de bu fleksiyon miktarı ile veya ön ve arka kraniyal kaide boyutları ile değişebilecek N-Ba boyutu ile V-Bo
boyutu arasındaki oran olarak incelendiginde; Brakisefal, Mezosefal ve Dolikosefal bireylerde benzer, Hiperbrakisefal bireylerde ise diger bas tiplerinden p<0.01 düzeyinde onemli farklilik gosterecek kadar buyuk oldugu goze çarpmaktadir (Tablo 4.4). Dolikosefal ve Hiperbrakisefal bireylerde benzer sekilde diger bas tiplerine göre buyuk oldugunu buldukumuz V-Bo buyutuna ragmen Hiperbrakisefal bireylerde V-Bo/N-Ba oraninin Dolikosefal bireylerden de buyuk bulunması küçük N-Ba buyutuna baglidir.

Korelasyon tablosunu inceledigimizde (Tablo 4.7); 114 kisilik toplam materyalimizde bu orani etkileyebilecek V-Bo, N-Ba buyultular ile N-Ba buyutunun farkli degerlerinden sorumlu olabilecek NSBa, SBA.HOR, N-S ve S-Ba olculmelerin hepsinin, V-Bo/N-Ba orani ile beklelen yonde onemli geometrik iliskiler içinde oldugunu gorulmektedir. Sadece N-Ba buyutuna bakan NSBa acisinin N-S kolu nun vertikal duzemle ile yaptigi NSL.VER acisinin bu oranla iliskili olmamasi, hem basin dogal konumundan hem de Nasion ve Sella Tursikanin vertikal lokalizasyonlarindan etkilenmesi nedeniyedir. V-Bo/N-Ba orani ile CVT.HOR ve OPT.HOR aciisinda mevcut pozitif yonlu iliskiler (r=0.293, 0.232, p<0.01), bu oran arttiginda bu acilarin da artacagini veya tersini ifade etmektedir. Yanı bas tipleri giz onune anlamadiginda bireylerde V-Bo/N-Ba orani buyuk ise servikal kolonun protrusiv, kucuk ise retrusiv oldugunu ifade etmektedir. V-Bo/N-Ba orani ile kraniyoservikal aciislardan NSL.OPT acisi arasindaki p<0.05 duzyeyinde onemli (r=0.202), NSL.CVT acisi arasindaki p<0.01 duzyeyinde onemli pozitif iliskiler (r=0.245) yine bu oranan servikal kolonla iliskisi yuzundendir. WSL.VER acisi ile p<0.05 duzyeyinde onemli iliskisi ise (r=0.170) servikal kolonun konumu ve atlanto-okspital eklem üzerinde basin fleksiyonu veya ekstansiyonu birbirine bagli hareketler oldugundandir. Ayni iliskisinin NSL.VER acisi ile soz konusu olmasini bu acida NSL duzeleminin anatomin egiminde etkisinin oldugundandir. Özetlenecek olursa bas tipleri dikkate alinmadiginda, bireylerde V-Bo/N-Ba orani buyudugunde servikal kolon daha protrusiv bir konum alacak ve bas ekstansiyona ugrayacaktir. Bu oran kuculdugunde servikal kolon diklesecek ve bas fleksiyona ugrayacaktır.

Yine V-Bo/N-Ba oraninin sefalik indeks ile gosterdigi p<0.01 duzyeyinde onemli pozitif iliski (r=0.433), Hiperbrakisefal bas tipine dogru bu oranin buyuk oldagina ve buyuk oranal birlikte protrusiv kolon ve basin ekstansiyonu anlamindadir. Bu bulgu Brakisefal bireylerde basin fleksiyonundan, Dolikosefal bireylerde ise ekstansiyonundan soz eden arastirmicilarn fikirlerine aykırirdir (6,9).
Baş tipleri arasında postural parametrelerimizin önemli bir farklılık göstermediği hatırlanırsa, V-Bo/N-Ba oranının her baş tipinde doğal baş konumu ile aynı ilişıklı gösterip göstermediği incelenmelidir.

Tablo 4.8-4.15 arasındaki bulgularımız değerlendirildiğinde, Hiperbrakisefal erkek bireylerde bu oranın V-Bo boyutu ile değilde N-Ba boyutunun farklı olması ile değiştiği bu oran ile N-Ba boyutu arasındaki p<0.01 düzeyindeki önemli negatif ilişkiden anlaşılmaktadır (r=-0.819). V-Bo/N-Ba oranı ile V-Bo boyutu arasında olması gereken pozitif yönlü ilişki bu grupta mevcut değildir. Yine bu grupta N-Ba boyutunun farklı olmasının nedeni en çok arka kraniyal taban uzunluğunun farklı olmasını, çünkü V-Bo/N-Ba oranı ile S-Ba boyutu arasında önemli negatif ilişki saptanmıştır (r=-0.729, p<0.05). Sefalik indeksleri büyük olan bu grupta V-Bo/N-Ba oranı ile postural parametreler arasında bir ilişki saptanamamıştır.

Hiperbrakisefal kız grubunda ise aynı oranın yine V-Bo ölçümünden ziyade N-Ba boyutu ile değiştiği p<0.01 düzeyinde önemli negatif ilişkiden anlaşılmaktadır (r=-0.791). NSBa açısının değişik değerlerinden ise hem arka hem de ön kafa tabanının eğimlenmesi sorumludur. Bu bulgu, NSBa açısı ile NSL.VER ve SBa.HOR açları arasındaki p<0.01 düzeyinde önemli pozitif ilişkilerden anlaşılmaktadır (r=0.725, 0.756). Bu grupta V-Bo/N-Ba oranı büyüdüğünde servikal kolonun daha protrusiv bir konuma geleceği, V-Bo/N-Ba oranı ile CVT.HOR açısı arasındaki p<0.01 düzeyinde pozitif ilişkiden anlaşılmaktadır (r=0.545).

V-Bo/N-Ba oranı birbirine benzer olan Brakisefal, Mezosefal ve Dolikosefal bireyler incelendiğinde; Brakisefal erkek bireylerde (Tablo 4.10), aynı oran hem N-Ba hem de V-Bo boyutunun farklı değerleri ile değişebilmektedir (r=-0.615, r=0.658, p<0.05). N-Ba boyutu da, bu bireylerde arka kafa tabanı eğiminin farklı olması nedeni ile değişik değerler gösterebilecek NSBa açısı ile etkilenmiştir. Bu, NSBa açısı ile SBa.HOR açısı arasındaki p<0.01 düzeyinde önemli (r=0.903) pozitif ilişki, V-Bo/N-Ba oranı ile SBa.HOR ve NSBa açları arasındaki p<0.05 düzeyinde önemli negatif yönlü ilişkilerden anlaşılmaktadır (r=-0.570, -0.559). Bu grupta V-Bo boyutunun farklı değerlerinden ise alt kraniyal taban yüksekliğinin sorumlu olduğu, Bo-HOR ölçümü ile V-Bo/N-Ba oranı arasındaki p<0.05 düzeyindeki pozitif ilişkiden anlaşılmaktadır (r=0.542). Ve yine
daha önce deşinildiği gibi bu grupta arka kafa tabanı dik konumda olup alt kraniyal yükseklik artarken, üst kraniyal yükseklik azalmaktadır ve bunun aksi olmaktadır. Brakisefal erkek bireylerde sefalik indeksle önemli ilişkide olan arka kafa tabanı eğimi \((r=-0.584, \ p<0.05)\) hem N-Ba hem de V-Bo boyutunu etkilemekteirdir. Ve bu grupta V-Bo/N-Ba oranı ile servikal kolon eğimini veren OPT.CVT açısı arasındaki ilişki \(p<0.01\) düzeyinde önemli bulunmuştur \((r=0.662)\).

Brakisefal kız bireylerde ise (Tablo 4.11), V-Bo/N-Ba oranının daha çok N-Ba boyutu olmak üzere \((r=-0.773, \ p<0.01)\) aynı zamanda V-Bo boyutu ile de değiştiği görülmektedir \((r=0.458, \ p<0.05)\). Bu grupta V-Bo/N-Ba oranının değerlerinin farklı olması neden olabilecek N-Ba boyutunun ise daha çok N-S boyutu ile değiştiği bu oran ile N-S boyutu arasındaki negatif korelasyon göstermektedir \((r=-0.553, \ p<0.05)\). Buna göre Brakisefal kızlarda N-S boyutu kısa ise N-Ba boyutuda kısa olacak bunun sonucunda V-Bo/N-Ba oranı artacaktır. Bu bulguya paralel olarak V-Bo/N-Ba oranı ile SNA \((r=0.589, \ p<0.01)\) ve SNB \((r=0.473, \ p<0.05)\) açıları arasında da önemli pozitif ilişkiler saptanmıştır. Ancak bu ilişkilerin V-Bo/N-Ba büyüükçe, küçük N-S boyutu yüzünden SNA ve SNB açılarının da büyük olacağını veya bunun aksi şekilde yorumlanması gerekmektedir. Bu grupta N-S boyutuna benzer olarak N-VER boyutu da V-Bo/N-Ba oranı ile önemli negatif ilişki göstermektedir \((r=-0.455, \ p<0.05)\). Brakisefal erkek bireylerde benzer olarak NSBa açısı ile SBa.HOR açısı arasında \(p<0.01\) düzeyinde önemli yüksek korelasyon \((r=0.831)\) saptanmış olmasına rağmen ve yine arka kafa tabanı eğimi ile ilişkili olarak büyük ve küçük değerler alabilecek NSBa açısı ile Bo-HOR boyutu arasında \(p<0.05\) düzeyinde önemli negatif \((r=-0.492)\) ilişki saptanmıştır ve bu ilişkilerin V-Bo/N-Ba oranına yansımaticı olduğu gözke çarpmaktadır. Brakisefal kız grupta dikkate alınması gereken diğer bulgu ise SBa.HOR açısı büyük olan bireylerde başın maksimum uzunluğunun kısa olduğunu gösteren \(p<0.05\) düzeyindeki negatif ilişkilidir. Yine aynı şekilde önemli seviyeye ulaşmamış olsa bile NSBa açısı ile maksimum uzunluk arasındaki ilişki negatif yönlü iken \((r=-0.314)\) N-S boyutu arasındaki ilişki pozitif yönlüdür \((r=0.476)\). Buna göre Brakisefal kızlarda başın maksimum uzunluğunu kırklükte NSBa ve SBa.HOR açılarının beklenilenin aksine büyüküp, kraniyal yüksekliğin kısıldığı ancak ön kafa tabanı uzunluğunun arttığı söylenebilir. Buna göre maksimum uzunluk azaldıkça foramen oksipitale magnun daha arkadaşa, arttıkça onde konulanmaktadır. Brakisefal kızlarda V-Bo/N-Ba oranı ile postůral parametreler arasında ilişki saptanamamıştır.
Mezosefal erkek grupta (Tablo 4.12), V-Bo/N-Ba oranının N-Ba boyutu ile gösterdiği \(p<0.01 \) düzeyinde önemli negatif ilişkisinin \((r=-0.794) \) yanı sıra V-Bo boyutu ile ilişkisi önemli bulunmamıştır. Bu grupta aynı oran ile S-Ba ve N-S boyutlarının göstermiş oldukları \(p<0.01 \) ve \(p<0.05 \) düzeyinde \((r=-0.697, -0.587) \) önemli ilişkiler N-Ba boyutunun büyük veya küçük olmasında ön ve arka kraniyal taban uzunluklarının etkili olduğunu göstermektedir. Yine N-S ve N-Ba boyutunun hem başın maksimum uzunluk hem de genişlik ölçümleri ile gösterdiği pozitif ilişkiler ve yüksek \(r \) değerleri, V-Bo/N-Ba oranının başın maksimum uzunluk ve genişlik ölçümleri ile \(p<0.05 \) düzeyinde önemli negatif ilişki göstermesine neden olmuştur \((r=-0.623, -0.642) \). Mezosefal erkeklerde NSBa açısının sefalik indeks ile de \(p<0.05 \) düzeyinde önemli pozitif korelasyon gösterdiği saptanmıştır \((r=0.546) \). Ve bu ilişkisinin nedeninin daha çok NSBa açısının başın maksimum genişlik ölçümleri ile gösterdiği pozitif ilişki olduğu görülmektedir. Bu grupta yine V-Bo/N-Ba oranının OPT.HOR açısı ile pozitif ve \(p<0.01 \) düzeyinde önemli bir ilişi gösterdiği anlaşılmaktadır \((r=0.664) \).

Mezosefal kız grupta (Tablo 4.13), V-Bo/N-Ba oranının hem N-Ba hem de V-Bo boyutu ile değiştiği, \(p<0.01 \) düzeyindeki önemli negatif ve pozitif yöndeki korelasyonlardan analiz edilmiştir \((r=-0.713, 0.672) \). Bu grupta aynı oran ile SBA.HOR açısı ve S-Ba boyutu arasında saptanan \(p<0.05 \) düzeyinde önemli negatif korelasyonlar \((r=-0.549, -0.616) \) N-Ba boyutundaki değişikliğe bu ölçümlerin neden olduğunu göstermektedir. Yine Bo-HOR boyutu ile V-Bo/N-Ba oranı arasındaki pozitif yöndeki iliskinin de önemli olduğu saptanmıştır \((r=0.523, p<0.05) \). Mezosefal kız bireylerde NSBa açısının sadece SBA.HOR açısı ile gösterdiği \(p<0.05 \) düzeyinde önemli pozitif ilişki, kafa kaidesi açısının arka kraniyal taban eğimi ile değiştiğini göstermektedir \((r=0.576) \). Buna göre arka kraniyal tabanın dikileşip, boyutunun küçüldüğünü ve alt kraniyal yüksekliğinin büyüdüğü oranda V-Bo/N-Ba oranının da arttığı anlaşılmaktadır. Bu grupta V-Bo/N-Ba oranı ile doğal baş konumu gösteren parametreler arasında bir ilişki saptanamamıştır.

Aynı oran Dolikosefal erkek bireylerde incelendiğinde (Tablo 4.14); V-Bo boyutu ile değil N-Ba boyutu ile ilişkisi önemli ve negatif yönde bulunmuştur \((r=-0.641, p<0.05) \). Yine V-Bo/N-Ba oranının N-S boyutu ile göstermiş olduğu negatif yönü ilişki \((r=-0.543, p<0.05) \), Dolikosefal erkek bireylerde N-Ba boyutunun daha çok ön kafa tabanı boyutuna bağlı değişimini göstermektedir. Ancak arka kafa tabanı boyutu ile ilişkisini gösteren \(r \) değerinin de yüksek ve
negatif yönü olduğu görülmektedir ($r=-0.464$). Bu grupta NSBa açısının bir tek NSL.VER açısı ile gösterdiği $p<0.01$ düzeyindeki önemli pozitif korelasyonun yanı sıra ($r=0.691$), V-Bo/N-Ba oranı ve N-VER boyutu arasında da önemli negatif ilişki görülmektedir ($r=-0.547,p<0.05$). Dolikosefal erkeklerde V-Bo/N-Ba oranı ile doğal baş konumunu gösteren parametreler arasında ilişki saptanamamıştır.

Dolikosefal kız bireylerde ise (Tablo 4.15), V-Bo/N-Ba oranının değişik değerlerinden daha çok alt kraniyal yükseklik olmak üzere V-Bo boyutunun sorumlu olduğu görülmüştür. Bu da, bu oran ile Bo-HOR ölçümü arasında $p<0.01$ ($r=0.802$, $p<0.01$), V-Bo ölçümü arasında $p<0.05$ düzeyindeki önemli pozitif ilişkilerden analizlemlmaktadır ($r=0.672$). Bu grupta önemli seviyeye ulaşmasa da V-Bo/N-Ba oranı ile SBA.HOR açısı arasındaki ilişkinin değerinin yüksek ve negatif yönü olduğu görülmektedir ($r=-0.590$). Yine bu oran ile N-VER boyutu arasında saptanan $p<0.05$ düzeyinde önemli negatif korelasyon ($r=-0.780$) N noktasının sagital yön konumu ile N-Ba boyutunun da büyük veya küçük olacağını düşündürür. Ancak aynı oran ile NSL.VER açısı arasındaki ilişki katsayısı önemli bulunmamış olsa da yüksek ve pozitif yönü olması ($r=0.505$) V-Bo/N-Ba oranı arttıkça ön kraniyal tabanın yukarı doğru eğimlendiğini veya bunun aksini ifade etmektedir. Bu tür eğimlenme ile N-Ba boyutunun etkileneceği ve V-Bo/N-Ba oranı ile tam ters yönde bir ilişkinin mevcut olması gerektiği düşünülürse, yine V-Bo/N-Ba oranı ile WSL.VER açısı arasındaki pozitif yönü yüksek r değeri ($r=0.473$) göz önüne alınırsa, bu bulgular Dolikosefal kız bireylerde arka kraniyal kalde posterior yönde eğilmenirken, alt ve total kraniyal yüksekliğinin azalacağını, V-Bo/N-Ba oranının küçülceği ve bu oran küçüldükçe de basın atlanto-okspital eklem üzerinde fleksiyona ugrayacağını veya arka kraniyal taban dikleşip alt ve total kraniyal yükseklik artarken V-Bo/N-Ba oranının da artacağını ve bu oran arttıkça basın ekstansiyona ugrayacağını göstermektedir. Yani foramen okspitale magnum önünde yer aldıkça basın ekstansiyonundan, arkada yer aldıkça fleksiyonundan söz edilebilir. WSL.VER açısı ile V-Bo/N-Ba oranı arasındaki ilişki incelendiğinde, bu oran arttıkça sfenoid kemiğin rotasyona ugrayıp dikleştiği veya bunun aksini görmek mümkündür.

Baş tiplerinde fasiyal morfolojisi değerlendirilen literatürler incelendiğinde, genel olarak baş tiplerinin kraniyal taban fleksiyonu yönünden farklılık gösterdiği ve kraniyal taban açısı dar olan Brakisefal bireylerde nazomaksiller kompleksin geride ve yukarıda, mandibulanın ise önünde ve yukarıda konumlanıp Angle Kl III
okuzyona eğilimin olduğu, kraniyal taban açısı geniş olan Dolikosefal bireylerde ise nazomaksiller kompleksin önde ve aşağıda, mandibulanın ise aşağıda ve geride konumlanıp Angle Kl II okluzyona eğilimin olduğu gözlemektedir (7).

Bizim bulgularımızda benzer olarak sefalik indeks ve kraniyal taban açısı arasında bir ilşki bulamayan Anderson ve Popovich'de (4), kraniyal taban açısı büyüdüğünde mandibuler kondilin yukarıda ve geride konumlanması sonucu Angle Kl II ilşkinin görülüğünü ileri sürmüşlerdir.

Björk (10), kraniyal taban açısının artış ile kafa kaidesi boyutlarının artacağı ve retrognatizm oluşacığını bildirmiştir.

Kraniyal taban açısının sefalik indeksle ilşkisinin olmadığıını gördüğümüz çalışımadıza, bu nedenle fasiyal morfolojiyi hem sefalik indeks hem de kraniyal taban açısına göre değerlendirirdik. Öncelikle Varyans Analizi sonucuna göre bulgularımız (Tablo 4.4); üst çene bazal kaidesinin uzunluğunu veren ANS-PNS boytunun baş tipleri arasında farklı göstermediğini belirtmektedir. Maksillerin konumu incelendiğinde, SNA açısı baş tipleri arasında farklı değil iken doğal baş konumunda A noktasının sagital yöndeki konumu veren A-VER ölçümünün p<0.01 düzeyinde farklı olduğu görülmektedir ve Hiperbrakisefal bireylerden Dolikosefal bireylere doğru ortalama değerin arttığı anlaşılmaktadır (Tablo 4.3-4.4). Yine A-VER/N-VER oranı incelendiğinde, istatistiksel olarak önemli bir farklılık göstermesede x=0.92±0.01, 0.93±0.01, 0.93±0.01, 0.96±0.02'lik ortalama değerlerle Dolikosefal bireylere doğru ortalama değerin arttiği görülmektedir (Tablo 4.3). Buna göre Hiperbrakisefal bireylerden Dolikosefal bireyle doğru maksillerin sagital boyutu aynı olmasına rağmen, bireylerin klinik profiline A noktasının sagital yönde daha onde konumlandığı söylenebilir.

Korelasyon tablolarımıza baktığımızda (Tablo 4.7-4.15); 114 kişilik toplam materyalimizde, ANS-PNS, N-VER ve A-VER boytuğunun sefalik indeksle negatif yönde p<0.01 düzeyinde önemli korelasyonlar gösterdiği anlaşılmaktadır (r=-0.351, -0.240, -0.471). Bu ilişkiler, boytuğun başın maksimum uzunluğu ile göstermiş olduklarını yine p<0.01 düzeyinde önemli olan doğal pozitif yönlü ilişkiler nedeni ile bulunmuş aritmetik ilişkiler olarak değerlendirilir (r=-0.375, 0.524, 0.589). Çünkü alt gruplar değerlendirildiğinde, Brakisefal erkek bireylerde N-VER boytu ile p<0.05 düzeyindeki önemli negatif ilişki dışında (r=-0.586), bu boytuğun sefalik indeks ile göstereklikleri ilşkinin geçerli olmadığı görülmüştür.
Yine Hiperbrakisel erkeklerde bu boyutlar basın maksimum uzunluğu ile önemli pozitif ilişki göstermemiş hatta basın maksimum genişliği ile gösterdikleri ilişkilerin r değerleri büyük bulunmuştur \((r=-0.439, -0.597, -0.367)\). Mezosefal erkek bireylerde A-VER boyutu hem basın maksimum genişlik \((r=0.571, p<0.05)\) hem de uzunluk ölçüümü ile \((r=0.668, p<0.01)\) pozitif ilişki göstermektedir. Yine Dolikosefal erkek bireylerde A-VER boyutunun basın maksimum uzunluğu ile değil genişliği ile gösterdiği pozitif yönlü ilişki önemli bulunmuştur \((r=0.536, p<0.05)\). N-VER, ANS-PNS ve A-VER/N-VER ölçümlerinin bu grupta maksimum genişlik ile gösterdikleri pozitif yönlü ilişkilerin r değerlerinin genel olarak daha büyük olduğu görülmektedir \((r=0.341, 0.465, 0.320)\).

Bütün bu bulgularımız değerlendirildiğinde, baş tipleri arasında üst çene bazal kaide uzunluğunun benzer olduğunu, üst dentoalveoler bölge boyutunun Dolikosefal bireylere doğru giderek büyüdüğü, ancak bireyler doğal baş pozisyonunda iken A noktasının Nasiona göre klinik profildeki konumunun protrusiv olarak değerlendirilmesi gerektiğiğini söyleyebiliriz.

Aynı ölçümlerin kraniyal taban açısı ile ilişkileri incelendiğinde (Tablo 4.7); 114 kişilik genel materyalimizde SNA açısı ile NSBa açısı arasında mevcut \(p<0.01\) düzeyinde önemli negatif korelasyonun \((r=-0.425)\) nedeni ortak NSL düzleminden dolayıdır ve alt gruplarımızda da Dolikosefal ve Mezosefal kız bireyler dışında aynı negatif ilişki önemli bulunasma bile yüksek r değerleri söz konusudur. Dolikosefal ve Mezosefal kız bireylerde ise r değerlerinin çok düşük olması, bu iki grupta NSBa açısının büyük veya küçük oluş nedeninin daha çok arka kraniyal taban eğimine bağlı olmasındandır.

Yine 114 kişilik toplam materyalimizde, ANS-PNS boyutu ve A-VER/N-VER oranı ile NSBa açısı arasında bir ilişki saptanamamıştır. Bu ilişkiler baş tiplerine ilişkin gruplarımızda da söz konusu değildir. Sadece Brakisel erkek bireylerde NSBa açısı büyükse pozitif bir ilişki içinde ANS-PNS boynytutunda büyük olacağıni veya bunun aksini ifade eden bulgumuz \((r=0.536, p<0.05)\) üst çenenin konumu dikkate alındığında mevcut değildir. O halde Dolikosefal bireylerde veya kraniyal taban açısı büyük olan bireylerde protrusiv maksilladan söz ederken dikkatli davranmalıdır.

Alt çene ile ilgili ölçümlerimiz incelendiğinde; ramus dikey boyutu ve gonial açının baş tipleri arasında farklılık göstermediği, korpus uzunluğunun ise
baş tipleri arasında p<0.01 düzeyinde ayricalık gösterdiği saptanmıştır (Tablo 4.4). Bu bulgumuz Go-Me ve Cd-Gn ölçümlerimizin baş tipleri arasında göstermiş olduğu p<0.01 düzeyinde önemli ayricalıkların anlaşılmaktadır ve sağital yönde mandibula korpus boyutunun Hiperbrakiselal bireylerden Dolikosefal bireylere doğru arttığı saptanmıştır (Tablo 4.3). Ancak mandibulanın sağital konumuna ilişkin ölçümlerimiz (SNB, Pg-VER, B-VER, Pg-VER/N-VER, B-VER/N-VER) baş tiplerinde benzerdir.

Yine 114 kişilik genel grupta (Tablo 4.7), Go-Me, Pg-VER ve B-VER ölçümlerinin sefalik indeksle gösterdikleri p<0.01 düzeyindeki önemli negatif ilişkiler (r=-0.384, -0.209, -0.245) Hiperbrakiselal bireylerden Dolikosefal bireylere doğru mandibula uzunluğunun arttığını ve mandibulanın önünde konumlandığını göstermektedir. Bu ilişkiler aynı boyutların başın maksimum uzunluğu ile gösterdikleri doğal pozitif korelasyonları sonucudur (r=0.487, 0.318, 0.350). Bu arada ne SNB açısının ne de B-VER/N-VER ve Pg-VER/N-VER oranlarının sefalik indeksle ilişkisi bulunamamıştır.

Alt gruplar incelendiğinde; Hiperbrakiselal erkek bireylerde (Tablo 4.8), bu ölçümlerin sefalik indeks ile ilişkileri olmadığı gibi, başın maksimum genişliği ile gösterdikleri pozitif ilişkilerin r değerleri daha yüksektir. Benzer şekilde Dolikosefal erkek bireylerde de (Tablo 4.14) bu ilişkiler yine başın maksimum genişliği ile pozitif yönde ve istatistiksel olarak önemli seviyede bulunmuştur. Mezosefal kız bireylerde ise aynı ölçümlerin başın maksimum uzunluğu ile gösterdikleri ilişkilerin r değerinin yüksek fakat genel gruptakinin aksine negatif yönlü olduğu saptanmış ve buna bağlı olarak da B-VER/N-VER yine Pg-VER/N-VER ölçümleri ile sefalik indeks arasında p<0.01 düzeyinde önemli pozitif ilişkiler saptanmıştır (r=0.651, 0.647). Diğer gruplarımızda ise sefalik indeks ile alt çene boyutlarını ve konumunu veren ölçümlerimiz arasında önemli bir ilişki mevcut değildir. Buna göre bulgularımız, Hiperbrakiselal bireylerden Dolikosefal bireylere doğru mandibula sağital uzunluğunun arttığı ancak mandibulanın sağital konumunun baş tipleri arasında farklılık göstermediği söylenebilir. Üstelik iki uç grup olan Hiperbrakiselal ve Dolikosefal erkek bireylerde mandibula sağital boyutunun ve konumunun başın maksimum genişliği ile gösterdiği pozitif ilişki Hiperbrakiselal ve Dolikosefal erkek bireylerde eğer başın maksimum genişliği büyük ise mandibulanın büyük ve onde konumlandığını ve eğer başın maksimum genişliği küçük ise mandibulanın küçük ve geride konumlandığını göstermektedir. Sadece Mezosefal kız bireylerdeki bulgularımız, sefalik indeks büyükülçe yanı
Brakisefal baş tipine yakın olan bireylerde, mandibulanın klinik profilde daha protrüsiv, Dolikosefal baş tipine yakın olan bireylerde ise retrüsiv olduğunu göstermektedir. Bütün bu bulgularımız sonucunda Dolikosefal baş tipine sahip bireylerde retrüsiv, Brakisefal ve Hiperbrakisefal baş tipine sahip bireylerde protrüsiv bir mandibuladan söz edilemeyeceği söylenebilir. Üstelik Dolikosefal bireylere doğru mandibula sagittal yön boyutu daha büyük bir ortalama değer göstermektedir.

Bir kez de bu ölçümlerin kraniyal taban açısı ile ilişkileri incelendiğinde, maksillaya ait bulgularımıza benzer şekilde mandibula sagittal yön konumunun ve boyutunun kraniyal taban açısı ile ilişkili olmadığı saptanmıştır.

Çenelerin rotasyonel konumları ve yüzün dök yön boyutları incelendiğinde, çalışımızda baş tipleri arasında önemli bir farklılık saptanamamıştır (Tablo 4.4). Alt ve üst çene ekiplerini NSL düzlemine ve doğal baş pozisyonunda vertikal ve horizontal düzlemlerine göre veren ölçümler 114 kişilik toplam materyalimizde sefalik indeks ile ilişkilii bulunamamıştır. Ancak ön yüz yüksekliği (N-Me), alt ön yüz yüksekliği (ANS-Me) ve üst arka yüz yüksekliği (S-PNS) ölçümleri sefalik indeks ile önemli negatif korelasyonlar göstermişlerdir (r=-0.240, -0.213, -0.208). Bu boyutların hem başına maksimum uzunluk hem de genişlik ölçümleri ile aynı anda önemli pozitif ilişkilere sahiptir ise alınırsa sefalik indeks ile gösterdikleri ilişkilerin arıtmetik bir ilişki olarak değil biyolojik bir ilişki olarak değerlendirilmeleri gerekir. Buna göre sefalik indeks küçülmesi yani Dolikosefal baş tipine doğru daha çok alt ön yüz yüksekliği olmak üzere ön yüz yüksekliği artmakta veya bunun aksi söz konusu olmaktadır. Arka yüz yüksekliği ve arka alt yüz yüksekliği aynı ilişkiyi göstermediği halde üst arka yüz yüksekliğini veren S-PNS boyutu da Dolikosefal baş tipine doğru artmaktadır.

Sefalik indeks ile (A-HOR)-(B-HOR) ölçümü arasında pozitif, A-B boyutu arasında negatif yönlü p<0,05 düzeyinde önemli ilişkiler görülmüştür (r=0.184, -0.188). Bu ilişkilere göre sefalik indeks küçülmesi durumunda yani Dolikosefal baş tipine doğru A ve B noktaları arasındaki dik yön uzunluğunun azalışı veya Brakisefal baş tipine doğru azalışı söz konusudur. Ancak aynı ilişki çene kaideleri arasındaki açı ile söz konusu değildir.

Aynı ilişkiler alt gruplar için incelendiğinde, Hiperbrakisefal erkek bireylerde yine aynı şekilde ANS-Me ve N-Me boyutlarının sefalik indeks ile
gösterdikleri ilişkiler önemli seviyeye ulaşmamış olsalar da negatif yönlü ve r değerleri yüksektr (r=-0.460, -0.562). Bu ölçümler hem başın maksimum genişlik hem de uzunluk ölçümüleri ile aynı anda pozitif yönde ilişkilidir ve başın maksimum uzunluğu ile ilişkisi p<0.05 düzeyinde önemli bulunmuştur (r=0.765, 0.796). PNS-Go ve S-Go boyutlarının ise başın maksimum genişliği ile gösterdikleri ilişki katsaylarını büyük bulunmuştur. Ayrıca bu grupta yine GoMe.SN açısı ile sefalık indeks arasında mevcut negatif yönlü ilişki (r=-0.672, p<0.05) sefalık indeks küçültükçe bu açının büyüyeceğiğini göstermektedir. GoMe.SN açısının başın maksimum uzunluğu ve genişliği ile gösterdiği pozitif ve negatif yönlü ilişki katsaylarını dikkate alındığında, başın maksimum uzunluğu artışça GoMe.SN açısının da artacağı veya aksi şekilde düşünebilir. Ancak sefalık indeks küçültükçe, ön yüz boyutları artması birlikte bulunması gereken bir bulgudur.

Alt çenenin doğal baş konumunda gerçek horizontal düzleme göre eğimini veren GoMe.HOR açısıinda sefalık indeks küçültükçe arttığını veya aksini ifade eden p<0.05 düzeyinde önemli negatif yönlü ilişkinin (r=-0.706) nedeni ise daha çok başın maksimum genişliği ile olan ilişkisindendir. Çünkü GoMe.HOR açısı ile başın maksimum genişliği arasındaki iliskiyi gösteren r değeri yüksek ve negatif yönlüdür (r=-0.523). Hiperbrakisel erkek grupta alt çene düzlemi gibi üst çene düzleminin doğal baş pozisyonundaki eğimi de başın maksimum genişliği ile ilişkilidir ve bu ilişki negatif yönlüdür (r=-0.733, p<0.05). Bu bulgumuz baş genişliği arttıkça maksillanın posterior, mandibulanın anterior rotasyon yapacağı anlamındadır.

Dolikosefal erkek bireylerde ise Hiperbrakisel erkek bireylere benzer olarak, arka yüz ve arka alt yüz yüksekliklerinin ve ramus yüksekliğinin başın maksimum genişliği ile ilişki katsayları yüksek ve hatta p<0.01 düzeyinde önemli bulunmuştur (r=0.733, 0.755, 0.765). Bu pozitif yönlü ilişkiler, Dolikosefal erkek bireylerde başın maksimum genişliği arttıkça arka yüz ve özellikle arka alt yüz boyutlarının artacağı anlamındadır. Yine Dolikosefal erkek bireylerde GoMe.HOR açısının başın maksimum genişliği ile gösterdiği negatif yönlü ilişki (r=-0.641, p<0.05), başın maksimum genişliği arttıkça mandibulanın klinik profilde anterior rotasyonu anlamındadır. Diğer baş tiplerinde sefalık indeks ile yüzün dik yön boyutları ve çenelerin rotasyonel konumları arasında önemli bir ilişki saptanamamıştır. Buna göre Brakisel bireylerde mandibulada anterior rotasyon ve Kl III yapısı meyil, Dolikosefal bireylerde posterior mandibuler rotasyon ve Kl II yapısı meyil şeklinde veya Brakisel bireylerde derin kapanış, Dolikosefal

Çenelerin rotasyonel konumları ve yüzde dış ön boyutlarının kranıyal kaide açısı ile ilişkileri incelendiğinde; 114 kişilik toplam materyalimizde (Tablo 4.7), NSBa açısı ile ANSPNS.SN açısı arasındaki p<0.01 düzeyinde önemli pozitif korelasyon (r=0.362) ortak NSL düzeyi yüzdeinden topografik sayılabileceğini halde, ANSPNS.VER açısının da NSBa açısı ile gösterdiği p<0.05 düzeyinde önemli negatif korelasyon (r=0.167), baş tipleri dikkate alınmadığında bireylerde, kafa kaidesi açısı artıkça maksillanın posterior rotasyonunu göstermektedir. Yine NSBa açısı ile GoMe.SN açısı arasında önemli bir ilişki bulunmaktadır yanı aralarındaki ortak NSL düzeyine rağmen olası pozitif iliğinin kısırlığı olmasının ve bununla birlikte NSBa ve GoMe.HOR açıları arasında saptanmış olan p<0.05 düzeyinde önemli negatif ilişki (r=-0.181), mandibulanın anterior rotasyonunu göstermektedir. NSBa açısı ile S-PNS ve A-HOR boyutları arasındaki p<0.01 düzeyinde önemli negatif yönlü ilişkiler (r=-0.374, -0.380) ise, kranıyal taban açısı büyüdükçe maksillanın posterior rotasyonunun arka yüz yüksekliğinin kısırlığı nedeni ile meydana geldiğini ifade etmektedir. NSBa açısı ile B-HOR ve A-B boyutları arasında mevcut p<0.01 ve p<0.05 düzeyinde önemli negatif ve pozitif ilişkiler (r=-0.409, -0.194), NSBa açısı ile (A-HOR)-(B-HOR) ölçümlü arasındaki p<0.05 düzeyinde önemli pozitif ilişki (r=0.188) ve yine NSBa açısı ile S-Go boyutu arasındaki p<0.05 düzeyinde önemli negatif ilişki (r=-0.197) birlikte yorumlandığı takdirde, NSBa açısı büyüdükçe klinik profilde mandibulanın anterior rotasyonu söz konusun olup, alt ve üst çene arasındaki dış ön boyutu azalabileceğin ancak NSBa açısı büyük olan bireylerde genellikle hem ön hem de arka yüz yüksekliklerinin küçük olacaği, bu açı küçültükçe, çeneler arası dış ön
boyutunun artacağı ve mandibulânın klinik profilde retrûsiv bir pozisyon alacağı söylenebilir.

Alt gruplarda bu ilişkiler incelendiğinde, Mezosefal ve Dolikosefal kiz ve erkek bireylerde kranîyal kaide açısı ile yüzün dik yön boyutları ve çenelerin rotasyonel konumları arasında önemli bir ilişki bulunamamıştır. Dolikosefal erkek bireylerde (Tablo 4.14), NSBa açısı ile N-ANS boyutu ve ANSPNS.SN açısı arasındaki p<0.01 düzeyinde önemli pozitif korelasyonlar (r=0.861, 0.683) tamamen topografiî ilişkilidir. Hiperbrakisefal erkek bireylerde (Tablo 4.8), NSBa açısı ile S-PNS ve B-HOR boyutları arasında saptanan p<0.05 düzeyinde önemli negatif ilişkiler (r=-0.698, -0.785) ile A-HOR, ANSPNS.GoMe, ANS-Me boyutları arasında mevcut negatif yönlü yüksek r değerleri (r=-0.691, -0.451, -0.413), kranîyal taban açısı arttikkiça yüzün dik yön boyutlarının kısalacağıni ifade etmektedir. Hiperbrakisefal kiz bireylerde ise (Tablo 4.9), NSBa açısı ile ANSPNS.SN açısı arasındaki ilişki önemli düzeyde değil iken, ANSPNS.VER açısı arasındaki ilişkinin p<0.05 düzeyinde önemli ve negatif yönlü bulunması (r=-0.508), kranîyal taban açısı büyüükçe yine maksillanın posterior rotasyonunu ifade etmektedir. Bunun gibi Brakisefal erkek ve kiz bireylerde, NSBa açısı ile ön ve arka yüz boyutlarını gösteren ölçümler arasında bulunmuş negatif yönlü yüksek r değerleri ve negatif yönlü önemli ilişkiler, genel gruptaki ilişkileri yansıtır şekiledir. Özetle NSBa açısının Mezosefal ve Dolikosefal bireylerde yüzün dik yön boyutları ile ilişkili olmadığını Hiperbrakisefal ve Brakisefal bireylerde ise NSBa açısı büyük olduğu oranda yüzün dik yön boyutlarının küçüleceği söylenebilir.

Çenelerin sagital yöndeki ilişkileri incelendiğinde, yine bütün bas tiplerinde benzer olduklarını görülmüştür. ANB, AB.HOR, B-VER/A-VER ve (A-VER)-(B-VER) ölçümlerinin 114 kişilik genel grubumuzda olduğu gibi Mezosefal kız bireyler ve Dolikosefal erkek bireyler dışında diğer gruplarımızda da bașın maksimum uzunluk, genişlik ölçümleri ve sefalik indeks ile ilişkili olmadığını görülmüştür.

Dolikosefal erkek bireylerde B-VER/A-VER oranının bașın maksimum genişlik ölçüüm ile gösterdiği pozitif yönlü önemli ilişki (r=0.583, p<0.05), baș genişliği arttikça iskeletsel KI III bir iliûkîye eğilimi göstermektedir. Bu grupta AB.HOR açısı ile bașın maksimum genişliği arasındaki pozitif yönlü iliûkînin yüksek r değerleri de aynı anlami ifade etmektedir (r=0.519). Hiperbrakisefal erkek bireylerde de aynı ölçümler arası iliûkî katsayıları yüksek ve aynı yönlü bulunmuş
fakat önemli seviyeye ulaşamamıştır. Mezosefal kız bireylerde ise B-VER/A-VER oranı ile (A-VER)-(B-VER) ölçümlerinin başın maksimum uzunluğu ile göstermiş oldukları negatif ve pozitif yönlü önemli ilişkiler (r=-0.531, 0.539, p<0.05) ve yine AB.HOR açısının r=-0.442'lik yüksek değeri nedeni ile sefalik indeks ile çenelerin birbirlerine göre sagittal yön konumu gösteren ölçümler arasında p<0.05 düzeyinde önemli ilişkiler saptanmıştır (r=0.603, 0.555, -0.591). Bu bulgu, Mezosefal kız bireylerde başın uzunluğu artışça iskeletsel Kl III yapıya eğilim olduğunu ifade etmektedir.

Çeneler arası sagittal yön konumu gösteren ölçümlerin kraniyal taban açısından ilişkileri incelendiğinde; gerek 114 kişilik toplam materyalde gerekse alt gruplardan önemli bir ilişki saptanamamıştır.

Posteroanterior filmler üzerinde ölçüttüğümüz V-Me, max-max ve mand-mand yatay boyutları arasında ilişki bulgularımız incelendiğinde, V-Me boyutunun Hiperbrakisefal, Brakisefal ve Mezosefal bireylerde benzer olduğu görülmektedir (Tablo 4.4). Bu boyutun Dolikosefal bireylerdeki $x=233.07\pm2.59$ mm.lik yüksek ortalama değeri (Tablo 4.3) Dolikosefal bireyler ile bütün baş tipleri arasında p<0.01 düzeyinde önemli bir ayrıcalığı neden olmuştur. Buna göre Hiperbrakisefal ve Dolikosefal bireyler bütün baş tiplerinden farklı olarak büyük bir total kraniyal yüksekliğe (V-Bo) sahip olan, Hiperbrakisefal bireylerin V-Me boyutu diğer baş tipleri ile benzer, ancak Dolikosefal bireylerin V-Me boyutunun diğer baş tiplerinden büyük olduğu görülmuştur.

V-Me boyutu 114 kişilik toplam materyalımızde başın maksimum uzunluğu ile pozitif (r=0.555, p<0.01) ve dolayısı ile sefalik indeks negatif yönde önemli bir ilişki göstermektedir (r=-0.377, p<0.01). Bu bulgumuz V-Me boyutunun genellikle başın uzunluğunu olumsuz ile ilişkili olduğunu göstermektedir. Alt gruplar incelendiğinde; V-Me boyutunun genellikle başın maksimum uzunluğunu olumsuz ile göstermiş oldukları pozitif yönde r değerlerininin, Dolikosefal kız bireylerde negatif yönde olduğu ($r=-0.422$), Dolikosefal erkek bireylerde ise bu boyutun başın maksimum uzunluğunu olumsuz ile değil genişlik olumu ile gösterdiği ilişkisinin önemli seviyeye ulaştığı anlaşılmaktadır ($r=0.599$, p<0.05). Bu boyutun hiçbir grupta NSBa açısından ilişkisi saptanamamıştır.

Max-max ve mand-mand yatay boyutlar incelendiğinde; bu ölçümlerde interaksiyon olduğu saptanmıştır (Tablo 4.4). Nedeni araştırıldığında (Tablo 4.5);
max-max boyutu erkek bireylerde, bütün baş tiplerinde benzer ortalama değerler gösterdiği halde, kız bireylerde Hiperbrakisefal ve Brakisefal, Brakisefal ve Mezosefal gruplara ait ortalama değerlerin benzer, Brakisefal ve Mezosefal gruplara ait ortalama değerlerin ise Dolikosefal gruba ait ortalama değerlerden $p<0.01$ düzeyinde önemli ayrılık yaratacak şekilde büyük olduğu saptanmıştır. Hiperbrakisefal ile Mezosefal ve Dolikosefal gruplar arasındaki farklılık ise $p<0.05$ düzeyinde önemlidir. Brakisefal ve Mezosefal kız bireylerde bu boyut en yüksek ortalama değeri gösterirken bunu Hiperbrakisefal ve Dolikosefal kız bireylerdeki ortalama değerler takip etmeyebilir.

Mand-mand yatay boyut incelendiğinde; erkek bireylerde Brakisefal ve Dolikosefal bireyler arasında görülen $p<0.05$ düzeyinde önemli ayrıcalığın nedeni bu boyutun Brakisefal bireylerdeki 87.74 ± 1.26 mm.iğ daha küçük ortalama değerindendir. Kız bireylerde ise, mand-mand yatay boyutu sadece Mezosefal ve Dolikosefal gruplar arasında $p<0.05$ düzeyinde önemli ayrıcalık gösterdiği ve Mezosefal kız bireylerin Dolikosefal kız bireylerde göre daha büyük bir ortalama değere sahip olduğunu anlaşılmaktadır.

Bu bulgularımız Hiperbrakisefal ve Dolikosefal olmak üzere iki üç grubumuz için değerlendirildiğinde, her iki cinsten birden mandibuler yatay boyut arasında fark bulunmadığı görülmektedir. Bimaksiler mesafe ise erkek bireylerde benzer iken kız bireylerde Hiperbrakisefal grupta Dolikosefal gruba göre $p<0.05$ düzeyinde ayrıcalık yaratacak şekilde büyüktür.

Max-max ve mand-mand yatay boyutlarının 114 kişilik materyalimizde beklenildiği gibi başın maksimum uzunluk ve genişlik ölçümleri ile pozitif ilişkiler göstermektedir. Dolikosefal bireylerde bu ilişkiler önemli seviyede değil iken Hiperbrakisefal erkek grupta mand-mand boyutunun maksimum genişlik ile gösterdiği yüksek ve negatif yönlü r değeri yüzünden bu boyutun sefalik indeks ile negatif yönlü $p<0.05$ düzeyinde önemli bir ilişki gösterdiği görülmektedir ($r=0.699$). Hiperbrakisefal kız grupta benzer bir ilişkiye rastlanılmamıştır. Buna göre Hiperbrakisefal erkek bireylerde başın maksimum genişliği arttıkça mand-mand boyutu azalmaktada veya bunun aksi olmaktan.
korelasyon göstermektedir \((r=-0.567, p<0.01)\). Bu bulgu Brakisefal kız bireylerde sefalik indeks küçültüğe yani başın maksimum uzunluğunu artırmış max-max boyutunun büyüdüğü ifade etmektedir, çünkü max-max boyutunun başın maksimum genişlik ölçümüne göre başın maksimum uzunluk ölçümü ile ilişkisinin gösteren \(r\) değeri pozitif yönlü ve yüksek bulunmuştur \((r=0.363)\).

Bütün bu bulgularımız baş tipleri için bir genelleme yapılmadan fasiyal morfolojininin ve doğal baş konumunun her baş tipi ve cinsiyet için ayrı ayrı düşünülmesi gerektigini ortaya çıkarmaktadır. Bu gereği başın maksimum genişlik ve uzunluk ölçümü ile ilgili bulgularımız da doğrulamaktadır.

Tablo 4.4'de Varyans Analizi sonuçlarımız bu boyutlarda interaksiyon olduğunu göstermektedir. Kaynağı araştırıldığında (Tablo 4.5); başın maksimum uzunluğu, erkek bireylerde Hiperbrakisefal ve Brakisefal gruplarında benzer ve diğer bütün gruplarda istatistiksel olarak önemli ölçüde farklı iken, kız bireylerde Mezosefal ve Dolikosefal gruplarında birbirleri ile benzer bulunmuştur.

Halkıyla çalıştığımızda Tablo 4.4'den de görüldüğü gibi Varyans Analizi sonuçlarımız posteroanterior filmlerimizden elde ettğımız parietal kemiklerin en dış noktaları arasındaki boyut olan P-P ölçümünde interaksiyon olmadığını göstermektedir. Cinsler arasında bulmuş olduğumuz \(p<0.01\) düzeyindeki önemli farklılık bütün baş tiplerinde kız bireylerle ait P-P boyutunun erkek bireylerden daha küçük bulunduğu ifade etmektedir ve bu boyutla ilgili bulgumuz baş tipleri arasında istatistiksel olarak önemli bir farklılık gösterecek şekilde Hiperbrakisefal baş tipinde en yüksek Dolikosefal baş tipinde ise en düşük ortalama değer gösterektir (Tablo 4.3). Ancak baş tipleri için korelasyon tablolarımız incelendiğinde (Tablo 4.7-4.15); Brakisefal ve Mezosefal erkek, Dolikosefal kız ve
erkek gruplarımızda P-P boyutunun basın maksimum uzunluk ölçümü ile ilişkisinin önemli düzeyde erişmediği, diğer gruplarımızda mevcut pozitif ilişkilerin ise istatistiksel olarak önemli olduğu görülmektedir. Bu bulgu basın en geniş bölgesinin Brakisefal ve Mezosefal kız bireyler ile Hiperbrakisefal kız ve erkek bireylerde sefalometrik olarak parietallerin en çikintili bölgesi ile bir beraberlik gösterdiği diğer gruplarda ise anatominin olarak beraberliğinin olmadığı görülmektedir.

Baş genişliğinin uzunluğuna göre daha çok beyin büyüklüğune bağlı olduğunu ve bu nedenle de baş indisinin farklı farklı gelişmiş genişlik ölçümüne dayandığıni ileri suren Tscheppourkovsky'nin (81), Brakisefal bireylerin büyük bir çoğunluğu için başın kısınlığının değil, belirgin genişliğinin karakteristik olduğunu aynı şekilde Dolikosefali'nin oluşumunda büyük uzunluk değil, küçük genişliğin söz konusu olduğunu ileri suren Reicher'in (59) görüşlerini hatırlatan Saller ve Martin (47),baş uzunluğunun daha çok boy ile ilişkili olduğunu bildirmiştir.

Baş tiplerinde maksimum uzunluk ve genişlik ölçümlerinin cinsiyete göre değişen bu farkları ortaya konulduktan sonra, 114 kişilik toplam materyalimizde $x=148.56\pm0.62$ mm. olan genişlik ölçümünü rehber kabul edip uzunluk ölçümünün minimum, maksimum ve ortalama değerleri ve yine $x=182.95\pm1.05$ mm. olan uzunluk ölçümünü rehber kabul edip genişlik ölçümünün minimum, maksimum ve ortalama değerleri şematik olarak incelediğimizde (şekil 4.1-4.2); basın maksimum uzunluğunun çok büyük değişkenlik gösterdiği görülmektedir. Aynı şemalar her bir baş tipi için aynı ayrı ayrı incelediğinde (şekil 4.3-4.10); Hiperbrakisefal, Brakisefal ve Mezosefal bireylerde basın maksimum genişlik ve uzunluk ölçümlerinin değişkenlikleri birbirlerine benzer iken Dolikosefal bireylerde basın maksimum genişlik ölçümüne göre uzunluk ölçümünün çok büyük değişkenlik gösterdiği analiz edildiştir. Baş tipleri dikkate alınmadan 114 kişilik materyalimizde değişkenlikli değil, Dolikosefal bireylerde büyük değişkenlik gösterdiği gördüğümüz maksimum uzunluk ölçümüne göre genişlik ölçümünün her baş tipinde değişkenlik sınırının dar ve birbirine benzer ölçüde olduğu söylenebilir.

Sefalik indekse göre oluşturduğumuz gruplarımızda sefalik indeks değerinin genişlik ve uzunluk ölçümleri ile ilişkisi incelediğinde (Tablo 4.7); 114 kişilik toplam materyalimizde mevcut ve çok doğal olan $p<0.01$ düzeyinde önemli negatif ve pozitif yönlü ilişkilerin alt gruplarda değişkenlik gösterdiği görülmektedir (Tablo 4.8-4.15).
Hiperbrakisefal erkek ve kız bireylerde sefalik indeks ile maksimum genişlik ölçüümü arasında bir ilişki mevcut değil iken maksimum uzunluk ölçüümü ile arasında \(p<0.01 \) ve \(p<0.05 \) düzeyinde önemli negatif ilişkiler saptanmıştır \((r=-0.803, -0.538)\). Buna göre Hiperbrakisefal bireylerde sefalik indeks değeri daha çok başın maksimum uzunluk ölçüümü ile değişmektedir. Yine kız bireylerde maksimum uzunluk ve genişlik ölçümleri yüksek düzeyde pozitif ilişkide dır \((r=0.867, p<0.01)\). Buna göre Hiperbrakisefal kız bireylerde başın maksimum uzunluğu büyük ise genişliğinin de büyük olacağını söz konusu iken erkek bireylerde aynı ilişkisinin mevcut olmadığını görülmektedir.

Yine başın maksimum uzunluk ve genişlik ölçümleri arasında pozitif yönlü bir ilişkinin yani ahengin olduğunu gördüğümüz Brakisefal kız \((r=0.809, p<0.01)\) ve erkek bireylerde \((r=0.708, p<0.01)\) sefalik indeks ile her iki ölçümün arasında önemli bir ilişkinin bulunmamadığı saptanmıştır. Yani bu bireylerde sefalik indeks değerinin daha çok başın maksimum uzunluğunu veya genişliğini ile belirlenmiş olduğunun söylenememesi gerekir.

Yine başlarının maksimum genişlik ve uzunluk ölçümleri arasında önemli düzeyde pozitif yönlü ilişkinin saptandığı Mezosefal erkek ve kız bireylerde \((r=0.803, 0.855, p<0.01)\) sefalik indeks ile bu ölçümlerin ilişkisinin farklı olduğu görülmektedir. Mezosefal erkek bireylerde sefalik indeks ile başın maksimum genişlik ölçüümü arasında mevcut \(p<0.01 \) düzeyinde önemli pozitif ilişki \((r=0.674)\) bulunurken maksimum uzunluk ölçüümü ile ilişki saptanamamıştır. Buna göre Mezosefal erkek bireylerdeki sefalik indeks değeri daha çok başın genişliğinde meydana gelen farklılıklardan etkilenmektedir. Kız bireylerde ise ölçümlerden herhangi birinin sefalik indeksle ilişkisi önemli düzeyeye ulaşamamıştır.

Dolikosefal erkek bireylerdeki bulgularımız, başın maksimum genişlik ve uzunluk ölçümleri arasındaki ilişkinin önemli seviyeye ulaşmadığını göstermektedir. Sefalik indeks ile maksimum uzunluk ölçüümü arasındaki \(p<0.01 \) düzeyinde önemli negatif ilişkinin \((r=-0.936)\) genişlik ölçüümü için geçerli bulunmaması grubumuzda sefalik indeks değerinin basın uzunluğunu ile değiştiğini göstermektedir. Dolikosefal kız bireylerde ise başın maksimum genişlik ve uzunluk ölçümleri arasında önemli pozitif ilişki saptanmıştır \((r=0.856, p<0.01)\). Sefalik indeks ile bu ölçümler arasında önemli bir ilişki bulunmaması, maksimum
genişlik ve uzunluk ölçümlerinin sefali indeksi belirlenmede aynı oranda etkili olduklarını göstermektedir.

Bireyleri sefali indekslerine göre sınıflarken meydana gelen bu varyasyonlar ve cinsiyete ilişkin belirgin farklılar dikkate alındığında; farklı baş tiplerinde başın kütle merkezinin ve kas yapısına noktalarının farklı olacağını göz önüne alınarak farklı fisiyoloji ve farklı doğal baş konumu saptanabileceği görüşü ile yapılan çalışmalarda belirgin bulguların ortaya çıkmaması doğaldır. Her ne kadar günümüzde fonksiyon mu morfolojiyi yoksa morfoloji mi fonksiyonu etkileyor sorusuna kesin bir cevap bulunamamış olsa da erişkin ve çocuklarda baş postürü ve kraniyofasisal morfoloji arasında bir ilişki olduğunu göstermiştir (21,29,46,67,69,72,73,78,80,86,87).

1977'de Solow ve Kreiborg (71), kraniyofasisal morfogenezde kontrol faktörlerinden birinin yumuşak doku gerilimi olduğunu ve başın ekstansiyonu sonucu yüzü ve boyunu kaplayan fasiyol yumuşak doku geriliminin aşağıya ve geriye yönelmiş kuvvetler doğurup, fasiyol gelişimi yönlendireceğini ileri sürmüşlerdir.

1985'de Forsberg (22), nötral, ekstansiyon ve fleksiyondaki baş konumlarında EMG ile yaptığı çalışmasında; baş nötral ve mandibula istirahat konumunda iken bütün kasların en az massater bölgesinde olmak üzere tonik bir aktivasyonu olduğunu, baş ekstansiyonu ile oksipital kondiller önünde yer alan ağırlık merkezi geriye kaydığı için postservikal kaslarda aktivasyon azalışı
suprahyoid, infrahyoid, sternocleidomastoid ve masseter kaslarında aktıvasyon artışı olacağını, başın fleksiyonunda ise basın ağrılık merkezi ön kayarak postservikal kaslarda aktıvasyonun artacağını bildirmiştir.

1990’da Hellsing ve arkadaşları (30), nötral pozisyona göre basın ekstansiyonunda isırmının maksimum kuvvet harcayarak yapıldığını göstermişlerdir.

Konuya sadece baş iskeletinin servikal kolon üzerindeki statigi yönünden bakıldığında, baş ve yüz formuna bağlı olan ağrılık merkezinin yeri ön plana çıkmaktadır. Baş ve yüz formuna göre basın kütles merkezi, oksipital ekenlen geçliği varsayılan eksenin更改 yer değiştirilmesedir. Oksipital eken servikal kolon ve basın kütles merkezi aynı eksende olmalıdırıktan kastar postürü sağlamak için fonksiyon görmek zorundadır. Günümüzde çalışmalar (53,83), insanda baş postürünün daha önce antropolojistlerin düşündükleri gibi basit bir mekanik denge meselesi olmadığını, total nasal tıkanıklık ve respiratuar adaptasyon, orta kulağın vestibuler mekanizması, görme ekseni ve fonksiyonu gibi birçok fonksiyonun kontrol mekanizmaları olduğu ileri sürümsüz olsalar da (21,26,73,84,86,87), çalışmalarımızda çeşitli baş tipleri arasında basın doğal konumu ve fasiyel morfoloji arasında belirgin farklılıkların bulunmamış olması bağ postürünün birçok faktörle etkilenbirlüğine yanında baş indisinin belirlenmesinde uzunluk ve genişlik ölçümlerinin katkısı ve özellikle uzunluk ölçümünün değişkenlik sinirinin çok geniş olması da sorumlu tutulmalıdır.

Konuya bu yönden yaklaştığımızda; Hiperebrakisel erkek bireylerde kız bireylerin aksine genişlik ve uzunluk ölçümlerinin arasında önemli bir ilişkinin yani uyumun olmadığı ve indeks değerini çok kullanıma maksimum uzunluğun belirlendiği görülmektedirler. Daha önce söz edildiği gibi bu grupta mandibulanın sagittal yöndeki uzunluğ ise sagital yöndeki konumu, maksillaya göre sagital yön ilişkisi ve doğal baş konumunda gerçek horizontal düzleme göre eğimi ve arka yüz yükseklikleri daha çok maksimum genişlik ölçümlü ile ilişkilidir. İstatistiksel olarak önemli bulunmamış olsa da hepsi pozitif yönde ilişkiye ifade eden yüksek r değerleri göstermektedir. Buna göre Hiperebrakisel erkek bireylerde basın maksimum genişliği arttırdıga sagital yön boyutu büyük ve protruosiv bir mandibula ile kl III yapıya eğilim ve klinik profilde mandibulanın anterior rotasyonu söz konusu olacaktır. Başın genişliğinesi göre düzenlenmiş olduğunu bulduğumuz bütün bu kriterlerin yanı sıra 88.81±0.89 mm.lik sefalik indeks değerini belirleyen
basın maksimum uzunluk ölçümü arttıkça servikal kolon protrüsviv bir konum alacaktır. Bu ilişkiyin basın maksimum uzunluk ölçümü ile CVT.HOR ve OPT.HOR açıları arasındaki p<0.01 düzeyinde önemli pozitif ilişkiler göstermektedir (r=0.802, 0.859). Bu bulgu Hiperbrakisel erkek bireylerde baş genişliğine göre kodlanmış mandibula boyutu ve konumunun yanı sıra uzunluk ölçümüne göre basın doğal pozisyonunu alması anlamında ve baş uzunluğu arttıkça arkaya doğru koyan kütle merkezi ve basın ekstansiyonu, baş uzunluğu azaldıkça öne koyan kütle merkezi ve basın fleksiyonu düşüncesini geçerli kılmaktadır. Bu grubumuzda mandibula ve maksillerin doğal baş konumundaki rotasyonel pozisyonlarının da basın genişlik ölçümüne göre kodlanmış olduğu hatırlanmalıdır (r=-0.733, -0.523). GoMe.SN açısının basın maksimum uzunluğu ile göstermiş olduğu iliskinin yüksek r değerinden (r=0.493) anlaşılabacağı gibi sefalik indeks küçülükçe bu değerin büyümesi doğal baş konumuna göre fasyalı morfolojinin şekillendiğini göstermektedir. Yanı basın maksimum uzunluğu ile birlikte ekstansiyonu arttıkça aktiviteleri artan hyoid üstü ve altı kas gruplarıyla nedeni ile mandibulanın posterior rotasyonu anlamına gelmektedir. GoMe.SN açısının, basın maksimum uzunluğu ve basın indisi ile ilişkili bu değişimin NSL düzleminin egrimine değil mandibulanın konumuna bağlı olduğu, ancak ANSPNS.SN açısı ile maksimum uzunluk ve sefalik indeks ölçümleri arasında aynı iliskisinin söz konusu olmadığını söyleyebilmir. Bu grupta ön yüz ve özellikle alt ön yüz yüksekliklerinin de basın maksimum uzunluğu ile pozitif yönde önemli ilişkiler gösterdiği görülmektedir (r=0.765, 0.796).

Yine Hiperbrakisel erkek grubumuzda benzer olarak basın maksimum uzunluk ve genişlik ölçümlerinin birbiri ile önemli ölçüde bir uyum göstermediği Dolikosefal erkek grubumuzda, basın indisi değerini basın maksimum uzunluk ölçümü belirlemektedir. Bu grupta basın uzunluk ölçümü büyük değişkenlik göstermektedir (Şekil 4.9). Mandibula boyutunun sagital ve vertikal yöndeki konumunun, arka yüz yüksekliklerinin bu grupta da basın maksimum uzunluğu ile değil genişliği ile önemli düzeyde ilişkili olduğu görülmektedir. Yani basın genişliği arttıkça sagital boyutu büyük ve protrüsviv mandibula, mandibuler anterior rotasyon gözlenecektir. Bu grupta maksimum uzunluk arttıkça basın ekstansiyonunu, azaldıkça fleksiyonunu basın maksimum uzunluk ve sefalik indeks ölçümü ile WSL.VER açısı arasındaki p<0.01 düzeyinde önemli pozitif (r=0.706) ve p<0.05 düzeyinde önemli negatif (r=-0.598) korelasyonlar göstermektedir.
Hiperbrakisefal erkek grubunda, servikal kolon konumunu gösteren CVT.HOR ve OPT.HOR açları ile maksimum uzunluk arasında önemli ilişki bulunmamış olmasına rağmen basın maksimum uzunluğu arttıktığa servikal kolonun protrüziv bir konum aldığı görülmektedir. Bu bulgu, basın ekstansiyonunun atlanto-okzipital eklem üzerinde olduğunu düşündürmektedir. NSL.CVT ve NSL.OPT açları ile maksimum uzunluk ölçüyü arasında saptanan pozitif korelasyonlar da bu bulguyu doğrulamaktadır (r=0.741, r=0.799). Dolikosefal erkek bireylerde Hiperbrakisefal erkek bireylerdeki gibi basın maksimum uzunluğu artıktığa kütle merkezinin geriye kayçağı düşündürse yine basın ekstansiyonu söz konusudur ancak bu baş pozisyonuna servikal kolonun iştirak etmeme nedeni arastırılrsa bu grupta farklı bulgu olarak Nasion ve Sella noktalarının daha öncede belirtildiği gibi vertikal yönde lokalizasyonları akla gelmektedir. Hârtılanaçağı gibi Dolikosefal bireylerde Sella naktası Nasion naktasına göre aşığında konumlanmıştır. Maksimum uzunluk ölçüyü ile NSL.VER, NSL.CVT ve WSL.VER açları arasındaki pozitif ilişkiler basın maksimum uzunluğu arttıktığa, basın ekstansiyonuna ugrayacağına ifade etmektedir. WSL.VER ile maksimum uzunluk ölçüyı arasındaki pozitif ilişki ise sfenoid kemiğin yani orta kafa tabanının rotasyonunu ve diklemesini belirtmektedir. Bu anatominik özellikler kısıtlı merkezini dengeleneye ve servikal kolon pozisyonundaki değişikliği görmemizi engelleyen faktörler olarak düşünülebilir.

Dolikosefal erkek bireylerde Hiperbrakisefal erkek bireylerdekinin aksine uzunluk ölçüyü ile GoMe.SN açısı arasında pozitif bir ilişki saptanamamıştır. Hatta maksimum uzunluk arttıktığa NSL.VER açısıının arttığını bildiren pozitif ilişki söz konusu olduğu için bulunması gereken topografik korelesyon bile kırlanmıştır. GoMe.SN açısı, basın maksimum uzunluk ölçüyü ile değil, genişlik ölçüyü ile ilişkili olup r değeri yüksek ve negatif yönlü olduğu görülmektedir (r=-0.450). Ayrıca mandibulanın doğal baş konumundaki pozisyonu, arka yüz boyutları ve ramus dik boyutunun Hiperbrakisefal erkek bireylere göre önemli ölçüde basın maksimum genişlik ölçüyü ile pozitif ilişki gösterdiği görülmuştur. Buna göre Dolikosefal erkek bireylerde basın kütle merkezinin, atlas ve okzipital kondillerin ilişkisi, sfenoid kemiğin rotasyonu ve aça iç konumulanan Sella ile anatominik olarak dengelenmiş olduğu söylenebilir.

Başın uzunluk ve genişlik ölçümlerinin büyük değişkenlik göstermediği ve aralarında bir uyumun söz konusu olduğu gruplanmış incelendiğinde; doğal baş konumunu gösteren ölçümlerimiz ile bu kez daha çok kraniyal kaide uzunluğu ve
genişliği arasındaki oranın ilişkili olduğu görülmektedir. Bütün gruplarımızda birden standart hata sınırları çok dar olan V-Bo/N-Ba oranı değişkenlik sınırı dar bir oran olarak kabul edilebilir. 114 kişilik toplam materyalimizdeki bulgularımıza benzer olarak Hiperbrakisel kız ve Brakisel erkek bireylerde V-Bo/N-Ba oranı ile servikal kolonun konumunu gösteren açılar önemli düzeyde pozitif ilişki göstermektedir (Tablo 4.9-4.10). Bu gruplarımızda kraniyofasial morfolojisi belirten ölçümlerimizin basın maksimum uzunluk ve genişlik ölçümlerimizden biriyle belirgin bir ilişkisi söz konusu değildir. Maksimum uzunluk ve genişlik ölçümleri ile ilişkileri gösteren r değerleri genellikle birbirine yakın bulunmuştur. Yine bu gruplarda daha önce de deşinildiği gibi N-Ba boyutunun farklı değerlerinden arka kraniyal kaide eğimine bağlı olarak farklı değerler alan NSBa açısının sorumlulu olduğu arka kraniyal taban dikleşen NSBa açısı küçülükçe alt kraniyal taban yüksekliğinin büyüyorunun veya arka kraniyal taban geriye doğru eğimlenip NSBa açısı büyüükçe alt kraniyal taban yüksekliğinin küçülüğünü gösteren ilişkilerin söz konusu olduğu daha önce de deşinildiği gibi saptanmıştır. Hiperbrakisel kız bireylerde hem maksimum genişlik hem de uzunluk ölçümleri ile aynı düzeyde ilişki içinde olan N-Ba ve V-Bo boyutları, Brakisel erkek bireylerde maksimum uzunluk veya genişlik ölçümlerinden herhangi biriyle daha belirgin bir şekilde ilişkilii değildir. Sefalik indeks büyüükçe dikleşen arka kafa taban eğimi (r=-0.584, p<0.05) küçulen NSBa açısı (r=-0.574, p<0.05) ve büyüyen alt kraniyal yükseklik (r=0.752, p<0.01) veya bunun aksinin söz konusu olduğunu gösteren ilişkilere bağlı olarak kraniyal uzunluk azaldıkça kraniyal yükseklik artmakta ve servikal kolon protrusiv bir konum kazanmaktadır. Yani total kraniyal uzunluk artışta kraniyal yükseklik azalma ve servikal kolon protrusiv bir konum almaktaadır.

Bu gruplarımıza benzer şekilde basın maksimum genişlik ve uzunluk ölçümlerinin büyük bir uyum içinde olduğunu, sefalik indeks değerine her iki boyutun katkısının aynı olduğunu bulduğumuz Brakisel kız bireylerde V-Bo/N-Ba oranı ile servikal kolon konumunu gösteren ölçümlerin arasında önemli bir ilişki saptanamamıştır. Bu grubumuzun diğer iki grubumuzdan farklarını vardır. Bunlardan birincisi, total kraniyal taban uzunluğunun ve V-Bo/N-Ba oranının daha çok ön kraniyal taban boyutu ile değiştiğini gösteren ilişkidir. Bunlardan ikincisi ise maksimum uzunluk ölçüüm ile SBA.HOR ölçümleri arasındaki p<0.05 düzeyindeki önemli negatif ilişki (r=-0.493). Bu ilişkiler arasındaki maksimum uzunluğu arttıkça arka kraniyal tabanın dikleştiğini göstermektedirler. Yine sefalik indeks küçülükçe WSL.VER açısının da küçüleceğini gösteren pozitif ilişki (r=0.503,
p<0.05) başın maksimum uzunluğu artıp veya genişliği azalıp sefalik indeks küçüldükçe bir yandan orta kraniyal fossanın dikleşeceğini bir yandan da başın ekstansiyonunu ifade etmektedir. Ayrıca bu grupta daha çok arka kraniyal taban eğimi ile değerini değiştiren NSBa açısı ile OPT.CVT açısı arasında p<0.05 düzeyinde önemli pozitif bir ilişki bulunmuştur (r=0.502). Bu bulgu NSBa açısı küçüldükçe yani arka kraniyal taban dikleştiğçe servikal konturunun azalacağı veya bunun aksini ifade etmektedir. Bu grupta başın uzunluğu arttıya küçülen SBA.HOR açısı oksipital kondillerin onde yer alması ile ağırlık merkezinin dengelendiğini ve bununla da servikal kolon kurvatürünün değiştiğini göstermektedir.

Başın uzunluk ve genişlik ölçümü arasında yine büyük bir uyumun görüldüğü Mezosefal erkek ve kız bireyler incelendiğinde; erkek bireylerde sefalik indeks değeriにある başın genişlik ölçümünün (r=0.674, p<0.01), kız bireylerde ise istatistiksel olarak önemli bulunmamış olsa bile başın uzunluk ölçümünün belirlediği anlaşılmaktadır (r=0.473). Mezosefal erkek bireylerde, Hiperbrakisefal ve Dolikosefal erkek bireylerle benzer olarak sefalik indeks değerine baş boyutlarından birinin katkısı daha belirgindir. Ancak bu kez bu boyutun maksimum genişlik ölçümü olması rağmen yine de OPT.HOR açısı ile V-Bo/N-Ba oranı arasında p<0.01 düzeyinde önemli pozitif ilişkinin mevcudiyeti göze çarpmaktadır (r=0.664). Nedeni araştırıldıgıında; N-Ba boyutunun başın maksimum genişlik ölçümü ile N-S boyutunun ise başın maksimum uzunluk ölçümü ile gösterdiği p<0.05 düzeyinde önemli pozitif ilişkiler nedeni ile (r=0.548, r=0.632) ve grupta başın genişlik ve uzunluk ölçümleri arasındaki p<0.01 düzeyinde önemli pozitif ilişkisinin varlığı yüzden V-Bo/N-Ba oranının hem başın genişlik hem de uzunluk ölçümleri ile p<0.05 düzeyinde önemli negatif yönlü ilişkiler gösterdiği görülmektedir. Yine Mezosefal erkek bireylerde NSBa açısının başın maksimum genişliği ile yüksek r değerleri gösteren pozitif bir ilişki içinde (r=0.526) sefalik indeks değeri büyümükçe büyüymekte, küçüldükçe küçülmekte olduğu p<0.05 düzeyinde önemli pozitif korelasyondan anlaşılmaktadır (r=0.546). Buna göre baş indisi değerini başın maksimum genişliği belirlemiş olsa da Mezosefal erkek bireylerde genişlik ve uzunluk ölçümleri arasındaki büyük ahenk yüzünden V-Bo/N-Ba oranı her iki ölçümün değişimi ile de ilişkilidir ve bu ayrı yöndedir. Ayrıca sefalik indeks ile kraniyal taban açısının değeri arasında bir uyum söz konusudur ve V-Bo/N-Ba oranı büyümükçe servikal kolon protrüsiv, küçüldükçe retrüsiv bir konum almaktadır. Maksimum uzunluk ölçümü ile OPT.HOR ve CVT.HOR ölçümleri arasında saptanan negatif yönlü önemli ilişkiler (r=-0.560, r=-0.580, p<0.05) başın
uzunluğu arttıktı servikal kolonun dikleştğini veya aksini ifade etmektedir. Bütün bu bulgular ortak yorumlanırsa basın maksimum genişliği arttıktı küçülen V-Bo/N-Ba orani ile birlikte diklenen servikal kolon ve fleksiyona uğrayan basın, bu grupta maksimum uzunluğu da büyük olacağını maksimum uzunluk ölçüümü ile CTV.HOR ve OPT.HOR açıları arasında negatif yönlü önemli ilişkiler saptanmıştır.

Mezosefal kız grubunda bulgularımız; basın maksimum uzunluğu arttıktı küçülen sefalik indeks değer ile klinik profilde retrüsiv konumlanmış mandibula, KL II yapıya eğilimi ve artan ön yüz boyutunu, alt ve üst çene arasındaki vertikal boyutun artacağı ifade etmektedir. Bu grubumuzda yine sefalik indeks ile NSL.VER açısı arasındaki p<0.01 düzeyinde önemli pozitif ilişki (r=0.696) ve NSL.VER açısı ile maksimum uzunluk ölçüümü arasındaki negatif yönlü iliskinin yüksek r değeri (r=-0.446), maksimum uzunluk artıp baş indisi küçüldüğçe NSL.VER açısının da küçületeğini yani basın fleksiyonunu ifade etmektedir. Her ne kadar NSL.VER açısının NSL düzleminin anatomin ekşiminden de etkileneceği söz konusu ise de aynı korelasyonun NSL.CVT açısı için de söz konusu olup bu sefer p<0.05 düzeyinde önemli pozitif iliskinin saptanmış olması (r=0.555) bu yorumu desteklemektedir. Bu bulgulara göre; artan uzunluk ile kötle merkezinin geriye kayması basın ekstansiyonuna neden olduğunda, kas çekme kuvvetleri ile birlikte geride ve aşağıda konumlanmış mandibula, veya azalan uzunluk ile kötle merkezinin öne kayması basın fleksiyonuna neden olduğunda ileride ve yukarıda konumlanmış mandibula söz konusu olacaktır. Mezosefal kız grubumuzda genelde eğer basın uzunluğu fazla ise genişlik de fazla olacağını, genişlik ölçüümü ile CTV.HOR açısı arasında genişlik arttıktı protrüsiv bir servikal kolon ve basın ekstansiyonunu bildiren pozitif yönlü iliskisi mevcuttur (r=0.540, p<0.05). Aynı şekilde CTV.HOR açısı ile maksimum uzunluk ölçüümünün iliskisini gösteren r değerinin de büyük ve pozitif yönlü olduğu bulunmuştur (r=0.498). Bu grupta kraniyofasial ölçümlerin daha çok maksimum uzunluk ölçüümü ile ilişkili bulunması sefalik indeks değerinin genellikle maksimum uzunluk ölçüümü ile değişimleri nedeni ileder. V-Bo/N-Ba oranının farklı değerler almasından sorumu N-Ba boyutu, arka kraniyal taban eğimi ile birlikte değişikten alt kraniyal yükseklik Hiperbrakiselaf kız ve Brakiselaf erkek gruplarımızda olduğu gibi V-Bo/N-Ba oranını dengelemede günden V-Bo/N-Ba oranı ile servikal kolon konumu arasında ilişki bulunamamıştır. Tablo 4.13'den görüldüğü gibi Mezosefal kız bireylerde arka kraniyal kaide dikleşip N-Ba boyutu küçüldüğçe V-Bo/N-Ba artmaktadır. Ancak NSBa açısı ile Bo-HOR ölçüümü arasındaki ilişki önemli bulunmamıştır. Yani N-Ba boyutu küçülürken V-Bo boyutunun artacağı gösteren bir bulgu söz konusu
değildir. Hatta V-Bo/N-Ba oranı ile S-Ba boyutu arasındaki negatif yönlü önemli ilişki \((r = -0.616, p < 0.05)\) arka kraniyal taban uzunluğu arttıkça bu oranın ve dolayısı ile V-Bo boyutunun küçülceğiğini göstermektedir.

Dolikosefal kız bireylerde ise gruptaki birey sayısıın azlığı bulgularımızın yorumu için yeterince geçerli olmasa da, NSBa açısı ile SBa.HOR açısı arasındaki pozitif Bo-HOR ölçümü arasındaki negatif ilişkinin r değerleri büyük bulunmuştur \((r = 0.583, -0.515)\). V-Bo/N-Ba oranı ile Bo-HOR ve V-Bo boyutları arasındaki pozitif yönli ilişkiler önemli seviyede \((r = 0.802, p < 0.01, r = 0.672, p < 0.05)\), aynı oran ile yine SBa.HOR açısı arasındaki ilişki önemli seviyede olmasa bile negatif ve yüksek r değeri göstermektedir. Bu bulgularımız Dolikosefal kız bireylerde arka kraniyal taban dikleşerek NSBa açısı küçülürken alt kraniyal yüksekliğinin artacağını, V-Bo/N-Ba oranının N-Ba boyutunun küçülmesi ile birlikte alt kraniyal yükseklik arttığı için de büyüdüğü ve bununla da sağsal ve vertical yöndeki bir dengeyi ifade etmektedir. Bu grupta V-Bo/N-Ba oranı ile servikal kolon konumunu bildiren ölçümler arasında önemli bir ilişki saptanamamış olsa da daha önce değinildiği gibi aynı oran ile NSL.VER ve WSL.VER açıları arasında mevcut pozitif yönli yüksek r değerleri \((r = 0.505, 0.473)\) V-Bo/N-Ba oranı artışça başın atlanto-oksipital eklemden ekstansiyona uğradığını veya bunun aksini anlatmaktadır. Bu bulgu V-Bo/N-Ba oranı ile CVT.HOR ve OPT.HOR açıları arasında pozitif yönli ilişkilerin saptanamamış olma nedeninin servikal kolon ve baş bağlantısının farklı anatomisi olması olduğunu düşündürmektedir.

Daha genel olarak düşünülürse; kraniyal kaide açısı ile alt kraniyal yükseklik arasında negatif bir ilişkinin söz konusu olduğu gruplarımızda V-Bo/N-Ba oranı birbirinden bağımsız olarak kraniyal yükseklik ve uzunluğun değişik değerleri yüzden arıtırmak olarak değil de, arka kraniyal taban posterior fleksiyonu ile artan N-Ba boyutu ile birlikte küçülen alt kraniyal yükseklik nedeni ile değişiyorsa bu gruplarımızda ya değişen servikal kolon pozisyonu ile ya da atlanto-oksipital eklemenin anatomisi ile bir denge kurulmuş olduğu, Hiperbrakisefal erkek ve Mezosefal kiz bireylerde olduğu gibi V-Bo/N-Ba oranının değişimindeki bu denge söz konusu değişse başın maksimum uzunluk ve genişlik ölçümleri arasında bir uyum olsa bile kastların basın kötle merkezini dengelemek zorunda kaldıkları ve bu yüzden değişkenlik sınırları daha geniş olan baş uzunluk ölçümleri ile dengeleyici kas çekme kuvvetleri etkisi altında şekillenen kraniyofasial morfolojünün belirli özelliklerini arasında ilişkilerin önemli bulunmuş olduğu söylenebilir.
Bu genellemeye Mezosefal ve Dolikosefal erkek gruplarımızın uymadığını düşünürsek; Mezosefal erkek bireylerde V-Bo/N-Ba oranı değişiminde yukarıda açıklandan denge söz konusu değil iken yine de V-Bo/N-Ba oranı ile servikal kolon konumu arasındaki ilişkinin kurulup basın maksimum uzunluk ölçümü ile mandibulanın pozisyonu arasında kas kuvvetleri etkisi şeklinde yorumlanabilecek ilişkilerin mevcut olması, bu grupta basın genişlik ve uzunluk ölçümleri arasında belirli bir ahşap olmasına, V-Bo/N-Ba oranının yanı sıra hem basın genişlik hem de uzunluk ölçümü ile ilişkisine ve bütün bunların yanısıra baş indisi değerinin daha çok genişlik ölçümü ile değiştiği bu grupta NSBa açısından basın genişliği ve sefalik indeks ile ilişkili bulunmasına bağlıdır.

Dolikosefal erkek bireylerde ise, bu dengenin atlanto-oksipital eklemek değişik anatomisi ve sfenoid kemik otasyonu ile kuruluğu ayrıca bu bireylerde kraniyofasiyai özelliklerin ve mandibula konumunun diğer gruplardan farklı ve belirgin bir şekilde basın maksimum genişlik ölçümü ile uyum gösterdiği söylenebilir.

Bütün bu bulgularımız; büyüme ve gelişim döneminde fasiyali morfoloji üzerindeki etkisi nedeni ile bireylerin doğal baş pozisyonları ve servikal kolon konumları değerlendirilirken, yanı kraniyal, kraniyoservikal ve servikal özellikler incelenirken; baş ve servikal kolon arasındaki anatominik ilişkilerinde bireyler arasında farklılık gösterebileceğinden herhangi bir bireyde incelediğimiz özelliklerin gerçekten başın fleksiyonu veya ekstansiyonunu mu, yoksa o birey için normal olan anatomik özelliğini mi yansıttığını baş tipi, baş boyutları ve cinsiyeti dikkate alarak irdelemek gerektğini düşündürmektedir.
SONUÇLAR

Farklı baş tiplerindeki kraniyofasial morfolojisi, bireylerin baş ve boyun postürlarını dikkate alarak incelediğimiz araştırmamızın sonuçları şu şekilde sıralanabilir:

- Başın maksimum uzunluk, genişlik ölçümlerinin ve kraniyal yüksekliğinin, ayrıca bu ölçümler arasındaki varyasyonların, kraniyofasial morfoloji ve baş-boyun ilişkisi üzerinde etkili olduğu bulunmuştur. Ancak sefalik indeks bu varyasyonları gruplandırmakta yetersiz kalmaktadır.

- Baş boyutlarının varyasyonları ve doğal baş postüründeki farklılıklar nedeni ile sefalik indeks kullanarak belirlediğimiz gruplarımızda belirgin kraniyofasial özellikler saplanamamıştır.

- Sefalik indekse göre baş tipleri gruplandırıldığında; Hiperbrakiselfal kız bireyler ile Brakiselfal ve Mezosexual erkek bireylerde servikal kolon konumu ve V-Bo/N-Ba oranı arasındaki ilişki ile başın dengelendiği, Dolikosexual erkek ve kız bireylerle Brakiselfal kız bireylerde ise bu dengenin atlanto-okspital eklemın yeri ve atlas ile oksipital kondillerin anatominin özellikleri ile dengelendiği görülmüştür.

- Hiperbrakiselfal erkek ve Mezosexual kız bireylerdeki baş ve boyun postürü, bireylerde büyük değişkenlik gösteren maksimum uzunluk ölçüümüne göre değiştiği için kraniyofasial morfolojinin başın uzunluğuna göre değişen postüre bağlı olarak belirlendiği söylenebilir.

- Bireylerin doğal baş ve boyun postürleri değerlendirilirken baş tipleri, baş boyutları ve cinsiyet dikkate alınmalıdır.
ÖZET

Hiperbrakiselal, Brakiselal, Mezosefal ve Dolikosefal baş tiplerine sahip bireylerin kraniyofasial morfolojilerini, doğal baş ve boyun postürlerini dikkate alarak incelemeyi amaçladığımız çalışmamızda, materyalimizi yaşları 19 ile 29 yıl arasında değişen 62'si kız, 52'si erkek olmak üzere 114 bireyin posteroanterior ve doğal baş konumunda alınmış lateral sefalométrik filmleri oluşturmuştur.

Cinsiyeti dikkate alarak dört baş tipinin kraniyofasial morfolojileri ve doğal baş-boyun postürleri 65 özellik kullanılarak incelenmiştir.

Çalışmamızda istatistiksel değerlendirirme; "Faktöriyel Düzende Varyans Analizi" ve "Duncan Testi" yanında 114 kişilik toplam materyalımızde ve her iki cins için ayrı ayrı olmak üzere baş tiplerine göre oluşturulmuş sekiz alt grupta kraniyal taban açısı, V-Bo/N-Ba oranı, sefalik indeks, maksimum uzunluk ve genişlik ölçümleri ile kraniyofasial ve postural parametreler arasında yürütülen "Korelasyon Analizi" ile yapılmıştır.

Bulgularımız; intrakraniyal ve ekstrakraniyal referans düzlemlerine göre inceленliğinde, baş boyunlarının kraniyofasial morfolojisi ve postur ile ilişkili olduğunu ancak sefalik indeks kullanılarak baş tipleri belirlendiğinde, sefalik indeks değerine bu boyunların katkıındaki varyasyonlar yüzünden kraniyofasial morfolojide belirgin farklar saptanmadığını, bireylerin doğal baş ve boyun postürleri değerlendirilirken baş ve servikal kolon ilişkisinde yine cinsiyet ve baş boyutlarına göre değişen farklı anatomik özelliklerin olabileceğini göz önüne alınması gerektğini göstermiştir.
SUMMARY

THE EVALUATION OF THE CRANIOFACIAL MORPHOLOGY IN DIFFERENT HEAD TYPES REGARDING NATURAL HEAD AND NECK POSTURES

In our study, we aimed to evaluate the craniofacial morphology of individuals with Hyperbrachycephal, Brachycephal, Mesocephal and Dolichocephal head types, regarding their natural head and neck postures. The sample comprised posteroanterior and lateral cephalometric radiographs taken at the natural head position of 114 subjects at the range of 19-29 years of age.

Craniofacial morphology and natural head and neck postures of four head types were assessed concerning sex differences, using 65 characteristics.

Statistical evaluation was carried out on the main sample of 114 subjects and on eight subgroups defined according to head types and sex differences, using correlation analysis between cranial base angle, V-Bo/N-Ba proportion, cephalic index, maximum width and length measurements and craniofacial and postural parameters, besides ANOVA and Duncan test.

Our findings showed that the head sizes were considerably associated with craniofacial morphology when evaluated using both intra and extra cranial reference planes, but when head types were classified according to cephalic index, no significant difference was found between craniofacial morphologies because of the variations of the effects of these sizes on cephalic index. Thus, this shows that one may confront different anatomic characteristics of head and cervical column relationship due to sex differences and head size while evaluating natural head and neck posture.

