SİTOTOKSİK ANTİBİYOTİK KULLANIMINA
BAĞLI GELİŞEN KARDİYAK TOKSİSİTENİN
ERKEN BELİRLENMESİNDE PLAZMA BNP, cTnI
VE ANİOKSIDAN POTANSİYEL DEĞERLERİ

123809

Dr. Bedirhan ERKUŞ

ÜC. YÖKSEŁEŞÕTûM KURûLÜ
BİYOKİMYA ANABİLİMLIM DALI
DOKTORA TEZİ

123809

DANİŞMAN
Prof. Dr. Levent KARACA

2002 – ANKARA
Ankara Üniversitesi Sağlık Bilimleri Enstitüsü

Biyokimya Doktora Programı

cerçevesinde yürütülmüş olan bu çalışma, aşağıdaki jüri tarafından

Doktora Tezi olarak kabul edilmiştir

Tez Savunma Tarihi: 3/10/2002

Prof. Dr. Kadirhan Sunguroğlu
Ankara Üniversitesi Tıp Fakültesi
(Jüri Başkanı)

Prof. Dr. Levent Karaca
Ankara Üniversitesi Tıp Fakültesi
(Danışman)

Prof. Dr. Ayşel Arıcıoğlu
Gazi Üniversitesi Tıp Fakültesi

Prof. Dr. İlker Durak
Ankara Üniversitesi Tıp Fakültesi

Doç. Dr. Serenay Elgün
Ankara Üniversitesi Tıp Fakültesi
(Raportör)
ÖNSÖZ

Doktora eğitim ve tez çalışmalarım boyunca bana yol göstererek destek olan, her zaman yardımlarını gördüğüm başta tez danışmanım Sayın Prof. Dr. Levent Karaca olmak üzere Biyokimya Anabilim Dalı Başkanım Sayın Prof. Dr. Kadirhan Sunguroğlu’na, Öğretim Üyeleri Sayın Prof. Dr. İlker Durak’a Sayın Prof. Dr. Mustafa Akpoyraz’a, Sayın Doç. Dr. Serenay Elgün’e, Sayın Doç. Dr. Serdar Öztürk’e, Biyokimya Anabilim Dalındaki tüm doktor arkadaşlarına ve Anabilim Dalımızın tüm çalışanlarına teşekkür eder, saygularımı sunarım.

Ayrıca hasta takibi ve kan örneklerini toplamamda yardımcı olan LÖSEV Lösante Lösemili Çocuklar Hastanesi doktor, hemşire ve diğer çalışanlarına da teşekkürü bir borç bilirim.

Dr. Bedirhan Erkuş
İÇİNDEKİLER

Kabul ve Onay ii
Önsöz iii
İçindekiler iv
Simgeler ve Kısaltmalar vii
Şekiller ix
Tablolar xi

1. GİRİŞ 1
1.1. Sitotoksik Antibiyotikler, Lösemi Tedavisi ve Kardiyotoksisite 1
1.2. Sitotoksik Antibiyotikler 4
1.2.1. Sitotoksik Antibiyotiklerin Etki Mekanizmaları 5
1.2.2. Sitotoksik Antibiyotikler İle Uyarılmış Kardiyotoksisitenin Patogenezi 6
1.2.3. Sitotoksik Antibiyotik Kardiyotoksisitesinde Risk Faktörleri 10
1.3. Çalışmada Uygulanan Parametrelere İlişkin Genel Bilgiler 12
1.3.1. Miyokardın Ultrastrüktürü 12
1.3.1.1. Kasılmada Görev Alan Proteinler 15
1.3.1.1.1. Troponin Kompleksi 17
1.3.2. Natriüretik Peptidler 18
1.3.2.1. Kardiyak Natriüretik Peptid Sisteminin Fizyolojisi 22
1.3.3. Sitotoksik Antibiyotikler ve Serbest Radikaller 25
1.4. Sitotoksik Antibiyotik Kardiyotoksisitesini Saptama Metodları 29
1.4.1. Biyokimyasal Tetkikler 32
1.4.1.1. Natriüretik Peptidler 32
1.4.1.2. Kardiyak Troponin 32
1.4.1.3. Antioksidan Potansiyeller 33
1.4.1.4. Endotelin 34
2. GEREÇ VE YÖNTEM
2.1. Hasta Grubu
2.2. Ekokardiyografik İnceleme
2.3. Kan Örneğinin Toplanması ve Saklanması
2.4. BNP (IRMA) Ölçümü
2.5. BNP (IFMA) Ölçümü
2.6. cTnI Ölçümü
2.7. Antioksidan Potansiyel Ölçümü
2.8. Total Antioksidan Ölçümü
2.9. İstatistiksel Analiz

3. BULGULAR
3.1. Ekokardiyografi Sonuçlarının Değerlendirilmesi
3.2. Biyokimyasal Kan Sonuçlarının Değerlendirilmesi
3.2.1. BNP Sonuçlarının Değerlendirilmesi
3.2.1.1. BNP (IRMA) ve BNP (IFMA) Ölçüm Değerlerinin Karşılaştırılması
3.2.1.2. İlaç Dozlarına Göre BNP Sonuçlarının Değerlendirilmesi
3.2.1.3. BNP Değerleri ile LVEF Değerleri Arasındaki İlişki
3.2.1.4. BNP Değerleri ile FS Değerleri Arasındaki İlişki
3.2.2. cTnI Sonuçlarının Değerlendirilmesi
3.2.3. Antioksidan Sonuçlarının Değerlendirilmesi
3.2.3.1. AOP Sonuçlarının Değerlendirilmesi
3.2.3.2. TAOS Sonuçlarının Değerlendirilmesi
3.2.3.2.1. Manuel TAOS ve Otomatik TAOS Ölçüm Değerlerinin Karşılaştırılması
3.2.3.2.2. İlaç Dozlarına Göre TAOS Sonuçlarının Değerlendirilmesi
3.2.4. Cinsiyet ve Yaş Göre Sonuçların Değerlendirilmesi
3.2.5. İki ve Üç Açıklayıcı Değişkenli Linear Regresyon Analizleri ile BNP, TAOS ve Ekokardiyografi Sonuçlarının İstatistiksel Değerlendirilmesi
4. TARTIŞMA

5. SONUÇ

ÖZET

SUMMARY

KAYNAKLAR
<table>
<thead>
<tr>
<th>SİMGELER VE KİSALTMALAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
</tr>
<tr>
<td>ACTH</td>
</tr>
<tr>
<td>ANP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ANT</td>
</tr>
<tr>
<td>AOP</td>
</tr>
<tr>
<td>ATP</td>
</tr>
<tr>
<td>BNP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>cAMP</td>
</tr>
<tr>
<td>cGMP</td>
</tr>
<tr>
<td>CNP</td>
</tr>
<tr>
<td>cTnI</td>
</tr>
<tr>
<td>DNA</td>
</tr>
<tr>
<td>EDTA</td>
</tr>
<tr>
<td>EF</td>
</tr>
<tr>
<td>FDA</td>
</tr>
<tr>
<td>GSH</td>
</tr>
<tr>
<td>GSH-Px</td>
</tr>
<tr>
<td>IFMA</td>
</tr>
<tr>
<td>IRMA</td>
</tr>
<tr>
<td>KKY</td>
</tr>
<tr>
<td>MDA</td>
</tr>
<tr>
<td>NADH</td>
</tr>
<tr>
<td>NADPH</td>
</tr>
</tbody>
</table>
NPR Natriüretik Peptid Reseptörü
PBS Fosforla tamponlanmış fiziolojik serum
RAAS Renin Anjiotensin Aldesteron Sistemi
RNA Ribonükleik asid
RIA Radioimmuno assay
SF Kısalta Fraksiyonu
SOD Süperoksid dismutaz
TAOS Total Antioksidan Status
TnC Troponin C
TnI Troponin I
TnT Troponin T

O₂⁻ Süperoksit radikali
OH⁻ Hidroksil radikali
H₂O₂ Hidrojen peroksit
ŞEKİLLER

Şekil 1.1. Sitotoksik antibiyotiklerin kimyasal yapısı 4
Şekil 1.2. Dokсорubisinin redoks siklusu ve detoksifikasyon yolu 7
Şekil 1.3. Deksrazoksanın dokсорubisinde şelat yapmış olan demiri ayırma şekli 9
Şekil 1.4. Dokсорubisine bağlı KKY gelişme olasılığının kümülatif doz ile ilişkisi 11
Şekil 1.5. Miyokardin ultrastrüktürü 13
Şekil 1.6. Kasılmada görev alan proteinler 15
Şekil 1.7. Kalın filamentlerin yapısı 16
Şekil 1.8. İnce filamentlerin yapısı 17
Şekil 1.9. Natriüretik peptidlerin yapısı 20
Şekil 1.10. İnsan natriüretik peptidlerinin aminoasid dizilişi 20
Şekil 1.11. Kardiyak natriüretik peptidlerin sekresyonu ve fiziolojik etkilerinin uyarımı 22
Şekil 1.12. Kardiyak natriüretik peptidlerin sentezi, depolanması ve sekresyonu 24
Şekil 1.13. Sitotoksik antibiyotikler tarafından oksijen serbest radikallerinin oluşumu 27
Şekil 1.14. Sitotoksik antibiyotik-demir kompleksi tarafından oksijen serbest radikallerinin oluşumu 28
Şekil 2.1. Yarı logaritmik kağıda çizilen standart eğri 38
Şekil 3.1. Doz ile LVEF değerleri arasındaki ilişki 48
Şekil 3.2. Doz ile FS değerleri arasındaki ilişki 48
Şekil 3.3. BNP (IRMA) ile BNP (IFMA) arasındaki ilişki 51
Şekil 3.4. IRMA ve IFMA metodlarına göre ölçülen BNP konsantrasyonlarının Bland-Altman metodu ile gösterilmesi 52
Şekil 3.5. BNP (IRMA) ile sitotoksik antibiyotik dozu arasındaki ilişki 53
Şekil 3.6. BNP (IFMA) ile sitotoksik antibiyotik dozu arasındaki ilişki 54
Şekil 3.7. BNP (IRMA) değerleri ile LVEF değerleri arasındaki ilişki 55
Şekil 3.8. BNP (IFMA) değerleri ile LVEF değerleri arasındaki ilişki 55
Şekil 3.9. BNP (IRMA) değerleri ile FS değerleri arasındaki ilişki 56
Şekil 3.10. cTnI ile sitotoksik antibiyotik dozu arasındaki ilişki 57
Şekil 3.11. AOP ile sitotoksik antibiyotik dozu arasındaki ilişki 58
Şekil 3.12. Manuel TAOS ve otomatik TAOS değerleri arasındaki ilişki 59
Şekil 3.13. Manuel ve otomatik ölçüm metodlarına göre ölçülen TAOS konsantrasyonlarının Bland-Altman metodu ile gösterilmesi 60
Şekil 3.15. Otomatik TAOS ile sitotoksik antibiyotik dozu arasındaki ilişki 62
Şekil 3.16. Manuel TAOS ile BNP (IRMA) arasındaki ilişki 63
Şekil 3.17. Manuel TAOS ile BNP (IFMA) arasındaki ilişki 63
Şekil 3.18. Otomatik TAOS ile BNP (IRMA) arasındaki ilişki 64
Şekil 3.19. Otomatik TAOS ile BNP (IFMA) arasındaki ilişki 64
TABLOLAR

Tablo 2.1. Randox Total Antioksidan Aplikasyonu 44
Tablo 3.1. Hasta grubunda elde edilen ekokardiyografik değerler 46
Tablo 3.2. 6 ay sonra hasta grubundan elde edilen kontrol ekokardiyografik değerler 47
Tablo 3.3. Hasta grubundan elde edilen telegraflı ve elektrokardiyografik değerler 49
Tablo 3.4. Hasta grubundan elde edilen biyokimyasal değerler 50
Tablo 3.5. TAOS değişkenine göre ilaç dozu ve BNP (IRMA) değişkenleri arasındaki regresyon analizinin sonuçları 66
Tablo 3.6. TAOS değişkenine göre ilaç dozu ve BNP (IFMA) değişkenleri arasındaki regresyon analizinin sonuçları 66
Tablo 3.7. TAOS değişkenine göre ilaç dozu ve BNP (IRMA) ve LVEF değişkenleri arasındaki regresyon analizinin sonuçları 67
Tablo 3.8. TAOS değişkenine göre ilaç dozu, BNP (IRMA) ve FS değişkenleri arasındaki regresyon analizinin sonuçları 67
Tablo 3.9. TAOS değişkenine göre ilaç dozu, BNP (IRMA) ve E/A değişkenleri arasındaki regresyon analizinin sonuçları 68
Tablo 3.10. TAOS değişkenine göre ilaç dozu, BNP (IFMA) ve LVEF değişkenleri arasındaki regresyon analizinin sonuçları 68
Tablo 3.11. TAOS değişkenine göre ilaç dozu, BNP (IFMA) ve FS değişkenleri arasındaki regresyon analizinin sonuçları 69
Tablo 3.12. TAOS değişkenine göre ilaç dozu, BNP (IRMA) ve E/A değişkenleri arasındaki regresyon analizinin sonuçları 69
1. GİRİŞ

1.1. Sitotoksik Antibiyotikler, Lösemi Tedavisi ve Kardiyotoksisite

Çocukluk çağında lösemilerinin tedavisinde yoğun kemoterapinin kullanılmaya başlanmasıyla birlikte geçen 40 yılda lösemi hastalığının prognozunda önemli ilerlemeler olmuştur. Özellikle Akut Lenfoblastik Lösemilerde (ALL) kombine ve yüksek doz kemoterapinin, özellikle sitotoksik antibiotiklerin etkin kullanımı ile son yıllarda çocukluk çağında lösemilerindeki remisyon oranı % 85-90 düzeylerine ulaşmıştır. Ülkemizde çocukluk çağında her yıl yaklaşık 1500 yeni lösemi hastalığının ortaya çıktığı tahmin edilmektedir. Lösemi tedavisi gören bu popülasyonda tedaviye bağlı yan etkilerin en erken düzeyde saptanıp, önlemler alınarak yaşam kalitesini arttırma giderek daha çok önem kazanmaktadır.

Lösemi tedavisi sırasında veya yıllar sonra ortaya çıkabilen, önemli derecede morbidite ve mortaliteye sahip komplikasyonlardan birisi de kemoterapotiklerin kullanımına bağlı gelişen kardiyak komplikasyonlardır. Birçoğu lösemi tedavi protokollerde yer alan sitotoksik antibiyotik (antrasiklin) grubu ilaçların erken veya geç dönemde kardiyak toksiste potansiyelleri bulunmaktadır. Bu ilaçlara maruz kalan hastalar kardiyotoksisite riski nedeniyle tedavi süresince ve tedavi kesiminden sonra hayat boyu izlenmelidir (Gasparini, 1994).

Bu hastalarda sitotoksik antibiyotik tedavi süresince ve sonrasında oluşabilecek komplikasyonlar açısından kardiyak fonksiyonların ekokardiyografi ve/veya radyonuklit teknikler ile izlenmesi önerilmektedir. Kardiyotoksisite tedavi kesiminden yıllarca sonra başlayabildiği ve uzun süre asemptomatik olarak kalabildiği için henüz klinik bulgular ortaya çıkmadan saptanması gereklidir. Hücresel düzeyde miyokard hasarı oluşumundan, ekokardiyografik ve anjiografik olarak kardiyak fonksiyonlardan
saptanabilen bozukluk meydana gelene kadar bugün için invaziv bir işlem olan endomiyokardial biyopsiden başka duyarlı bir metod henüz yoktur. Biyopside dahi miyokard tutulumu diffüz olmadığını taktirde toksisite saptanamayabilmektedir.

Sitotoksik antibiyotiklere bağlı oluşan kardiyak toksisitenin erken düzeyde saptanmasında araştırılmaktadır olan yöntemlerden bir tanesi de plazma Kardiyak Troponin I (cTnI) düzeyidir (Mair, 1997). cTnI normal şartlar altında miyokard hasarı olmadan serumda tesbit edilemez veya çok düşük düzeylerde saptanabilirken akut miyokard enfarktüsü, akut kardiyard, küt kardiyak travma gibi miyokard hasarı oluşturulan durumlarda Laktat Dehidrogenaz ve Kreatinkinaz MB den daha spesifik olarak kardiyak hasarı gösterebilirmektedir (Burtis ve Ashwood, 1999, s.:1194-1195).

Sitotoksik antibiyotiklerin kardiyotoksiste oluşturma mekanizmalarının miyozitlerdeki elektron aktarmalar zincirinin inaktivasyonuna bağlı Ca²⁺/Na⁺ alışveriş bozukluğu yanında en önemlilerinden biriside serbest radikal oluşumudur. Serbest radikallerin oluşturduğu etkileri ortadan kaldırma için oluşan antioksidanların düzeyi de kardiyak hasarı gösterebilirmektedir (Rhoden ve ark., 1993, Devi ve ark., 2000).

Bütün bu verilere rağmen kardiyotoksistenin erken belirlenmesinde kesin ve güvenilir bir yönteme henüz tam olarak ulaşılamamıştır. Özellikle invaziv olmayan, ucuz ve sık
tekrarlanabilirliği ile dikkatleri üzerinde toplayan plazma belirteçlerinin elverişiliklerine ait çalışmalar henüz çok yetersizdir. 2000 yılının son aylarında Amerika Birleşik Devletleri’nde FDA (Food and Drug Administration Office) tarafından onaylanan plazma BNP testinin teknik yönünden geliştirilmesi, tanı ve tedavideki etkinliğinin araştırılması bir çok uluslararası kuruluşlar tarafından desteklenmektedir (Wu, 2001).

Biz de bu çalışmada sitotoksik antibiotik içeren tedavi protokolleri uygulanan, hastalığın şiddetine ve klinik seyrine göre bu ilaçtan 200mg/m²^den az ve 200mg/m²^den fazla dozlardada verilmekte olan çocukluk çağlı lösemilerinde;

1) Dozlara göre cTnI düzeyleri bu gruplarda ne kadar olmaktadır?
2) Dozlara göre BNP düzeyleri immunoradiometric assay (IRMA) ve immunofluorescence assay (IFMA) tayin yöntemlerine göre bu gruplarda ne kadar olmaktadır?
3) Dozlara göre BNP değerlerinde IRMA ve IFMA tayin yöntemleri arasında bir ilişki var mıdır?
4) Dozlara göre antioksidan potansiyel (AOP) düzeyleri bu gruplarda ne kadar olmaktadır?
5) Bu testler için bir cut-off değeri saptanabilir mi?
6) Hangi değer üzerinde bir komplikasyon söz konusudur?

Bu soruların cevapların araştırmanın kümülatif sitotoksik antibiotik dozu ile BNP, cTnI, AOP ve ekokardiyografik olarak belirlenen sistolik ve diyalostik kardiyal fonksiyonlar karşılamlararak kardiyotoksitin erken saptanmasında BNP, cTnI ve AOP’nin önemi, serum BNP, cTnI ve AOP düzeylerinde ilaç dozlarına göre değişiklikler saptanabilirse, bu değişikliklerden yola çıkarak subklinik kardiyotoksitin tesbitinde BNP, cTnI ve AOP’ın tanı kriteri olup olamayacağını araştırılması amaçlanmıştır.
1.2. Sitotoksik Antibiyotikler

Yapısal olarak bir amino şeker olan daunozamin ve buna glikozid bağ ile bağlı tetrasiklik antrakinon halkasından oluşurlar (Şekil 1.1).

![Diagram](image)

<table>
<thead>
<tr>
<th>Doksorubisin</th>
<th>Daunorubisin</th>
<th>Epirubisin</th>
<th>Idarubisin</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁=</td>
<td>OCH₃</td>
<td>OCH₃</td>
<td>H</td>
</tr>
<tr>
<td>R₂=</td>
<td>H</td>
<td>H</td>
<td>OH</td>
</tr>
<tr>
<td>R₃=</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>R₄=</td>
<td>OH</td>
<td>H</td>
<td>OH</td>
</tr>
</tbody>
</table>

Şekil 1.1. Sitotoksik antibiyotiklerin kimyasal yapısı (Hardman ve ark., 1995, s.:1265)

Sitotoksik antibiyotiklerin doz-cevap eğrisi genellikle diktir ve terapotik penceleri dardır, ayrıca doz toksik cevap eğrileri de diktir. Bu nedenle dozlardan vücud ağılığının kg'ı başına değil de vücud yüzey alanının m²'si başına belirlenmesi daha doğru bir doz ayarlanmasına olanak verir (Kayaalp, 1998, s.:380).

1.2.1. Sitotoksik Antibiyotiklerin Etki mekanizmaları

Sitotoksik antibiyotikler antitümoral etkinliklerini değişik mekanizmalarla oluştururlar. Bu mekanizmalar içinde en önemlileri DNA interselasyonu, Topoizomerase II enziminin inhibisyonu ve serbest radikal oluşumudur.

Sitotoksik antibiyotikler kimyasal olarak çok reaktif bir yapıya sahiptirler. Antitümor
etkide ve kardiyak toksisitede rol oynayan elektron redüksiyonu, kofaktör olarak demire ihtiyaç göstermektedir ve oluşan hidroksil radikalleri DNA ve hücre membranında yaygın zedelenmeye yol açmaktadır (Chabner ve Collins, 1993, Nathan ve Oski, 1993).

Sonuç olarak sitotoksik antibiyotiklerin etki mekanizması multifaktoriyeldir.

1.2.2. Sitotoksik Antibiyotikler İle Uyarılmış Kardiyotoksisitenin Patogenezi

Sitotoksik antibiyotikler ile tedavi çeşitli kardiyotoksisite tipleri ile ilişkilidir:
1) Akut toksisite, genellikle hızlı intravenöz uygulama ile ilgilidir ve vazodilatasyon, hipotansiyon ve kardiyak disritmiler ile belirli verir.
2) Subakut toksisite, sık değildir tedavinin erken döneminde gelişir ve miyokardit ve perikardit ile karakterizedir.
3) Kronik toksisite, sitotoksik antibiyotik ile uyarılmış kardiyotoksitenin en sık görülen formudur ve tedavinin seyrinde geç gelişen veya sonlandırılmasından kısa süre sonra ortaya çıkan kronik dilate kardiyomyopati ile belirli verir.
Sitotoksik antibiyotiklerin sebebi olduğu miyokard hasarının mekanizmaları tam olarak bilinememektedir, ancak bu konuda bazı hipotezler mevcuttur.

Bunlardan bir tanesi sitotoksik antibiyotiklerin yapısında bulunan antrakinon halkasının enzimatik olarak redüksiyonu ile ilgilidir, antrakinon flavin bağlı redüktazlar tarafından elektron redüksiyonuna uğramaktadır, bu redüksiyon sonucu kendisi bir serbest radikal olan semikinin oluşur. Semikinin daha sonra hidrokinona dönüştürülebilir veya alternatif olarak moleküller oksijene bir elektron vererek antrakinon formuna geri döner ve süperoksit radikali oluşturur. Süperoksit radikali, süperoksit dismutazla reaksiyonu sonucu bir elektron vererek moleküller oksijen ve hidrojen peroksit moleküllerini oluşur (Şekil 1.2).

Şekil 1.3. Deksrazoksanın doksorubisinle şelat yapmış olan demir ayırma şekli (Holland ve ark., 1992, s.:982)

Sitotoksik antibiyotikler mitokondriyal membranın iç kısmındaki kardiyolipine bağlanarak kardiyolipin-sitokrom c kompleksinin oluşmasını önler ve böylece sitokrom oksidaz ile olan ilişkisinin bozulmasına yol açar. Sonuç olarak normalde kardiyolipin tarafından aktive edilen NADH-sitokrom c oksido redüktaz kompleksi aktive edilemeyeceğinden solunum zincirindeki elektron transferi ve ATP sentezi bozulur. İlaç-
kardiyolipin kompleksi elektron transferi yoluya serbest hidroksil radikalleri ve hidrojen peroksit oluşumuna da sebep olarak mitokondriyal membranda hasarın artmasına ve enzimatik solunumun daha da bozulması ile lipid peroksidasyonunun artmasına neden olur (Fu ve ark., 1990, Goormaghtigh ve ark., 1990).

Bütün bu hipotezlerden anlaşıldığı gibi büyük olasılıkla kardiyotoksisite tek etkiden çok bu mekanizmaların kombinasyonu sonucu oluşmaktadır.

1.2.3. Sitotosik Antibiyotik Kardiyotoksisitesinde Risk Faktörleri

Kümülatif Doz: Kronik kardiyotoksisiteye bağlı KKY gelişmesi ilacin kümülatif dozuna bağlıdır. Toplam doz 400 mg/m²'nin altında ise KKY insidansı % 0,14'tür. Total doz 550 mg/m² ise bu insidans % 7 olmaktadır. Toplam doz 700 mg/m²'ye ulaşığında ise % 18'e çıkmaktadır (Şekil 1.4). Klinik toksisitedeki çarpıcı artış nedeniyle 550 mg/m² kümülatif sitotosik antibiyotik dozu kabul edilen amprik limit dozdur (Chabner ve Collins, 1993). Hastalar arasında ilaç toleransı bakımından büyük farklılıklar vardır, bazı hastalar 1000 mg/m² dozundan yüksek dozları bile tolerete etmektedir. Buna karşın 300 mg/m² gibi düşük kümülatif dozda sol ventrikül ejeksiyon fraksiyonunda belirgin düşme bildirilmektedir (Henderson ve ark., 1989). Kardiyotoksisite için eşik değerler ortaya koymak zor olmasına rağmen, eğrinin eğimi keskin bir şekilde 550 mg/m² ile birlikte yükselme göstermektedir.
Şekil 1.4. Doksorubisine bağlı KKY gelişme olasılığının kümulatif doz ile ilişkisi (Basser ve Green, 1993)

Mediastene Radyoterapi Uygulanması: Daha önce veya eş zamanlı mediastinal radyoterapi uygulanması sonucu kalbin radyasyona maruz kalması, kalbin sitotoksik antibiotiklere hassasiyetini artırmaktadır. Kalp bölgesine 2000 rad radyasyon uygulandığında 250 mg/m² kümulatif ilaç dozu, 500 mg/m² doza eşit kardiyotoksite göstermektedir (Pihkala ve ark., 1996)

Kalp Hastalığı Hikayesi: Hastada daha önceden mevcut olan valvuler, koroner veya
miyokardiyal kalp hastalığı sitotoksik antibiyotik kardiyotoksisitesi için risk faktörüdür (Von Hoff ve ark., 1979).

Bazı Kemoterapotik İlaçlarla Birlikte Kullanma: Siklofosfamid başta olmak üzere çeşitli kemoterapotik ilaçlarla birlikte kullanıma sitotoksik antibiyotiklerin kardiyotoksik etkilerini potansiyelize eder (Von Hoff ve ark., 1979).

Yaş: Sitotoksik antibiyotik grubu ilaçlara bağlı kardiyak yan etkiler erişkinlere göre çocukluk yaş grubunda daha sık görülür. Özellikle 5 yaşın altında çocuklar kardiyotoksisite riski daha fazladır. Bu çocuklarda çok daha düşük kümülatif dozlarla KKY ortaya çıkabilir. Kalpteki toplam miyosit sayısı infant döneminde maksimum sayıya ulaşıldığında ve bundan sonra yeni ihtiyaçlara, mevcut miyositler hipertrofiye uğrayarak adaptasyon göster diklerinden, ilaç uygulanmında meydana gelen miyosit hasarı, bazı miyositlerin kaybı ve yerlerine fibrozis gelişmesi miyokardin adaptasyon mekanizmasını azaltmaktadır (Pizzo ve Poplack, 1993).

Cinsiyet: Sitotoksik antibiyotikler ile tedavi edilmiş kız çocuklarda kardiyotoksisite riskinin arttığı ve bunun muhtemelen ilacin lipofilik olmamasından dolayı kızlardada serumda daha yüksek konsantrasyonlarda bulunmasından kaynaklandığı bildirilmiştir (Silber ve ark., 1993).

1.3. Çalışmada Uygulanan Parametrelerle İlişkin Genel Bilgiler

1.3.1. Miyokardın Ultrastrüktürü

Kalp kası düzenli bir dağılım gösteren kas liflerinden oluşur. İşık mikroskobunda kas bantlarının, kas hücrelerinden ve 50 μ uzunluğunda, 15 μ genişliğinde kas liflerinden

Şekil 1.5. Miyokardın ultrastrüktürü. (Bahçeci, 1997, s.:3)
Sarkolemma: Miyokard liflerinin etrafını çevreçevre saran hücre zarıdır. Süperfisyel membran sistemi ve sarkoplazmik retikulum aracılığı ile miyokard liflerinin interstisyel alanla ilişkilerini düzenler.

Süperfisyel Membran Sistemi: İnterkale diskler ve transvers tübüler sistem (T sistem) en önemli yapılarındadır. İnterkale diskler, intersellüler kavşak ile hücrenin terminal sarkomeri arasında yer alır ve bu şekilde lifleri üç kısımlarından birbirine bağlar. T sistem ise I bantları boyunca, sarkolemmanın vertikal olarak hücrenin içine doğru derin invajinasyonu sonucu oluşan kompleks bir ağ örgüsüdür. Ekstrasellüler ortamla teması sağlar ve miyokarda depolarize edici uyarılara hızlı iletilmesi için yollar oluşturur.

Sarkoplazmik Retikulum: Bu sistem T sisteme döküntü yapacak şekilde A bandı bölgesinde uzunlamanmasına olarak dağılan yoğun bir intrasellüler tübüler membran sistemidir. T sistem ile sıkı bağlantılı halindedir ve onun hücre içine dağıtımını sağlar. Ayrıca sarkoplazmik retikulumun hücre içinde Ca²⁺ depolanmasında da önemli rolü vardır.

Mitokondri: Kalpte oksijen gereksininin fazla olması nedeniyle miyokard hücrelerinin yaklaşık % 30’unu mitokondriler oluşturur ve bunlar miyofibriller arasında yerleşirler. Özellikle A bantların yanında yer alır ve böylece miyozin ATP’az, oksijen ve uygun maddelerin kullanımını sağlayan, ATP’den enerji sağlar. Glukoza stoplamaz ve sarkoplazmada glikojen şeklinde depolanarak burada anaerobik glikoliz yoluya enerji için kullanılır. Ayrıca mitokondri membranının Ca²⁺ depolama yeteneği de vardır.
1.3.1.1. Kasılmada Görev Alan Proteinler

Kalın Filamentler

Kalın filamanların proteini miozindir ve kas proteininin % 55’ini oluşturur. Birkaç yüz miozin molekülüün birbirine paralel dizilmesiyle kalın filamentler meydana gelir. Miyozin, her biri globüler lateral sonlu ve başlı “ağır meromiyozin” ile çift helezon şeklinde uzanan “hafif meromiyozin” moleküllerinin birleşmesiyle oluşur.

İnce Filamentler

Kasılmada primer görevli miyozin ve aktin proteinlerine ilaveten, ince filamentler üzerinde yerleşim gösteren iki adet düzenleyici protein bulunur; tropomiyozin ve troponin kompleksidir. Bunlar kasılmada görevli proteinler olmayıp, aktin-miyozin etkileşmesini aktive veya inhibe ederek kasılmada düzenleyici rol oynarlar.
Tropomiyozin çift sarmalı F aktin olduğunda yer alan, α ve β olmak üzere iki zincirden oluşmuş fibroz bir proteindir. İstirahat durumunda F aktin zincirlerinin aktif bölgesini kapatıp aktin ile miyozin arasında kontraksiyona neden olan etkileşmeyi engeller.

![Diagram](image)

Şekil 1.8. İnce filamentlerin yapısı (Rawn, 1989, s.:1081).

1.3.1.1.1. Troponin Kompleksi

Troponin kompleksi farklı yapı ve fonksiyon içeren üç alt birimden oluşmaktadır.
Troponin T (TnT): Troponin kompleksinin tropomiyozine bağlanmasını sağlar (Braunwald, 1992, Murray ve ark., 1993)

Troponin C (TnC): Ca²⁺’u bağlayarak kas kontraksiyonunu başlatır ve TnI’nın inhibitör etkisini ortadan kaldırır. Yapısal ve işlevsel olarak kalmodülin moleküline benzer ve her iki proteine de dört Ca²⁺ moleküle bağlanır (Braunwald, 1992, Guyton ve Hall, 1996)

Her kalp atımında meydana gelen Ca²⁺ düzeyindeki düşüş ve yükselişler kas kuvvetinin siklik artış ve azalışına neden olur. Sistol esnasında Ca²⁺ konsantrasyonu en üst düzeydedir ve TnC’ye bağlanarak tropomiyozinin aktin üzerindeki inhibitör etkisinin ortadan kaldırılması ile kasılma sağlanır (Bennett ve Plum, 1996, Guyton ve Hall, 1996).

1.3.2. Natriüretik Peptider

De Bold ve arkadaşlarının ratlarda atriyal ekstrelerin intravenöz uygulamalarının sodyum atılımında belirgin artışa sonuçlandığı bulgusunu tespit ettiği günden beri 20 yılı aşkın süre geçti. Bu keşif bilim adamları tarafından büyük heyecanla karşılandı,

Kardiyovasküler hastalıklara ilgili olan aile üyeler, A tipi natriüretik peptid de denilen atriyal natriüretik peptid , B tipi natriüretik peptid de denilen beyin natriüretik peptid ve C tipi natriüretik peptiddir (CNP). Her biri için öncü hormon, ayrı bir gen tarafından kodlanır (Levin ve ark., 1998). Beyin natriüretik peptid ismi yanlışlıdır, çünkü dolaşımındaki BNP kalpten köken alır ve bu peptidin en yüksek konsantrasyonları miyokard içerisinde bulunur, bu peptid ilk olarak domuz beyin dokusundan izole edildiği için beyin natriüretik peptid olarak ifade edilmiştir (Sudoh ve ark., 1988).

ANP, BNP, CNP ve ürodlatin iki sistein kalıntısı arasında oluşan bir disülfit bağlı ile oluşan bir halka yapısına sahiptirler. Bu ortak halka yapışı hepsinde aynıdır ve 17 amino asidi kapsar, reseptörlere bağlanan kısm bu bölgedir. Farklı yan peptid yapıları, söz konusu peptiderin farklılıklarını ve özelliklerini sağlarlar (Şekil 1.10).
Şekil 1.9. Natriüretik peptidlerin yapısı (Wu, 2001)

<table>
<thead>
<tr>
<th></th>
<th>Temel Yapı</th>
<th>Reseptör</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANP</td>
<td>1–28</td>
<td>NPR-A, NPR-C</td>
</tr>
<tr>
<td>BNP</td>
<td>1–32</td>
<td>NPR-A, NPR-C</td>
</tr>
<tr>
<td>CNP</td>
<td>1–22</td>
<td>NPR-B, NPR-C</td>
</tr>
</tbody>
</table>

Şekil 1.10. İnsan natriüretik peptidlerinin aminoasid dizilişi (Levin ve ark., 1998)
1.3.2.1. Kardiyak Natriüretik Peptid Sisteminin Fizyolojisi:

Şekil 1.11. Kardiyak natriüretik peptidlerin sekresyonu ve fizyolojik etkilerinin uyarımı (Mair ve ark. 1999)
RAAS vazopresin ve sempatik sinir sistemi, sodyum ve sıvı dengesini sağlar, böylece kan basıncını düzenler. Fizyolojik antagonistler olarak ANP ve BNP, tuzu ve su yüklenmesi veya yüklenmiş kan basıncını ilgilendiren durumlarda bu sistemlere karşı koyar. Bunlar ACTH salınımını ve santral sinir sistemi içerisinde sempatik sinir sistemini inhibe eder ve periferik olarak glomerüler filtrasyon hızını diürezi ve natriürezi artırır, sistemik vasküler direnci ve plazma hacmini kalbi akut hacim yüklenmesinden korumak için azaltır (Şekil 1.11) (Mair ve ark., 1999).

BNP sekresyonu: ProANP’nin aksine, proBNP (108 amino asit) granüllerde depolanmaz (Şekil 1.12). Bu yüzden BNP sentezinin ve salgılanmasının akut düzenlenmesi, gen ekspresyonu seviyesinde meydana gelir. ProBNP’nin BNP’ye (C terminali fragman 32 amino asitten oluşan, biyolojik olarak aktif hormondur) ve NT-proBNP’ye sekresyondan

Şekil 1.12 Kardiyak natriüretik peptidlerin sentezi, depolanması ve sekresyonu (Mair ve ark., 1999)

Semptomatik sol ventrikül disfonksiyonunda, KKY’nin klinik tanısının önemli bir problem olmadığı ve semptomatik kalp yetmezliğinin prognozunun da kötü olduğunu düşünürsek bu hastalığta erken tanın çok önemli olduğu ortaya çıkmaktadır.

1.3.3. Sitotoksik Antibiyotikler ve Serbest Radikaller

temel yol, sitotoksik antibiyotik molekülünün redoks siklusu ve sitotoksik antibiyotik-
ferrik iyon komplekslerinin oluşumudur.

Sitotoksik antibiyotiklerin redoks siklusu, sitotoksik antibiyotik molekülü içerisinde
kinon halkası varlığıyla ilgilidir (Şekil 1.13a). Sitotoksik antibiyotiklerin kinon yapısı,
bu bileşiğin bir elektron alıcısı olarak davranmasına izin verir, bu transfer mitokondriyel
NADH dehidrogenaz, mikrozomal NADPH-sitokrom p450 redüktaz veya sitokrom b5
redüktazi içeren flavoprotein enzimler tarafından düzenlenmektedir. Semikinon formu,
rejenere edilen kinon formu ile aynı zamanda, süperoksit radikali (O2⁻) oluşturmak
üzere oksijen ile reaksiyona girer. O2⁻'in hidrojen perokside (H2O2) dönüşümü
süperoksit dismutaz (SOD) tarafından katalizlenir veya spontan olarak meydana
gelebilir. H2O2 nispeten stabil bir moleküldür. H2O2'den hidroksil radikali (OH·)
oluşumu, eser elementlerin, özellikle demirin katalitik rolüne bağlıdır.

\[\text{O}_2^- + \text{Fe}^{3+} \rightarrow \text{O}_2 + \text{Fe}^{2+} \]
\[\text{H}_2\text{O}_2 + \text{Fe}^{2+} \rightarrow \text{OH}^- + \text{OH}^- + \text{Fe}^{3+} \quad \text{(Fenton reaksiyonu)} \]

Özetle:
\[\text{O}_2^- + \text{H}_2\text{O}_2 \rightarrow \text{O}_2 + \text{OH}^- + \text{OH}^- \quad \text{(Haber - Weiss reaksiyonu)} \]
(Marx, 1996)

Yüksek derecede reaktif hidroksil radikali OH·, DNA'ya doğrudan zarar verebilir ve
lipid peroksidasyonuna yol açabilir. Bu durum, çok sayıda oldukça stabil (kısa ömürlü
radikallere kryasla), difüzyon yapabilen aldehitlerin (yani malondialdehit, 4-hidroksi
alkenaller, alkanaller, vs.) üretimi ile sonuçlanır. Sitotoksik aldehitler son derece
reaktifdir, hücre içerisine difüze olabilmeleri veya plazma membranını geçerek köken
aldiği yerden uzak olan makromoleküler hedeflere saldıracılabilirler. Bunlar "ikinci
sitotoksik mesajcılar" olarak davranabilirler (Luo ve ark., 1997).
Şekil 1.13. Sitotoksik antibiyotikler (ANT) tarafından oksijen serbest radikallerinin oluşumu
(R = -OH dokсорubisin; R = -H daunorubisin).
A: Redoks sıklusunda sitotoksik antibiyotik molekülünün kinon parçası (C halkası)
B: Sitotoksik antibiyotik-demir (farkış iyon) kompleksinin oluşumu (Hridina ve ark., 2000).
Şekil 1.14. Sitotoksik antibiyotik-demir kompleksi (ANT-Fe\(^{3+}\), ANT-Fe\(^{2+}\)) tarafından oksijen serbest radikallerinin oluşumu (Fp = flavoprotein enzimler [oksige formu], FpH₂ = flavoprotein enzimler [redükte formu], ANTₜₜ-Fe\(^{3+}\) = sitotoksik antibiyotik-ferrik iyon kompleksi) (Hridina ve ark., 2000).
İkincisi, hatta daha önemli serbest radikallerin üretim yolu, Sitotoksik antibiotik-ferrik iyon kompleksinin oluşumudur (Şekil 1.13b ve Şekil 1.14). Sitotoksik antibiotik-Fe³⁺ kompleksi çeşitli flavoproteinler tarafından enzimatik olarak (Sitotoksik antibiotiklerin kinon formunun semikinsona indirgenmesi ile kıyaslancığında) veya düşük molekül ağırlılığı indirgen ajanlar tarafından, yani GSH, sistein, vs. tarafından sitotoksik antibiotik-Fe²⁺'ya indirgenebilir. İndirgen sistemlerin yokluğuunda, Sitotoksik antibiotik-Fe³⁺ kompleksi, sitotoksik antibiotik'in tamamen okside son ürününe ulaşılncaya kadar, sitotoksik antibiotik molekülünün intramoleküler oksidasyonu oranında demirini indirgeyebilir (Keizer ve ark., 1990). Sitotoksik antibiotik-Fe²⁺ kompleksi, sırasıyla O₂⁻ ve OH⁻ oluşturmak üzere O₂ ve H₂O₂ ile reaksiyona girebilir.

Sitotoksik antibiotiklerin KKY’ne sebep olma mekanizması OH⁻ radikaline bağlanmaktadır. Tedavi doズduaki ilacıın kültürdeki miyokard hücrelerinde hızla radikal üretimleri, tedavinin miyofibril kaybı ile birlikte giden KKY’nın önemli bir nedeni olarak değerlendirilmektedir (Rhoden ve ark., 1993).

Söz konusu ilaçların kardiyak toksisitelerinin patogenezinde serbest radikallerle bağlı harabiyetine ek olarak; fazla Ca⁺⁺ yüklenmesine bağlı miyosit ölümü, adrenerjik fonksiyon bozukluğu ve kalp kası gen ekspresyonunun inhibisyonu da sorumlu tutulmaktadır (Okumura ve ark., 2000). Ancak demir tutucu özelliğine bağlı serbest radikal üretimini durdurun deksrazoksan (ICRF-187) isimli maddenin sitotoksik antibiotiklerin oluşturduğu kalp yetersizliğini önlemesi (Speyer ve ark., 1992) patogenezde radikale bağlılığı ön plana çıkarmaktadır.

1.4. Sitotoksik Antibiotik Kardiyotoksisitesini Saptama Metodları

Sitotoksik Antibiotik tedavisi uygulanan hastalarda kümülatif doz 450-500 mg/m²’yi geçtiğinde kardiyotoksisite riskinde ciddi artış olduğundan önceki yıllarda bu düzeylere

Sitotoksik antibiyotik tedavisinden sonra kardiyotoksisitesinin saptanmasında kullanılan çeşitli yöntemler mevcuttur. Bunlar;

Elektrokardiyografi: Sitotoksik antibiyotik grubu ilaç uygulaması esnasında veya sonraki kısa süre içinde oluşabilecek bazı kardiyak anormalikleri gösterebilmekte ancak sensitivite ve spesivitesinin düşük olması nedeniyle kronik toksisiteyi saptamada kullanımının sınırlı olduğu görülmüştür (Lipshultz ve ark., 1991).

Ekokardiyografi: Kardiyak fonksiyonların değerlendirilmesinde invaziv olmayan ve sık olarak kullanılan bir yöntemdir. Ekokardiyografik inceleme ile sistolik ve diastolik kardiyak fonksiyonlara ait çeşitli parametreler ile anatomik ölçümlere ait bilgiler elde edilebilir. Sistolik fonksiyonların değerlendirilmesi amacıyla sol ventrikül ejeksiyon fraksiyonu (LVEF) ve kısalma fraksiyonu (FS) ölçülmektedir. Sol ventrikül diastolik fonksiyonlarını ortaya koyan parametreler ise erken (E) ve geç (A) akım hızları ile erken zirve akım hızının geç akım hızına oranıdır (E/A).
Ekokardiyografide kardiyak fonksiyonlarda ciddi bozulmayı gösteren bulgular;

1. Kısalma fraksiyonunda % 10 yada daha fazla düşüş.
2. Kısalma fraksiyonunun % 29’un alta inmesi.
3. Ejeksiyon fraksiyonunda % 10 yada daha fazla düşüş.
4. Ejeksiyon fraksiyonunun % 55’in alta inmesi olarak sıralanabilir (Basser ve Green, 1993).

1.4.1. Biyokimyasal Tetkikler

Sitotoksik antibiotiklerin oluşturduğu kardiyotoksisiteyi belirlemek için çeşitli biyokimyasal tetkiklerden yararlanılır. Bunlar:

1.4.1.1. Natriüretik Peptidler

Son yıllarda sitotoksik antibiotik kullanımına bağlı gelişen kardiyak toksisitenin saptanmasında araştırılan kardiyak natriüretik peptider ANP ve BNP'dir. ANP esas olarak atriyum basıncının yükselmesiyile, artan gerilime bağlı olarak atriyumlarda sekrete edilirken, ilk kez domuz beyinde tanımlanmış olan BNP esas olarak ventriküler dilatasyon ve duvar stresindeki artışa bağlı olarak ventriküller tarafından sekrete edilir (Wilkıns ve ark., 1997).

1.4.1.2. Kardiyak Troponin

Kas hücrelerinde eksitasyon-kontraksiyon mekanizmasında rol alan aktin-miyozin ilişkisini düzenleyici miyofibriller proteinlerden olan troponinin T ve I olmak üzere 2 ayrı tipi ve bu tiplerinde 3 farklı izoformalı vardır. Bu farklı izoformalardan ikişer tanesi iskelet kasında bulunurken birer tanesi sadece miyokard da bulunur, bunlar cTnI ve cTnT izoformalardır. Kardiyak troponinler normal şartlar altında miyokard hasarı olmadan serumda tesbit edilemez veya çok düşük düzeylerde saptanabilir (Mair, 1997).

Sitotoksik antibiotiklere bağlı kardiyotoksisitenin erken dönemde saptanmasına kardiyak troponinlerin her yerde uygulanabilir kolay bir yöntem olarak kullanılabileceği, fakat bugüne kadar bu konuda yapılan çalışmaların yetersiz olduğu bildirilmektedir.

1.4.1.3. Antioksidan Potansiyeller

Sağlıklı durumlarda serbest radikaller ve antioksidan karşı koyucular arasında hassas bir
denge vardır. Bu denge oksidatif hasarda ve dejenaratif hastalık, katarakt, aterosklerozis, karsinogenezis gibi hastalıklarda bozular ve serbest radikal değişiklikler artar. Reaktif oksijen metabolitleri karsinogeneziste önemli rol oynar ve başlıca süperoksid anyonu (O⁻²), hidrojen peroksit (H₂O₂) ve hidroksil radikalinden (OH⁻) oluşurlar. Reaktif oksijen metabolitlerinin oluşturduğu hücresel ve metabolik hasara karşı koruyucu başlıca antioksidanlar, süperoksid dismutaz (SOD), glutatyon peroksidad (GSH-Px) ve katalazdır (Ray ve ark., 2000). Farklı kanser türlerinde ve lösemilerde nonenzimatik antioksidatif sistem ürünlerindeki değişimler gösterilmiştir. Kanser ve lösemi hücrelerinde antikanser ilaçlar ve radyasyondan dolayı intraselüler SOD'ın koruyucu etkisinin arttığı belirlenmiştir (Devi ve ark., 2000).

Radikal üretiminin ön planda görüldüğü sitotoksik antibiyotik tedavisinde kardiyotoksitekte yönelik antioksidan sistem üzerinde kesin çalışma verilerine rastlanmamıştır.

1.4.1.4. Endotelin

Vasküler yapılar ve myokarddaki endotel hücreleri ile ventriküler miyositlerce sentezlenen vasokonstrüksör bir peptid olan endotelin-1, çeşitli nedenlere bağlı kalp yetmezliklerinde yetmezliğin derecesi ile orantılı olarak plazmada artış gösterir. Sitotoksik antibiyotik tedavisini uygulanmış ve KKY'yi gelişen hastalarda henüz LVEF ve FS'de bir azalma saptanmadığı dönemde endotelin-1 düzeylerinde artış olduğu bildirilmektedir (Yamashita ve ark., 1994).
2. GEREÇ VE YÖNTEM

2.1. Hasta Grubu

Bu çalışma Lösemili Çocuklar Vakfı (LÖSEV) Lösante Lösemili Çocuklar Hastanesinde takip edilen ALL tanısı ile izlenerek, sitotoksik antibiyotik grubu kemoterapi içeren tedavi protokolleri uygulanan, son sitotoksik antibiyotik dozlarını 1 aydan önce almış, tam remisyonda olmayıp sürdürümuş, hepatik veya renal bozukluğu olmayan, yaşları 1 ile 16 arasında olan (ort.: 6,655 ± 0,625, median: 6,5) 29 lösemili hastada yapıldı. Çalışma grubunda yer alanların 8’i kız (% 28) ve 21’i erkekdir (% 72).

Hastalara izlem süreleri boyunca ALL-BFM 95 tedavi protokolleri uygulanmıştır (Riehm, 1995). Uygulanan kemoterapi protokolleri gereği 56-374 mg/m² (ort.: 181,6 ± 12,1) sitotoksik antibiyotik (16 hasta doksorubisin + daunorubisin, 11 hasta daunorubisin, 1 hasta doksorubisin + idarubisin ve 1 hasta doksorubisin + daunorubisin + idarubisin) tedavisi almışlardır. ALL-BFM 95 tedavi protokolü gereği sitotoksik antibiyotiklere (doksorubisin 30 mg/m² i.v. ve/veya daunorubisin 30 mg/m² i.v. ve/veya idarubisin 30 mg/m² i.v.) ilave olarak, prednizolon (60 mg/m² p.o.), vinkristin (1,5 mg/m² i.v.), L-asparginaz (5000 ü/m² i.v.), siklofosfamid (1000 mg/m² i.v.), sitozin-arabinozid (75 mg/m² i.v.) 6 merkaptopürin (60 mg/m² p.o.) ve metotraksat (6-12 mg i.th.) tedavisi almışlardır.

Hastalar izlem süreleri boyunca radyoterapi almamışlardır.

Hastalar aldıkları sitotoksik antibiyotik dozlarına göre;

- 200 mg/m²'den az (17 hasta)
- 200 mg/m²'den fazla (12 hasta) olmak üzere iki grupta değerlendirildi.
2.2. Ekokardiografi İnceleme

Losemili Çocuklar Hastanesinde söz konusu hastalara yukarıda belirtilen zaman aralığında kardiyotoksisite yönünden ekokardiografik inceleme rutin olarak yapılmaktadır. Bu inceleme sonuçları araştırmamız için eş zamanlı veri olarak kullanılır. Ekokardiografik incelemeler Philips ATL model renkli doppler ekokardiografi cihazı ile 5 mHz’ lik prob kullanılarak yapıldı.

İncelemede; Sol ventrikül sistolik fonksiyonunun değerlendirilmesi amaçyla;
 a) Ejeksiyon fraksiyonu (%)
 b) Kısalma fraksiyonu (%)

Sol ventrikül diastolik fonksiyonunun değerlendirilmesi amaçyla;
 a) Pik erken diastolik akım velocitesi (m/s)
 b) Pik geç diastolik akım velocitesi (m/s)
 c) Pik erken ve geç diastolik akım velociteleri oranı parametreleri veri menüsüne alındı.

Ejeksiyon fraksiyonunun % 55’in altında ölçülmesi, kısalma fraksiyonunun % 29’un altında ölçülmesi, pik erken ve geç diastolik akım velociteleri oranının 1’in altında ölçülmesi sol ventrikül yetmezliği göstergesi olarak değerlendirildi.

2.3. Kan Örneklerinin Toplanması ve Saklanması

Kan örnekleri sabah saat 8 ile 10 arasında 20 dakika dinlenmenin ardından yatar pozisyonda hastaların antekübital venlerinden tek kullanımlık enjektörler ile alındı.
BNP IRMA için kan örnekleri daha önceden buzdolabı içerisinde soğutulan içlerinde EDTA (1,5 mg/ml) ve aprotinin (500 kIU/ml) içeren polietilen tüplerle alındı ve hemen 2000g ve +4 °C de 5 dakika santrifüj edildikten sonra, plazmalar ayrılarak -40 °C de saklandı.

BNP IFMA ve TAOS için kan örnekleri daha önceden içlerinde EDTA içeren tüplerle alındı ve 1000g ile 10 dakika santrifüj edildikten sonra plazmalar ayrılarak çalışma tarihine kadar -40 °C de saklandı.

Serum cTnI ve AOP için alınan kan örnekleri 1000g ile 10 dakika santrifüj edildikten sonra serumları ayrılarak çalışma tarihine kadar -40 °C de saklandı.

2.4. BNP (IRMA) Ölçümü

Bütün kan örneklerinin alımı tamamlandıklan sonra, dondurulmuş olarak bekletilen plazmalar çözülerek BNP düzeyleri ikili radioimmüномetrik ölçüm kitleri (Shino RIA BNP kitleri; Shinogi & Co. Ltd. Osaka Japonya) kullanılarak Biyokimya Anabilim Dalı Laboratuarında çalışıldı (Tomida ve ark.,1998).

Kullanımdan 30 dakika önce tüm reaktifler oda ısısına getirildi ve kullanımdan 15 dakika önce kontroller ve standartlar kitin önerdiği protokole uygun olarak hazırlanıdı.

- Plastik tüpler içerisine standartlar, kontroller ve bilinmeyen örneklerden 100’er μl pipetlerle kondu.

- Her tüpe I^{125} BNP antikor solutionsundan 200 μl eklendi.
- Her tüp içerisine bir bilye konup vortex tipi karıştırıcı ile karıştırıldı.
- Tüpler parafilm ile kapatılarak 2-8 °C’de 18-22 saat süre ile inkube edildi.
- Tüplerin içeriklerini mümkün olduğunca tam olarak aspiré edildi.
- Her tüpe 2 ml yıkama solutionsu konup sonra boşaltıldı.
- Tüplerin içeriği mümkün olduğunca aspiré edildi.

- Bilyelere bağlı olan geride kalan radyoaktivite, A.Ü.T.F. Nükleer Tıp Anabilim Dalında gama sayacından (DPC GAMBYT CR) elde edilen dakikalık sayımalar (cpm), yarı logaritmik kağıtın ordantına, standartların konsantrasyonları da (pg/ml) absise işaretlenerek standart eğri çizildi. Her bir hasta için bulunan sayım değerleri ordinata işaretlenip, eğri ile kesiştirilerek absisden ona ait konsantrasyon bulundu.

![Diagram](image)
2.5. BNP (IFMA) Ölçümü

Bütün kan örneklerinin alımı tamamlandktan sonra, dondurulmuş olarak bekletilen plazmalar çözülecek BNP düzeyleri floresan immunoassay ölçüm kitleri (Triage BNP testleri; Biosite Diagnostics, Inc. San Diago USA) kullanılarak Ankara Numune Hastanesi koroner yoğun bakım unidadesinde bulunan taşınabilir, tam otomatik Triage metre A.Ü.T.F. Biyokimya Anabilim Dalı Laboratuarına getirilerek çalışıldı (Del Ry ve ark., 2001).

Çözülen plazmadan 250 μl BNP test kitinin örnek giriş kısmına pipetlendi, test kiti Triage metresine takıldı ve 15 dakika sonra test sonucu otomatik olarak hesaplanarak ekran da görüntülenidi.

2.6. cTnI Ölçümü

Bütün kan örneklerinin alımı tamamlandktan sonra, dondurulmuş olarak bekletilen
serumlar çözülerek serum cTnI düzeyleri kemiluminesent ölçüm kitleri (Troponin I testleri: Beckman Instruments, Inc. USA) kullanılarak İbnî Sina Hastanesi Merkez Biyokimya Laboratuarında çalışıldı. Ölçümler Beckman Access Immunoassay analizöründe yapıldı (Lipshultz ve ark., 1997).

cTnI analizi immünoenzimatik bir yöntemdir (sandviç). Örneklerle alkalen fosfataz ile konjuge monoklonal anti-kardiyak troponin I antikoru ve monoklonal anti-kardiyak troponin I antikoru ile kaplı paramanyetik bilyeler eklenildi. cTnI katı fazdaki antikardiyak troponin I antikoruna bağlanırken, anti-kardiyak troponin I antikor-alkalen fosfataz konjugatı cTnI moleküllü üzerindeki farklı antijen bölümlerine bağlandı. İnkübasyondan sonra manyetik alanda uygulanan ayırma işlemi ve yumuşama işlemi ile katı fazda buharlanmayan maddeler ayrıldı. Bir kemiluminesent substrat (Lumi-Phos 530) eklenildi ve reaksiyon sonucu üretilen ışık bir luminometri ile ölçüldü. Foton üretimi reaksiyon sonundaki mevcut enzim konjugat miktarı ve dolayısıyla da örnek içerisindeki cTnI konsantrasyonu ile orantıdadır. Örnekteki cTnI miktarı çok-noktalı kalibrasyon eğrisi yardımı ile saptandı.

Üreticinin verilerine göre cTnI için 0,04 ng/ml değerinin altı normal değer olarak kabul edildi.

2.7. Antioksidan Potansiyel Ölçümü

Bütün kan örneklerinin alınımı tamamlandıktan sonra, dondurulmuş olarak bekletilen serumlar çözülerek AOP düzeyleri Biyokimya Anabilim Dalı Laboratuarında çalışıldı.

AOP metodunun presibli Ksantin-Ksantin Oksidad sistemle oluşan süperoksit radikallerinin, balık yağlarındaki doymamış yağ asitlerine saldıracak onları oksitlemesi ve oluşan oksidadon ürününün miktarı ile örnekteki antioksidan potansiyelin ters orantılı
olması esasına dayanır. Sonuçta oluşan MDA düzeyi ortaya çıkan pembe rengin şiddetinin spektrofotometrik olarak 532 nm dalga boyunda ölçülmesi ile belirlendi. Oluşan yeni MDA’nın fazlalığı AOP’nin düşüküğü anlamına gelirken, azlığu ise AOP’nin yüksekliği anlamına gelmektedir. AOP değerlendirilmesinde kullanılan 1 ünite, MDA oluşumunu % 50 inhibe eden aktivite olarak tanımlanmıştır (Durak ve ark., 2001).

Kullanılan reaktifler: Balık yağı (total lipid içeriği: 0,706 g/ml), Ksantin (10mM), Ksantin OX (Sigma X 4500), Tampon (fosfat tamponu), Etil alkol, TCA ve TBA.

<table>
<thead>
<tr>
<th></th>
<th>Test (T)</th>
<th>Kör 1 (K₁)</th>
<th>Kör2 (K₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>100 µl</td>
<td>-</td>
<td>100 µl</td>
</tr>
<tr>
<td>Etil alkol</td>
<td>100 µl</td>
<td>100 µl</td>
<td>100 µl</td>
</tr>
<tr>
<td>Tampon</td>
<td>-</td>
<td>100 µl</td>
<td>10 µl</td>
</tr>
<tr>
<td>Balık yağı</td>
<td>10 µl</td>
<td>10 µl</td>
<td>-</td>
</tr>
<tr>
<td>Ksantin</td>
<td>50 µl</td>
<td>50 µl</td>
<td>50 µl</td>
</tr>
<tr>
<td>Ksantin OX</td>
<td>50 µl</td>
<td>50 µl</td>
<td>5 µl</td>
</tr>
</tbody>
</table>

1 saat inkübasyon

| | | | | |
|------------------|---------|-----------|-----------|
| Etil alkol | 0,9 ml | 0,9 ml | 0,9 ml |
| Tampon | 1 ml | 0,9 ml | 1 ml |
| TCA | 1 ml | 1 ml | 1 ml |
| TBA | 1 ml | 1 ml | 1 ml |
| Test | - | 100 µl | - |
| Balık yağı | - | - | 10 µl |

30 dakika kaynar su banyosu + santrifüj (5000g, 5 dakika)

Spektrofotometrede 532 nm’de okundu ve sonuçlar aşağıdaki formülden hesaplandız.
\[
\frac{[(K_1 + K_2) - T] \times 20}{(K_1 + K_2)}
\]

2.8. Total Antioksidan Ölçümü

Manuel TAOS Ölçümü:

Reaktifler Randox firmasından sağlandı, bunlar;
1. Fosforla tamponlanmış fizyolojik serum (PBS) 80 mmol/l, pH:7,4
2. Metmyoglobin 6,1 μmol/l
3. ABTS 610 μmol/l
4. \(\text{H}_2\text{O}_2 \) (stabil şekli) 250 μmol/l (1/3 oranda PBS ile dilüe edilerek kullanıldı)
5. Standart; 6-Hidroksi-2,5,7,8 tetrametilkroman-2-karboksilik asit (1 mmol/l)
İşlem:

<table>
<thead>
<tr>
<th></th>
<th>Kör</th>
<th>Standart</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deionize su</td>
<td>20 μl</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Standart</td>
<td>-</td>
<td>20 μl</td>
<td>-</td>
</tr>
<tr>
<td>Serum</td>
<td>-</td>
<td>-</td>
<td>20 μl</td>
</tr>
<tr>
<td>Metmyoglobin / ABTS karışımı</td>
<td>1 ml</td>
<td>1 ml</td>
<td>1 ml</td>
</tr>
</tbody>
</table>

(1/10 PBS ile dilüe)

600 nm'de absorbans (A₁) ölçüldü. Bütün tüplere H₂O₂ (200 μl) pipetlendi 3 dakika sonra 600 nm'de tekrar absorbans (A₂) ölçüldü

\[\Delta A = A₂ - A₁ \] (kör, standart ve test için)

\[\text{Faktör} = \text{standart konsantrasyonu} / (\Delta A \text{ kör} - \Delta A \text{ standart}) \]

\[\text{Total Antioksidan (mmol/l)} = \text{Faktör} \times (\Delta A \text{ kör} - \Delta A \text{ test}) \]

Not: Absorbans okumaları boş tüpe (havaya) karşı okundu, sonuçlar mmol/l olarak belirlendi.

Otomatik TAOS Ölçümü:

Randox total antioksidan aplikasyonu (Tablo 2.1) yapılarak Technicon RA-XT otoanalizörüne adapte edilmiş şekli ile otomatik ölçüm yapıldı.

TAOS için 1,3 ile 1,7 mmol/l arasındaki değerler daha önce yapılmış çalışmaların değerlendirilmesi sonucu (Demirtaş ve ark., 2000) referans değer olarak kabul edildi.
<table>
<thead>
<tr>
<th>CHEM NO</th>
<th>ÇIHAZ KENDİ ŞEÇER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCK KODE</td>
<td>101-199 ARASINDA İSTEDİĞİNİZ KODU GİRİN</td>
</tr>
<tr>
<td>NAME</td>
<td>A.OX</td>
</tr>
<tr>
<td>IMMUNOASSAY</td>
<td>NO</td>
</tr>
<tr>
<td>TYPE</td>
<td>END POINT</td>
</tr>
<tr>
<td>INVERSE CHEM</td>
<td>NO</td>
</tr>
<tr>
<td>SMP VOLUME</td>
<td>14</td>
</tr>
<tr>
<td>WAVELENGTH</td>
<td>600</td>
</tr>
<tr>
<td>BIC CHEM</td>
<td>NO</td>
</tr>
<tr>
<td>DELAY</td>
<td>3:00</td>
</tr>
<tr>
<td>BLANK</td>
<td>NO BLANK</td>
</tr>
<tr>
<td>% REAGENT VOLUME</td>
<td>65</td>
</tr>
<tr>
<td>SECOND REAGENT</td>
<td>YES</td>
</tr>
<tr>
<td>% 2ND REAGENT VOLUME</td>
<td>12</td>
</tr>
<tr>
<td>A DELAY</td>
<td>0,30</td>
</tr>
<tr>
<td>UNITS</td>
<td>mmol/l</td>
</tr>
<tr>
<td>UNIT FACTOR</td>
<td>1</td>
</tr>
<tr>
<td>DECIMAL POINT</td>
<td>2</td>
</tr>
<tr>
<td>RBL LOW</td>
<td>0,00</td>
</tr>
<tr>
<td>RBL HIGH</td>
<td>1,00</td>
</tr>
<tr>
<td>RANGE LOW</td>
<td>0</td>
</tr>
<tr>
<td>RANGE HIGH</td>
<td>2,5</td>
</tr>
<tr>
<td>CALIBRATION FAC</td>
<td>ÇIHAZ KENDİ BULUR</td>
</tr>
<tr>
<td>REAGENT RATE</td>
<td>ÇIHAZ KENDİ BULUR</td>
</tr>
<tr>
<td>REAGENT BLANK</td>
<td>ÇIHAZ KENDİ BULUR</td>
</tr>
<tr>
<td>STANDART VALUE</td>
<td>KALİBRATÖR DEĞERİNİ GİRİN</td>
</tr>
<tr>
<td>NORMAL LOW</td>
<td>1,30</td>
</tr>
<tr>
<td>NORMAL HIGH</td>
<td>1,77</td>
</tr>
<tr>
<td>SLOPE</td>
<td>1</td>
</tr>
<tr>
<td>INTERCEPT</td>
<td>0</td>
</tr>
<tr>
<td>EP LIMIT</td>
<td>0,100</td>
</tr>
</tbody>
</table>

Table 2.1. Randox Total Antioksidan Aplikasyonu

2.9. İstatistiksel Analiz

İstatistik analizlerde, sitotoksik antibiyotik dozları 200 mg/m² nin altı ve 200 mg/m² nin üstü olmak üzere iki gruba ayrılmış ve bu gruplar bakımından BNP (IRMA), BNP (IFMA), AOP, TAOS (manuel), TAOS (otomatik) ve cTnI değişkenleri ortalamaları arasında bir farklılık olup olmadığını araştırılması basit varyans analizi kullanılarak, değişkenler arasındaki ilişki derecelerinin incelenmesi Pearson Korelasyon Katışması kullanılarak, değişkenler arasındaki ilişki miktarının incelenmesi ise Doğrusal Regresyon Analizi ile MINITAB ve SPSS paket programları kullanılarak yapılmıştır (Sokal ve Rohlf, 1995).
3. BULGULAR

Sitotoksik antibiyotik dozu ile kardiyotoksite ilişkisinin araştırılması için hasta grubu ilaç dozları bakımından 200 mg/m²'nin altı ve üstü olmak üzere iki gruba ayrılmıştır. Gruplara göre BNP (IRMA). BNP (IFMA), cTnl, AOP, TAOS ve ekokardiografik olarak belirlenen sistolik ve di wystolik değerler karşılaştırılmış ve sonuçlar istatistiksel olarak değerlendirilmiştir. Ayrıca dozlar göre BNP değerlerinde IRMA ve IFMA tayin yöntemleri arasındaki ilişkide araştırılmış ve sonuçlar istatistiksel olarak değerlendirilmiştir.

3.1. Ekokardiografı Sonuçlarının Değerlendirilmesi

Tedavi bitiminden 1 ve 6 ay sonraki toplu değerler tablolar halinde gösterilmiştir (Tablo 3.1 ve 3.2). Hastalara verilen sitotoksik antibiyotik dozlarıyla LVEF değerleri arasındaki ilişki incelendiğinde ilaç dozunun 1 mg/m² artmasına karşılık LVEF değerinin 0,0355 azalığı görülmüştür. Bu azalmanın da istatistik olarak p<0,05 düzeyinde önemli olduğu saptanmıştır (Şekil 3.1).

Hastalara verilen sitotoksik antibiyotik dozlarıyla FS değerleri arasındaki ilişki incelendiğinde ilaç dozunun 1 mg/m² artmasına karşılık FS değerinin 0,0225 azalığı görülmüştür. Bu azalmanın da istatistik olarak p<0,05 düzeyinde önemli olduğu görülmüştür (Şekil 3.2).

Hastalara verilen sitotoksik antibiyotik dozlarıyla E/A değerleri arasında istatistik olarak önemli bir ilişki bulunamamıştır
İlaç dozlarnına göre 200 mg/m² nin altında ve üstünde iki gruba ayrıldığından; LVEF ve FS değişkenleri ortalamaları bakımından (200 mg/m² nin altında LVEF değerlerinin ort.: 70,29 ± 1,01, FS değerlerinin ort.: 37,588 ± 0,659 ve 200 mg/m² nin üstünde LVEF değerlerinin ort.: 65,83 ± 1,30, FS değerlerinin ort.: 35,25, ± 0,789) iki grup arasında p<0.05 düzeyinde istatistik olarak anlamlı olduğu, doz arttıkça riskin de arttığı gözlemmiştir.

Tablo 3.1. Hasta grubundan elde edilen ekokardiyografik değerler (LVEF: sol ventrikül ejeksyon fraksiyonyu, FS: kusma fraksiyonyu, E: pik erken diastolik akım velositesi, A: pik geç diastolik akım velositesi, E/A: pik erken ve geç diastolik akım velositeleri oranı)

<table>
<thead>
<tr>
<th>Sıra No</th>
<th>Adı Soyadı</th>
<th>Kız Erkek</th>
<th>Yaş</th>
<th>Doz mg/m²</th>
<th>LVEF (%)</th>
<th>FS (%)</th>
<th>E m/s</th>
<th>A m/s</th>
<th>E/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SC</td>
<td>K</td>
<td>10</td>
<td>371</td>
<td>59</td>
<td>31</td>
<td>0,70</td>
<td>0,60</td>
<td>1,16</td>
</tr>
<tr>
<td>2</td>
<td>FG</td>
<td>E</td>
<td>11</td>
<td>285</td>
<td>64</td>
<td>35</td>
<td>0,88</td>
<td>0,60</td>
<td>1,46</td>
</tr>
<tr>
<td>3</td>
<td>MP</td>
<td>K</td>
<td>8,5</td>
<td>261</td>
<td>66</td>
<td>33</td>
<td>0,71</td>
<td>0,49</td>
<td>1,45</td>
</tr>
<tr>
<td>4</td>
<td>SC</td>
<td>E</td>
<td>6,5</td>
<td>231</td>
<td>67</td>
<td>38</td>
<td>0,86</td>
<td>0,53</td>
<td>1,62</td>
</tr>
<tr>
<td>5</td>
<td>YK</td>
<td>E</td>
<td>5</td>
<td>230</td>
<td>66</td>
<td>37</td>
<td>0,83</td>
<td>0,57</td>
<td>1,45</td>
</tr>
<tr>
<td>6</td>
<td>HM</td>
<td>E</td>
<td>16</td>
<td>229</td>
<td>68</td>
<td>33</td>
<td>0,88</td>
<td>0,54</td>
<td>1,63</td>
</tr>
<tr>
<td>7</td>
<td>SB</td>
<td>E</td>
<td>9</td>
<td>226</td>
<td>65</td>
<td>35</td>
<td>0,90</td>
<td>0,79</td>
<td>1,15</td>
</tr>
<tr>
<td>8</td>
<td>GT</td>
<td>E</td>
<td>11,5</td>
<td>214</td>
<td>60</td>
<td>31</td>
<td>0,73</td>
<td>0,62</td>
<td>1,17</td>
</tr>
<tr>
<td>9</td>
<td>SB</td>
<td>K</td>
<td>6,5</td>
<td>212</td>
<td>68</td>
<td>38</td>
<td>0,82</td>
<td>0,59</td>
<td>1,39</td>
</tr>
<tr>
<td>10</td>
<td>SK</td>
<td>E</td>
<td>11</td>
<td>207</td>
<td>76</td>
<td>39</td>
<td>1,00</td>
<td>0,69</td>
<td>1,45</td>
</tr>
<tr>
<td>11</td>
<td>AA</td>
<td>E</td>
<td>7</td>
<td>204</td>
<td>62</td>
<td>36</td>
<td>0,67</td>
<td>0,47</td>
<td>1,45</td>
</tr>
<tr>
<td>12</td>
<td>ZE</td>
<td>K</td>
<td>3</td>
<td>201</td>
<td>69</td>
<td>37</td>
<td>0,78</td>
<td>0,59</td>
<td>1,32</td>
</tr>
<tr>
<td>13</td>
<td>KÖ</td>
<td>E</td>
<td>6,5</td>
<td>195</td>
<td>70</td>
<td>36</td>
<td>0,75</td>
<td>0,60</td>
<td>1,25</td>
</tr>
<tr>
<td>14</td>
<td>İÇ</td>
<td>E</td>
<td>11</td>
<td>191</td>
<td>71</td>
<td>36</td>
<td>0,98</td>
<td>0,66</td>
<td>1,48</td>
</tr>
<tr>
<td>15</td>
<td>HK</td>
<td>E</td>
<td>4,5</td>
<td>190</td>
<td>77</td>
<td>41</td>
<td>0,83</td>
<td>0,56</td>
<td>1,46</td>
</tr>
<tr>
<td>16</td>
<td>CB</td>
<td>E</td>
<td>4</td>
<td>171</td>
<td>63</td>
<td>33</td>
<td>0,86</td>
<td>0,55</td>
<td>1,56</td>
</tr>
<tr>
<td>17</td>
<td>MY</td>
<td>E</td>
<td>5</td>
<td>167</td>
<td>72</td>
<td>40</td>
<td>0,93</td>
<td>0,70</td>
<td>1,33</td>
</tr>
<tr>
<td>18</td>
<td>GE</td>
<td>K</td>
<td>2</td>
<td>162</td>
<td>66</td>
<td>34</td>
<td>0,91</td>
<td>0,52</td>
<td>1,75</td>
</tr>
<tr>
<td>19</td>
<td>YE</td>
<td>E</td>
<td>6</td>
<td>157</td>
<td>73</td>
<td>41</td>
<td>0,78</td>
<td>0,53</td>
<td>1,38</td>
</tr>
<tr>
<td>20</td>
<td>KS</td>
<td>E</td>
<td>5</td>
<td>151</td>
<td>68</td>
<td>35</td>
<td>0,90</td>
<td>0,59</td>
<td>1,53</td>
</tr>
<tr>
<td>21</td>
<td>SA</td>
<td>E</td>
<td>5</td>
<td>150</td>
<td>72</td>
<td>39</td>
<td>0,87</td>
<td>0,76</td>
<td>1,15</td>
</tr>
<tr>
<td>22</td>
<td>MY</td>
<td>K</td>
<td>3,5</td>
<td>125</td>
<td>64</td>
<td>38</td>
<td>0,75</td>
<td>0,47</td>
<td>1,59</td>
</tr>
<tr>
<td>23</td>
<td>BB</td>
<td>E</td>
<td>7</td>
<td>122</td>
<td>72</td>
<td>39</td>
<td>0,90</td>
<td>0,68</td>
<td>1,32</td>
</tr>
<tr>
<td>24</td>
<td>GI</td>
<td>E</td>
<td>8</td>
<td>120</td>
<td>76</td>
<td>41</td>
<td>0,95</td>
<td>0,71</td>
<td>1,35</td>
</tr>
<tr>
<td>25</td>
<td>BÖ</td>
<td>K</td>
<td>3,5</td>
<td>118</td>
<td>66</td>
<td>35</td>
<td>1,00</td>
<td>0,65</td>
<td>1,50</td>
</tr>
<tr>
<td>26</td>
<td>İB</td>
<td>E</td>
<td>7</td>
<td>110</td>
<td>70</td>
<td>39</td>
<td>1,05</td>
<td>0,89</td>
<td>1,17</td>
</tr>
<tr>
<td>27</td>
<td>ET</td>
<td>K</td>
<td>1</td>
<td>106</td>
<td>72</td>
<td>34</td>
<td>0,79</td>
<td>0,52</td>
<td>1,50</td>
</tr>
<tr>
<td>28</td>
<td>EB</td>
<td>E</td>
<td>2,5</td>
<td>100</td>
<td>76</td>
<td>40</td>
<td>0,79</td>
<td>0,54</td>
<td>1,47</td>
</tr>
<tr>
<td>29</td>
<td>ÖA</td>
<td>E</td>
<td>6,5</td>
<td>56</td>
<td>67</td>
<td>38</td>
<td>1,02</td>
<td>0,65</td>
<td>1,51</td>
</tr>
</tbody>
</table>
Dokuz hastanın 6 ay sonra yapılan kontrol ekokardiografisinde anıltılı bir farklilik saptanmamıştır (Tablo 3.2).

Tablo 3.2. 6 ay sonra hasta grubundan elde edilen kontrol ekokardiyografik değerler (LVEF: sol ventrikül ejeksiyon fraksiyonu, FS: kısalma fraksiyonu, E: pik erken diyastrolik akım velocitesi, A: pik geç diyastrolik akım velocitesi, E/A: pik erken ve geç diyastrolik akım velociteleri oranı)

<table>
<thead>
<tr>
<th>Sira No</th>
<th>Adı Soyadi</th>
<th>Kız Erkek</th>
<th>Yaş</th>
<th>Doz mg/m²</th>
<th>LVEF (%)</th>
<th>FS (%)</th>
<th>E m/s</th>
<th>A m/s</th>
<th>E/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SC</td>
<td>K</td>
<td>10</td>
<td>374</td>
<td>60</td>
<td>31</td>
<td>0,70</td>
<td>0,61</td>
<td>1,15</td>
</tr>
<tr>
<td>3</td>
<td>MP</td>
<td>K</td>
<td>8,5</td>
<td>261</td>
<td>65</td>
<td>33</td>
<td>0,72</td>
<td>0,50</td>
<td>1,44</td>
</tr>
<tr>
<td>6</td>
<td>HM</td>
<td>E</td>
<td>16</td>
<td>229</td>
<td>68</td>
<td>33</td>
<td>0,88</td>
<td>0,54</td>
<td>1,63</td>
</tr>
<tr>
<td>10</td>
<td>SK</td>
<td>E</td>
<td>11</td>
<td>207</td>
<td>76</td>
<td>40</td>
<td>1,01</td>
<td>0,70</td>
<td>1,44</td>
</tr>
<tr>
<td>15</td>
<td>HK</td>
<td>E</td>
<td>4,5</td>
<td>190</td>
<td>75</td>
<td>41</td>
<td>0,84</td>
<td>0,55</td>
<td>1,52</td>
</tr>
<tr>
<td>18</td>
<td>GE</td>
<td>K</td>
<td>2</td>
<td>162</td>
<td>65</td>
<td>35</td>
<td>0,91</td>
<td>0,51</td>
<td>1,78</td>
</tr>
<tr>
<td>19</td>
<td>YEY</td>
<td>E</td>
<td>6</td>
<td>157</td>
<td>74</td>
<td>40</td>
<td>0,81</td>
<td>0,52</td>
<td>1,55</td>
</tr>
<tr>
<td>22</td>
<td>MY</td>
<td>K</td>
<td>3,5</td>
<td>125</td>
<td>65</td>
<td>38</td>
<td>0,76</td>
<td>0,45</td>
<td>1,69</td>
</tr>
<tr>
<td>26</td>
<td>IB</td>
<td>E</td>
<td>7</td>
<td>110</td>
<td>70</td>
<td>39</td>
<td>1,03</td>
<td>0,90</td>
<td>1,14</td>
</tr>
</tbody>
</table>
Şekil 3.1. Doz ile LVEF değerleri arasındaki ilişki

\[
r^2 = 0,2327 \quad \text{LVEF} = 74,9 - 0,0355 \times \text{doz}
\]

Şekil 3.2. Doz ile FS değerleri arasındaki ilişki

\[
r^2 = 0,251 \quad \text{FS} = 40,7 - 0,0225 \times \text{doz}
\]
Hastalarda tedaviden 1 ay sonra yapılan telegraflı ve elektrokardiyografik inceleme sonuçları tablo olarak çıkarılmıştır (Tablo 3.3).

Tablo 3.3. Hasta grubundan elde edilen telegraflı ve elektrokardiyografik değerler (KTO: kardiyotorasik oran, PR: PR aralığı, QT: QT aralığı, QTc: düzeltilmiş QT aralığı, VAT: ventriküller aktivasyon zamanı)

<table>
<thead>
<tr>
<th>Sıra No</th>
<th>Adı Soyadı</th>
<th>Kız</th>
<th>Erkek</th>
<th>Yaş</th>
<th>Doz mg/m²</th>
<th>KTO</th>
<th>PR (s)</th>
<th>QT-QTc (s)</th>
<th>VAT (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SC</td>
<td>K</td>
<td></td>
<td>10</td>
<td>374</td>
<td>0,48</td>
<td>0,14</td>
<td>0,26</td>
<td>0,03</td>
</tr>
<tr>
<td>2</td>
<td>FG</td>
<td>E</td>
<td></td>
<td>11</td>
<td>285</td>
<td>0,41</td>
<td>0,13</td>
<td>0,24</td>
<td>0,03</td>
</tr>
<tr>
<td>3</td>
<td>MP</td>
<td>K</td>
<td></td>
<td>8,5</td>
<td>261</td>
<td>0,49</td>
<td>0,12</td>
<td>0,25</td>
<td>0,02</td>
</tr>
<tr>
<td>4</td>
<td>SC</td>
<td>E</td>
<td></td>
<td>6,5</td>
<td>231</td>
<td>0,49</td>
<td>0,12</td>
<td>0,26</td>
<td>0,03</td>
</tr>
<tr>
<td>5</td>
<td>YK</td>
<td>E</td>
<td></td>
<td>5</td>
<td>230</td>
<td>0,44</td>
<td>0,14</td>
<td>0,245</td>
<td>0,03</td>
</tr>
<tr>
<td>6</td>
<td>HM</td>
<td>E</td>
<td></td>
<td>16</td>
<td>229</td>
<td>0,47</td>
<td>0,14</td>
<td>0,355</td>
<td>0,03</td>
</tr>
<tr>
<td>7</td>
<td>SB</td>
<td>E</td>
<td></td>
<td>9</td>
<td>226</td>
<td>0,50</td>
<td>0,12</td>
<td>0,265</td>
<td>0,04</td>
</tr>
<tr>
<td>8</td>
<td>GT</td>
<td>E</td>
<td></td>
<td>11,5</td>
<td>214</td>
<td>0,44</td>
<td>0,14</td>
<td>0,325</td>
<td>0,03</td>
</tr>
<tr>
<td>9</td>
<td>SB</td>
<td>K</td>
<td></td>
<td>6,5</td>
<td>212</td>
<td>0,51</td>
<td>0,16</td>
<td>0,25</td>
<td>0,03</td>
</tr>
<tr>
<td>10</td>
<td>SK</td>
<td>E</td>
<td></td>
<td>11</td>
<td>207</td>
<td>0,45</td>
<td>0,16</td>
<td>0,33</td>
<td>0,03</td>
</tr>
<tr>
<td>11</td>
<td>AA</td>
<td>E</td>
<td></td>
<td>7</td>
<td>204</td>
<td>0,46</td>
<td>0,12</td>
<td>0,31</td>
<td>0,04</td>
</tr>
<tr>
<td>12</td>
<td>ZE</td>
<td>K</td>
<td></td>
<td>3</td>
<td>201</td>
<td>0,52</td>
<td>0,14</td>
<td>0,28</td>
<td>0,03</td>
</tr>
<tr>
<td>13</td>
<td>KÖ</td>
<td>E</td>
<td></td>
<td>6,5</td>
<td>195</td>
<td>0,47</td>
<td>0,14</td>
<td>0,275</td>
<td>0,03</td>
</tr>
<tr>
<td>14</td>
<td>İÇ</td>
<td>E</td>
<td></td>
<td>11</td>
<td>191</td>
<td>0,46</td>
<td>0,12</td>
<td>0,27</td>
<td>0,03</td>
</tr>
<tr>
<td>15</td>
<td>HK</td>
<td>E</td>
<td></td>
<td>4,5</td>
<td>190</td>
<td>0,45</td>
<td>0,16</td>
<td>0,29</td>
<td>0,03</td>
</tr>
<tr>
<td>16</td>
<td>CB</td>
<td>E</td>
<td></td>
<td>4</td>
<td>171</td>
<td>0,51</td>
<td>0,16</td>
<td>0,265</td>
<td>0,03</td>
</tr>
<tr>
<td>17</td>
<td>MY</td>
<td>E</td>
<td></td>
<td>5</td>
<td>167</td>
<td>0,48</td>
<td>0,12</td>
<td>0,29</td>
<td>0,03</td>
</tr>
<tr>
<td>18</td>
<td>GE</td>
<td>K</td>
<td></td>
<td>2</td>
<td>162</td>
<td>0,50</td>
<td>0,12</td>
<td>0,23</td>
<td>0,02</td>
</tr>
<tr>
<td>19</td>
<td>YİA</td>
<td>E</td>
<td></td>
<td>6</td>
<td>157</td>
<td>0,49</td>
<td>0,14</td>
<td>0,27</td>
<td>0,03</td>
</tr>
<tr>
<td>20</td>
<td>KS</td>
<td>E</td>
<td></td>
<td>5</td>
<td>151</td>
<td>0,47</td>
<td>0,14</td>
<td>0,29</td>
<td>0,04</td>
</tr>
<tr>
<td>21</td>
<td>SA</td>
<td>E</td>
<td></td>
<td>5</td>
<td>150</td>
<td>0,46</td>
<td>0,16</td>
<td>0,27</td>
<td>0,03</td>
</tr>
<tr>
<td>22</td>
<td>MY</td>
<td>K</td>
<td></td>
<td>3,5</td>
<td>125</td>
<td>0,49</td>
<td>0,12</td>
<td>0,23</td>
<td>0,03</td>
</tr>
<tr>
<td>23</td>
<td>BB</td>
<td>E</td>
<td></td>
<td>7</td>
<td>122</td>
<td>0,48</td>
<td>0,12</td>
<td>0,29</td>
<td>0,03</td>
</tr>
<tr>
<td>24</td>
<td>GI</td>
<td>E</td>
<td></td>
<td>8</td>
<td>120</td>
<td>0,46</td>
<td>0,12</td>
<td>0,30</td>
<td>0,03</td>
</tr>
<tr>
<td>25</td>
<td>BÖ</td>
<td>K</td>
<td></td>
<td>3,5</td>
<td>118</td>
<td>0,50</td>
<td>0,12</td>
<td>0,26</td>
<td>0,03</td>
</tr>
<tr>
<td>26</td>
<td>İB</td>
<td>E</td>
<td></td>
<td>7</td>
<td>110</td>
<td>0,43</td>
<td>0,16</td>
<td>0,25</td>
<td>0,04</td>
</tr>
<tr>
<td>27</td>
<td>ET</td>
<td>K</td>
<td></td>
<td>1</td>
<td>106</td>
<td>0,53</td>
<td>0,11</td>
<td>0,23</td>
<td>0,02</td>
</tr>
<tr>
<td>28</td>
<td>EB</td>
<td>E</td>
<td></td>
<td>2,5</td>
<td>100</td>
<td>0,46</td>
<td>0,10</td>
<td>0,24</td>
<td>0,02</td>
</tr>
<tr>
<td>29</td>
<td>ÖA</td>
<td>E</td>
<td></td>
<td>6,5</td>
<td>56</td>
<td>0,49</td>
<td>0,12</td>
<td>0,28</td>
<td>0,03</td>
</tr>
</tbody>
</table>
3.2. Biyokimyasal Kan Sonuçlarının Değerlendirilmesi

29 Hastanın tedavi sonrası kan BNP, cTnI ve AOP-TAOS sonuçları yaş-cins ve ilaç dozları ile birlikte tablo 3.4.'de gösterilmiştir.

Tablo 3.4. Hasta grubundan elde edilen biyokimyasal değerler (* işaretli örnekler çalışılmadı).
3.2.1. BNP Sonuçlarının Değerlendirilmesi

3.2.1.1. BNP (IRMA) ve BNP (IFMA) Ölçüm Değerlerinin Karşılaştırılması

Aynı kan örnekleri iki ayrı BNP yöntemi ile ölçülüp, BNP (IRMA) ile BNP (IFMA) değerleri karşılaştırıldığında; BNP (IFMA) bağımsız değişkeninin 1 pg/ml artmasına karşılık BNP (IRMA) bağlı değişkeninin 0,644 pg/ml arttığı görülmuştur. Regresyon eşitliğinin BNP (IRMA) bağlı değişkenindeki varyasyonunun % 93’ünün BNP (IFMA) bağımsız değişkeni ile açıklan FLAC ve bu açıklama payının istatistik olarak \(p<0.01 \) düzeyinde önemli olduğu görüldü (Şekil 3.3).

\[r^2 = 0.93 \quad \text{IRMA} = 2.56 + 0.644 \times \text{IFMA} \]

Şekil 3.3. BNP (IRMA) ile BNP (IFMA) arasındaki ilişki
Bland-Altman metoduyla çıkan grafik sonuçlarına göre; BNP IRMA ve IFMA'nın ort.: ± 1,96 SD değerleri arasındaki farklılık klinik olarak önemli değilse bu iki metod birbirlerinin yerine kullanılabilir (Şekil 3.4).

Şekil 3.4. IRMA ve IFMA metodlarına göre ölçülen BNP konsantrasyonlarının Bland-Altman metodu ile gösterilmesi

3.2.1.2. İlaç Dozlara Göre BNP Sonuçlarının Değerlendirilmesi

İlaç dozlara göre 200 mg/m²'nin altında ve üstü olmak üzere iki gruba ayrıldığında; BNP (IRMA) ve BNP (IFMA) değişkenleri ortalamaları bakımından (200 mg/m²'nin altında IRMA değerlerinin ort.: 6,251 ± 0,559, IFMA değerlerinin ort.: 6,629 ± 0,988 ve 200 mg/m²'nin üstü IRMA değerlerinin ort.: 9,20 ± 1,01, IFMA değerlerinin ort.: 10,38 ± 1,61) iki grup arasında p<0.05 düzeyinde istatistik olarak önemli farklılık bulunmuştur.
Hastalara verilen sitotoksik antibiyotik dozlarıyla BNP (IRMA) değerleri arasındaki ilişki incelediğinde ilaç dozunun 1 mg/m² artmasına karşılık BNP (IRMA) değerinin 0,0242 pg/ml arttığı görülmüştür. Bu arasında istatistik olarak p<0,05 düzeyinde önemli olduğu görülmektedir (Şekil 3.5).

![BNP-IRMA ve Doz Grafiği](image)

\[r^2 = 0,246 \]
\[\text{IRMA} = 3,08 + 0,0242 \times \text{doz} \]

Şekil 3.5. BNP (IRMA) ile sitotoksik antibiyotik dozu arasındaki ilişki

Hastalara verilen sitotoksik antibiyotik dozlarıyla BNP (IFMA) değerleri arasındaki ilişki incelediğinde ilaç dozunun 1 mg/m² artmasına karşılık BNP (IFMA) değerinin 0,0302 pg/ml arttığı görülmüştür. Bu arasında istatistik olarak p<0,05 düzeyinde önemlidür (Şekil 3.6).
\[r^2 = 0.184 \quad \text{IFMA} = 2.74 + 0.0302 \times \text{doz} \]

Şekil 3.6. BNP (IFMA) ile sitotoksik antibiyotik dozu arasındaki ilişki

3.2.1.3. BNP Değerleri ile LVEF ve Değerleri Arasındaki İlişki

Hastaların BNP (IRMA) değerleri ile LVEF değerleri arasındaki ilişki incelendiğinde LVEF değerinin %1 artışına karşılık BNP (IRMA) düzeyinin 0,332 pg/ml azalğı görülmüştür. Bu azalmanın da istatistik olarak \(p<0.05\) düzeyinde önemli olduğu saptandı (Şekil 3.7).

Hastaların BNP (IFMA) değerleri ile LVEF değerleri arasındaki ilişki incelendiğinde LVEF değerinin %1 artışına karşılık BNP (IFMA) düzeyinin 0,426 pg/ml azalığı görülmüştür. Bu azalma istatistik olarak anlamlıdır (\(p<0.05\)) (Şekil 3.8).
\[r^2 = 0.25 \quad IRMA = 30.2 - 0.332 \times LVEF \]

Şekil 3.7. BNP (IRMA) değerleri ile LVEF değerleri arasındaki ilişki

\[r^2 = 0.202 \quad IFMA = 37.3 - 0.426 \times LVEF \]

Şekil 3.8. BNP (IFMA) değerleri ile LVEF değerleri arasındaki ilişki
3.2.1.4. BNP Değerleri ile FS Değerleri Arasındaki İlişki

Hastaların BNP (IRMA) değerleri ile FS değerleri arasındaki ilişki incelediğinde FS değerinin % 1 artmasına karşılık BNP (IRMA) düzeyinin 0,479 pg/ml azaldığı görülmüştür. Bu bulgu istatistiksel olarak anlamlıdır (p<0,05) (Şekil 3.9).

![Chart](image)

\[r^2 = 0,195 \quad \text{IRMA} = 25,2 - 0,479 \times \text{FS} \]

Şekil 3.9. BNP (IRMA) değerleri ile FS değerleri arasındaki ilişki

Hastaların BNP (IFMA) değerleri ile FS değerleri arasındaki ilişki incelediğinde istatistik olarak önemli bir ilişki bulunamamıştır (p>0,05).

Hastaların ilaç dozları ve BNP düzeyleri ile E/A değerleri arasında istatistiksel olarak anlamlı bir ilişki bulunamamıştır (p>0,05).
3.2.2. cTnI Sonuçlarının Değerlendirilmesi

İlaç dozlarına göre 200 mg/m²'nin altı ve üstü olmak üzere iki gruba ayrıldığında; gruplar bakımından cTnI değerleri ortalamaları arasında önemli bir farklık bulunamamıştır (200 mg/m²'nin altı cTnI değerlerinin ort.: 0,0188 ± 0,00118 ve 200 mg/m²'nin üstü doza cTnI değerlerinin ort.: 0,0225 ± 0,00105).

Hastalara verilen ilaç dozları ile cTnI değerleri arasında istatistiksel olarak önemli bir ilişki bulunamamıştır (p>0,05) (Şekil 3.10).

\[r^2 = 0,017 \quad \text{cTnI} = 0,0517 + 0,000049 \times \text{doz} \]

Şekil 3.10. cTnI ile sitotoksik antibiyotik dozu arasındaki ilişki

cTnI değerleri ile BNP (IRMA), BNP (IFMA), TAOS, AOP ve ekokardiyografik değerleri arasında istatistik olarak önemli bir ilişki bulunamamıştır.
3.2.3. Antioksidan Sonuçların Değerlendirilmesi

3.2.3.1. AOP Sonuçlarının Değerlendirilmesi

Hastalara verilen sitotoksik antibiyotik dozlarıyla AOP düzeyleri arasında istatistik olarak önemli bir ilişki bulunamamıştır. İlaç dozlarına göre 200 mg/m²'nin altı ve üstü olmak üzere iki gruba ayrıldığında bu gruplar bakımından AOP düzeyi ortalamaları arasında istatistik olarak önemli bir ilişki bulunamamıştır. (200 mg/m²'nin altı AOP değerlerinin ort.: 12,435 ± 0,258 ve 200 mg/m²'nin üstü dozda AOP değerlerinin ort.: 12,762 ± 0,382).

![AOP ile Doz arasındaki ilişki](image)

\[r^2 = 0.006 \quad \text{AOP} = 12.3 + 0.0013 \times \text{doz} \]

Şekil 3.11. AOP ile sitotoksik antibiyotik dozu arasındaki ilişki

AOP değerleri ile BNP (IRMA), BNP (IFMA), TAOS, cTnİ ve ekokardiyografik değerleri arasında istatistik olarak önemli bir ilişki bulunamamıştır.
3.2.3.2. TAOS Sonuçlarının Değerlendirilmesi

3.2.3.2.1. Manuel TAOS ve Otomatik TAOS Ölçüm Değerlerinin Karşılaştırılması

Aynı kan örnekleri manuel ve otomatik TAOS yöntemleri ile ölçülüp, değerler karşılaştırıldığında, otomatik TAOS bağımsız değişkeninin 1 mmol/l artmasına karşılık manuel TAOS bağımlı değişkeninin 0,883 mmol/l arttığı görülmüştür. Regresyon eşitliğinin manuel TAOS bağımlı değişkenindeki varyasyonun % 91,8’ünün otomatik TAOS bağımsız değişkeni ile açıklanladığı ve bu açıklama payının istatistik olarak p<0,01 düzeyinde önemli olduğu görüldü (Şekil 3.12).

\[r^2 = 0,918 \quad \text{Mnl.TAOS} = 10,937 + 0,883 \times \text{Otm.TAOS} \]

Şekil 3.12. Manuel TAOS ve otomatik TAOS değerleri arasındaki ilişki
Bland-Altman metoduyla elde edilen grafik sonuçlarına göre; manuel TAOS ve otomatik TAOS’ın ort.: ± 1,96 SD değerleri arasındaki farklılık klinik olarak önemli değilse bu iki metod birbirlerinin yerine kullanılabilir (Şekil 3.13).

Şekil 3.13. Manuel ve otomatik ölçüm metodlarına göre ölçülen TAOS konsantrasyonlarının Bland-Altman metodu ile gösterilmesi

3.2.3.2.2. İlaç Dozlarına Göre TAOS Sonuçlarının Değerlendirilmesi

Hastalara verilen sitotoksik antibiyotik dozlarıyla manuel TAOS düzeyleri arasındaki ilişki incelendiğinde ilaç dozunun 1 mg/m² artmasına karşılık TAOS düzeyinde 0,000718 mmol/l azaldığı görülmüştür. Bu azalma istatistik olarak p<0,01 düzeyinde önemlidir (Şekil 3.14).
$r^2=0.28 \quad \text{Mnl.TAOS}=1.07-0.000718 \times \text{doz}$

Şekil 3.14. Manuel TAOS ile sitotoksik antibiyotik dozu arasındaki ilişki

Hastalara verilen sitotoksik antibiyotik dozlaryla otomatik TAOS düzeyleri arasındaki ilişki incelendiğinde ilaç dozunun 1 mg/m² artmasına karşılık TAOS düzeyinde 0.000831 mmol/l azaldığı görülmüştür. Bu azalma istatistik olarak $p<0.01$ düzeyinde önemlidir (Şekil 3.15).

Manuel ve otomatik TAOS değerleri ile BNP IRMA ve IFMA değerleri arasındaki ilişki incelendiğinde istatistiksel olarak anlamlı bir ilişki bulunamamıştır ($p>0.05$) (Şekil 3.16, 3.17, 3.18 ve 3.19).
Şekil 3.15. Otomatik TAOS ile sitotoksik antibiyotik dozu arasındaki ilişki

İlaç dozlarına göre 200 mg/m²'nin altı ve üstü olmak üzere iki gruba ayrıldığında; manuel TAOS değişkenleri ortalama olarak (200 mg/m²'nin altı TAOS değerlerinin ort.: 0,90 ± 0,03 ve 200 mg/m²'nin üstü dozda TAOS değerlerinin ort.: 0,96 ± 0,01) iki grup arasında p<0,05 düzeyinde istatistik olarak önemli farklılık bulunmuştur.

İlaç dozlarına göre 200 mg/m²'nin altı ve üstü olmak üzere iki gruba ayrıldığında; otomatik TAOS değişkenleri ortalama olarak (200 mg/m²'nin altı TAOS değerlerinin ort.: 0,97 ± 0,02 ve 200 mg/m²'nin üstü dozda TAOS değerlerinin ort.: 0,90 ± 0,03) iki grup arasında p<0,05 düzeyinde istatistik olarak önemli farklılık bulunmuştur.
$r^2=0,0007$

Şekil 3.16. Manuel TAOS ile BNP (IRMA) arasındaki ilişki

$r^2=0,0026$

Şekil 3.17. Manuel TAOS ile BNP (IFMA) arasındaki ilişki
$r^2 = 0.0179$

Şekil 3.18. Otomatik TAOS ile BNP (IRMA) arasındaki ilişki

$r^2 = 0.0182$

Şekil 3.19. Otomatik TAOS ile BNP (IFMA) arasındaki ilişki
3.2.4. Cinsiyet ve Yaşa Göre Sonuçların Değerlendirilmesi

Kız ve erkek değerleri ile BNP (IRMA), BNP (IFMA), cTnl, TAOS, AOP ve ekokardiyografik değerler arasında istatistik olarak önemli bir ilişki bulunamamıştır.

Hasta grupları 5 yaş altında ve üstü olarak iki gruba ayrıldığında BNP (IRMA) değerlerinin 5 yaş altında ort.: 8,587 ± 0,744 ve 5 yaş üstü ort.: 6,102 ± 0,817 olarak bulunmuştur, bu da p<0,05 düzeyinde istatistik olarak önemlidir. Görüldüğü gibi 5 yaş altında BNP değerleri küçük yaşta sitotoksik antibiyotik alanlarda IRMA yöntemi ile artış göstermektedir.

Hasta grupları 5 yaş altında ve üstü olarak iki gruba ayrıldığında BNP (IFMA) değerlerinin 5 yaş altında ort.: 9,22 ± 1,18 ve 5 yaş üstü ort.: 6,61 ± 1,56, cTnl değerlerinin 5 yaş altında ort.: 0,02188 ± 0,00277 ve 5 yaş üstü ort.: 0,02769 ± 0,00955, AOP değerlerinin 5 yaş altında ort.: 12,375 ± 0,26 ve 5 yaş üstü ort.: 12,806 ± 0,363, Otomatık TAOS değerlerinin 5 yaş altında ort.: 0,9658 ± 0,0189 ve 5 yaş üstü ort.: 0,9265 ± 0,0270, Manuel TAOS değerlerinin 5 yaş altında ort.: 0,9394 ± 0,0236 ve 5 yaş üstü ort.: 0,9469 ± 0,0232, LVEF değerlerinin 5 yaş altında ort.: 67,91 ± 1,21 ve 5 yaş üstü ort.: 69,08 ± 1,34, FS değerlerinin 5 yaş altında ort.: 36,250 ± 0,733 ve 5 yaş üstü ort.: 37,077 ± 0,820, E/A değerlerinin 5 yaş altında ort.: 1,4563 ± 0,0391 ve 5 yaş üstü ort.: 1,3615 ± 0,0406. 5 yaş altında ve üstü ortalamaları arasında istatistik olarak önemli bir ilişki bulunamamıştır (p>0,05).

3.2.5. İki Açıklayıcı Değişkenli Linear Regresyon Analizleri ile BNP, TAOS ve Ekokardiyografi Sonuçlarının İstatistiksel Değerlendirilmesi

İki açıklayıcı değişkenli linear regresyon analizinin bilgisayar verileri tablo 3.5 ve 3.6'da görülmektedir. Üç açıklayıcı değişkenli linear regresyon analizinin bilgisayar verileri tablo 3.6, 3.7, 3.8, 3.9, 3.10, 3.11 ve 3.12'de görülmektedir (Tablolar analizin özelliğinden dolayı bilgisayardan dokudüğü şekli korunarak verilmiş, sonuçlar toplu olarak bir başlık altında değerlendirilmişlerdir).

The regression equation is

\[\text{TAOS} = 1,08 -0,000973 \text{ DOZ} + 0,00584 \text{ IFMA} \]

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>SE Coef</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1,07575</td>
<td>0,04819</td>
<td>22,33</td>
<td>0,000</td>
</tr>
<tr>
<td>DOZ</td>
<td>-0,0009728</td>
<td>0,0002699</td>
<td>-3,61</td>
<td>0,001</td>
</tr>
<tr>
<td>IRMA</td>
<td>0,005839</td>
<td>0,005526</td>
<td>1,06</td>
<td>0,300</td>
</tr>
</tbody>
</table>

\[S = 0,08048 \quad R-Sq = 34,5\% \]

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>2</td>
<td>0,088779</td>
<td>0,044389</td>
<td>6,85</td>
<td>0,004</td>
</tr>
<tr>
<td>Residual Error</td>
<td>26</td>
<td>0,168400</td>
<td>0,006477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>0,257179</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The regression equation is

\[\text{TAOS} = 1,08 -0,000867 \text{ DOZ} + 0,00267 \text{ IFMA} \]

25 cases used 4 cases contain missing values

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>SE Coef</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1,08274</td>
<td>0,04951</td>
<td>21,87</td>
<td>0,000</td>
</tr>
<tr>
<td>DOZ</td>
<td>-0,0008869</td>
<td>0,0002739</td>
<td>-3,24</td>
<td>0,004</td>
</tr>
<tr>
<td>IFMA</td>
<td>0,002673</td>
<td>0,003891</td>
<td>0,69</td>
<td>0,499</td>
</tr>
</tbody>
</table>

\[S = 0,08246 \quad R-Sq = 33,5\% \]

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>2</td>
<td>0,075390</td>
<td>0,037695</td>
<td>5,54</td>
<td>0,011</td>
</tr>
<tr>
<td>Residual Error</td>
<td>22</td>
<td>0,149610</td>
<td>0,006800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>0,225000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>SE Coef</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1,6967</td>
<td>0,2786</td>
<td>6,09</td>
<td>0,000</td>
</tr>
<tr>
<td>DOZ</td>
<td>-0,0011587</td>
<td>0,0002640</td>
<td>-4,39</td>
<td>0,000</td>
</tr>
<tr>
<td>IRMA</td>
<td>0,001610</td>
<td>0,005467</td>
<td>0,29</td>
<td>0,771</td>
</tr>
<tr>
<td>LVEF</td>
<td>-0,008118</td>
<td>0,003595</td>
<td>-2,26</td>
<td>0,033</td>
</tr>
</tbody>
</table>

S = 0,07480 \(R^2 = 45,6\% \)

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>3</td>
<td>0,117303</td>
<td>0,039101</td>
<td>6,99</td>
<td>0,001</td>
</tr>
<tr>
<td>Residual Error</td>
<td>25</td>
<td>0,139876</td>
<td>0,005595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>0,257179</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>SE Coef</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1,4842</td>
<td>0,2544</td>
<td>5,84</td>
<td>0,000</td>
</tr>
<tr>
<td>DOZ</td>
<td>-0,0011386</td>
<td>0,0002806</td>
<td>-4,06</td>
<td>0,000</td>
</tr>
<tr>
<td>IRMA</td>
<td>0,003515</td>
<td>0,005543</td>
<td>0,63</td>
<td>0,532</td>
</tr>
<tr>
<td>FS</td>
<td>-0,009857</td>
<td>0,006034</td>
<td>-1,63</td>
<td>0,115</td>
</tr>
</tbody>
</table>

S = 0,07802 \(R^2 = 40,8\% \)

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>3</td>
<td>0,105019</td>
<td>0,035006</td>
<td>5,75</td>
<td>0,004</td>
</tr>
<tr>
<td>Residual Error</td>
<td>25</td>
<td>0,152160</td>
<td>0,006086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>0,257179</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>SE Coef</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1,0631</td>
<td>0,1578</td>
<td>6,74</td>
<td>0,000</td>
</tr>
<tr>
<td>DOZ</td>
<td>-0,0009668</td>
<td>0,0002843</td>
<td>-3,40</td>
<td>0,002</td>
</tr>
<tr>
<td>IRMA</td>
<td>0,005751</td>
<td>0,005730</td>
<td>1,00</td>
<td>0,325</td>
</tr>
<tr>
<td>E/A</td>
<td>0,0087</td>
<td>0,1024</td>
<td>0,08</td>
<td>0,933</td>
</tr>
</tbody>
</table>

$S = 0,08206$ \hspace{1cm} R-Sq = 34,5%

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>3</td>
<td>0,088827</td>
<td>0,029609</td>
<td>4,40</td>
<td>0,013</td>
</tr>
<tr>
<td>Residual Error</td>
<td>25</td>
<td>0,168352</td>
<td>0,006734</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>0,257179</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>SE Coef</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1,7025</td>
<td>0,2817</td>
<td>6,04</td>
<td>0,000</td>
</tr>
<tr>
<td>DOZ</td>
<td>-0,0011015</td>
<td>0,0002698</td>
<td>-4,08</td>
<td>0,001</td>
</tr>
<tr>
<td>IFMA</td>
<td>0,000094</td>
<td>0,003763</td>
<td>0,02</td>
<td>0,980</td>
</tr>
<tr>
<td>LVEF</td>
<td>-0,008201</td>
<td>0,003678</td>
<td>-2,23</td>
<td>0,037</td>
</tr>
</tbody>
</table>

$S = 0,07590$ \hspace{1cm} R-Sq = 46,2%

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>3</td>
<td>0,104028</td>
<td>0,034676</td>
<td>6,02</td>
<td>0,004</td>
</tr>
<tr>
<td>Residual Error</td>
<td>21</td>
<td>0,120972</td>
<td>0,005761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>0,225000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The regression equation is
\[TAOS = 1,44 - 0,00105 \text{ DOZ} + 0,00177 \text{ IFMA} - 0,00574 \text{ FS} \]

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>SE Coef</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1,4372</td>
<td>0,2704</td>
<td>5,31</td>
<td>0,000</td>
</tr>
<tr>
<td>DOZ</td>
<td>-0,0010482</td>
<td>0,0002952</td>
<td>-3,55</td>
<td>0,002</td>
</tr>
<tr>
<td>IFMA</td>
<td>0,001765</td>
<td>0,003884</td>
<td>0,45</td>
<td>0,654</td>
</tr>
<tr>
<td>FS</td>
<td>-0,008736</td>
<td>0,006557</td>
<td>-1,33</td>
<td>0,197</td>
</tr>
</tbody>
</table>

S = 0,08105 R-Sq = 38,7%

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>3</td>
<td>0,087049</td>
<td>0,029016</td>
<td>4,42</td>
<td>0,015</td>
</tr>
<tr>
<td>Residual Error</td>
<td>21</td>
<td>0,137951</td>
<td>0,006569</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>0,225000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The regression equation is
\[TAOS = 0,962 -0,000840 \text{ DOZ} + 0,00274 \text{ IFMA} + 0,038 \text{ E/A} \]

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>SE Coef</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0,9621</td>
<td>0,1818</td>
<td>5,29</td>
<td>0,000</td>
</tr>
<tr>
<td>DOZ</td>
<td>-0,0008399</td>
<td>0,0002855</td>
<td>-2,94</td>
<td>0,008</td>
</tr>
<tr>
<td>IFMA</td>
<td>0,002739</td>
<td>0,003939</td>
<td>0,70</td>
<td>0,494</td>
</tr>
<tr>
<td>E/A</td>
<td>0,0778</td>
<td>0,1127</td>
<td>0,69</td>
<td>0,498</td>
</tr>
</tbody>
</table>

S = 0,08346 R-Sq = 35,0%

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>3</td>
<td>0,078708</td>
<td>0,026236</td>
<td>3,77</td>
<td>0,026</td>
</tr>
<tr>
<td>Residual Error</td>
<td>21</td>
<td>0,146292</td>
<td>0,006966</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>0,225000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
İki ve Üç Açıklayıcı Değişkenli Regresyon Analiz Tablolarının Değerlendirilmesi:

TAOS'daki değişim % 34,5'i ilaç dozu ve BNP (IRMA) değişkenleri vasıtasıyla açıklanabilmektedir. Bu değişkenlik istatistik olarak p<0,01 düzeyinde önemlidir (Tablo 3.5).

TAOS'daki değişim % 33,5'i ilaç dozu ve BNP (IFMA) değişkenleri vasıtasıyla açıklanabilmektedir. Bu değişkenlik istatistik olarak p<0,05 düzeyinde önemlidir (Tablo 3.6).

TAOS'daki değişim % 45,6'sı ilaç dozu, BNP (IRMA) ve LVEF değişkenleri vasıtasıyla açıklanabilmektedir. Bu değişkenlik istatistik olarak p<0,01 düzeyinde önemlidir (Tablo 3.7).

TAOS'daki değişim % 40,8'i ilaç dozu, BNP (IRMA) ve FS değişkenleri vasıtasıyla açıklanabilmektedir. Bu değişkenlik istatistik olarak p<0,01 düzeyinde önemlidir (Tablo 3.8).

TAOS'daki değişim % 34,5'i ilaç dozu, BNP (IRMA) ve E/A değişkenleri vasıtasıyla açıklanabilmektedir. Bu değişkenlik istatistik olarak p<0,05 düzeyinde önemlidir (Tablo 3.9).

TAOS'daki değişim % 46,2'i ilaç dozu, BNP (IFMA) ve LVEF değişkenleri vasıtasıyla açıklanabilmektedir. Bu değişkenlik istatistik olarak p<0,01 düzeyinde önemlidir (Tablo 3.10).
TAOS’daki değişimin % 38,7’si ilaç dozu, BNP (IFMA) ve FS değişkenleri vasıtasıyla açıklanabilmektedir. Bu değişkenlik istatistik olarak p<0,05 düzeyinde önemlidir (Tablo 3.11).

TAOS’daki değişimin % 35’i ilaç dozu, BNP (IFMA) ve E/A değişkenleri vasıtasıyla açıklanabilmektedir. Bu değişkenlik istatistik olarak p<0,05 düzeyinde önemlidir (Tablo 3.12).

İki açıklayıcı değişkenli regresyon analiz tablolarında verilen formülleri kullanarak (gri renkte yazılan satırlar), TAOS değerini ve ilaç dozunu biliyorsak BNP değerini tahmini olarak hesaplayabiliriz. Örneğin;

\[
TAOS = 1,08 - 0,000973 \times \text{ilac dozu} + 0,00584 \times \text{BNP (IRMA)}
\]

Üç açıklayıcı değişkenli regresyon analiz tablolarında verilen formülleri kullanarak (gri renkte yazılan satırlar), TAOS değerini, ilaç dozunu ve EKO değerini biliyorsak BNP değerini tahmini olarak hesaplayabiliriz. Örneğin;

\[
TAOS = 1,70 - 0,00116 \times \text{ilac dozu} + 0,00161 \times \text{BNP (IRMA)} - 0,00812 \times \text{LVEF}
\]
4. TARTIŞMA

Çocukluk yaşları kanserlerinde sitotoksik antibiotik tedavisi etkin ve yaygın olarak uzun yıllardan beri kullanılmaktadır. Ancak bu tedavi akut veya kronik nitelikte kardiyotoksisiteye neden olmaktadır. Akut ve subakut tip, ilaç veriminden hemen sonra arıtmı, sinus ve ventriküller taşikardi şeklinde kendini gösterirken, kronik olan kardiyomyopatiye bağlı KKY şeklinde geri döndürülemez bir durum arzeder.

Sitotoksik antibiotiklerin oluşturduğu kadiyotoksisitenin patogenezinde; kalsiyum yüklenmesine bağlı miyokard harabiyeti, adrenerjik fonksiyon bozukluğu, kalp kası gen ekspresyonu gibi nedenler yanında çok daha önemli olan serbest radikale bağlı miyokard harabiyeti söz konusu olmaktadır (Okumura ve ark., 2000).

Rhoden ve arkadaşları 550 mg/m² den fazla doksorubisin alan hastaların % 30’unda kalp yetmezliği görüldüğünü buna altındaki dozlarla çok az rastlandığını (% 0,01–0.27) bildirirken, Lipshultz grubu, 45 mg/m² gibi düşük tek doz alanlarda bile % 17 oranda kardiyak fonksiyon bozukluğu gözlenğini bildirmektedirler. Bu görüş Hayakawa ve arkadaşları (2001) tarafından da doğrulanmaktadır. Birçok yayınlar sitotoksik antibiotik tedavisi görenlerin uzun süreli takımlarında subklinik kardiyak anomali görüldüğü ve bunun zamanla progressif karekter taşıdığı bildirilmektedir KKY geliştiriken sonra bunun geri dönürtülemediği, ilaç kesilse bile iyileşme sağlanamadığına da ilgili yayınlarda dikkat çekilmektedir (Hayakawa ve ark., 2001). İlaç bağlı KKY’nin gelişmesi son derece hissi seyretmektedir. Von Hoff, klinik belirti vermeyen tedavi altında 347 hastanın % 8’inde otoside histopatolojik bulgular saptadığını bildirirken Bristow grubu yaptıkları transvenöz kardiyak biyopsilerde 240 mg/m² gibi düşük doz alanlarda bile patolojiye rastlandıkları, doz kavramı olarak kümülatif dozdan bahsedilmesi gereği üzerinde durulmasını rapor ettiler.
Basser ve arkadaşları, sitotoksik antibiyotik ağırlıklı kemoterapi kombinasyonu uygulanan çocuklara özellikle dikkat edilmesi gerektiğini, bunların yarından fazlasında sol ventriküler kontraktüloz bozukluğu ve duvar sertliği gelişmesinin tedavi bitiminden 1-15 yıl (Median 6,4 yıl) sonra bile görüleceğini vurgularken sebebi, genç hastalarda ilacin oluşturduğu miyokardiyal hücre kaybının, normal-erişkin miyokardiyal kitle gelişmesi için gerekli hücre miktarına erişilememesine bağlı lightlerdir. Diğer anlamda erişkin miyokard kitesinin gelişmesi için belirli miktarda miyokard hücresi gerekmektedir. İlaç çocukta bu hücre miktarını azalttığı için elverişli düzeyde miyokard kitesi oluşamamaktadır. Durum böyle olunca, özellikle sitotoksik tedavi altında çocukların kardiyotoksisite yönünden daha dikkatli yaklaşmak, üçüncü aydan itibaren 6-12 aylarda ve beş yıl süre ile yılda bir kez kardiyolojik yordan inceleme yapılması önerilmektedir (Rhoden ve ark., 1993).

Kardiyotoksisitenin saptanmasına yönelik mevcut yöntemler arasında en sensitiv ve spesifik görülen endomiyokardiyal biyopside miyokardın diffüz yerine parçalı tutulum göstermesi durumunda toksisite var olduğu halde negatif sonuçlar alınabilmektedir. Isner ve arkadaşları sol ventriküler sistolik disfonksiyonuna ait klinik bulguları olan 20 hastanın 7 tanesinin mikroskoperlerinde toksisiteye ait histopatolojik bulgu saptamadıklarını bildirmişlerdir (Isner ve ark., 1983). Bu şekilde klinik olarak toksisiteye ait bulgular varken histopatolojik bulgular negatif olabileceği gibi, klinik bulgu olmasının pozitif de olabilir.

Tedavi anı ve sonrasında kardiyotoksisitenin izlenmesinde çeşitli yöntemler uygulanmaktadır. Bunlar;

1) Seri olarak yapılacak radyonuklid ventrikulografi,
2) M mode Ekokardiyografi (sistolik fonksiyon değişikliği, diastolik performans ve transmitral akım hızı ölçümleri için),
3) Monoklonal antimiyozin antikor görüntüleme (miyokardiyal harabiyetle ağıra çıkan miyozini saptamak için),
4) İ125-methoxy-isobutryl-isonitryl (MIBI) sintigrafi (otonomik fonksiyon bozukluğunun göstergesi olarak),

2000 yılının son aylarında en yeni test olarak klinik uygulama alanna aktarılması FDA tarafından onaylanan plazma BNP testinin potansiyel marker olmasına tam karar vermek için çalışmaların henüz yetersiz olduğu hususında yorumlar bulunmaktadır.

Bütün bu verilerin ışığında doksurubisinin oluşturduğu kardiyak toksisitenin çok daha dramatik seyreğini çok hastalarda belirtec olmaya aday kan parametrelerini (BNP, cTnI, AOP ve TAOS) rutin yöntem olan ekokardiografik inceleme ile birlikte araştırma kapsamına almış bulunuyoruz. Doksurubisin ağırlıklı tedavi protokolü (ALL- BFM 95) uygulanan ve hastalık olarak yalnızca ALL seçilerek homojenizasyon sağlamanın özen gösterilen hasta grubumuzda, tedavinin bitiminden bir ay sonra söz konusu parametreleri ölçerek sonuçları birbirleri ile karşilaştırdığımızda yer yer ilginç sonuçlara vardır.

Tedavi bitiminden bir ay ve altı ay sonraki yapılan klinik gözlemlerde olguların hiç birinde (374 mg/m2 kümülatif doz alanlarında dahil) kalp yetmezliği belirtilerine rastlanmadı. Bu bulgu Rhoden ve arkadaşlarının bulguları ile uyum göstermektedir. Ancak aynı araştırmacılar tedavinin siklofosfamid, mitomisin-C veya amsakin gibi ilaçlarla kombine edildiğinde çok düşük dozarda bile öldürücü sonuçların görülüğünü bildirmektedirler, oysa bizim hasta tedavi protokolü içinde siklofosfamid olmasa rağmen komplikasyon görülmemiştir. Bu bulgu Basser’in “siklofosfamid, doksurubisine bağlı kardiyak toksisiteyi hızlandırımaz” tasarımındaki savını desteklemektedir (Basser ve Green, 1993).
Pediatride kardiyak fonksiyonların değerlendirilmesinde ekokardiyografi sık olarak başvurulan ve invaziv olmayan bir yöntemdir. Sitotoksis antibiyotiklere bağlı meydana gelen miyokardiyal değişikliklerin ultrasonik doku karakteristikleri henüz ortaya konmamış ve halen araştırılmaktadır. Sistolik ve diyalastik kardiyak fonksiyonlara ait çeşitli parametrelerin takibi ile kardiyotoksisitenin henüz klinik bulgu vermediğinden ortaya konabileceği bildirilmektedir (Steinherz ve ark., 1992). Sitotoksis antibiyotiklere bağlı kardiyotoksisite gelişen hastalarda erken dönemde sistolik fonksiyonlar normal olduğu halde sadece diyalastik fonksiyonlarda bozukluk bildirildiği gibi, sistolik fonksiyonlarda ciddi ve progresif bozukluk olduğu halde diyalastik fonksiyonlarda önemli bir değişiklik olmadığını bildiren çalışmalar da vardır. Sung ve arkadaşları, 110 tane sitotoksis antibiyotik içeren ve 76 tane sitotoksis antibiyotik içermeyen kemoterapi alan çocuklarda yaptıkları prospektif bir çalışmada sitotoksis antibiyotik tedavisi uygulananların %29'unda LVEF veya FS olarak belirlenen sistolik fonksiyonlarda azalma saptanmıştır. E, A ve E/A olarak belirlenen diyalastik fonksiyonlarda ise her iki grupta da eşit oranında bozukluk saptanmış (%27 ve %28) ve ilaç kardiyotoksisitesi belirledede sistolik kardiyak fonksiyonların daha spesifik olduğunu belirtmişlerdir (Sung ve ark., 1997).

Kalp yetmezliği görülmemesine rağmen kardiyak fonksiyon değişikliği olup olmadığını araştırıldığında doza bağlı LVEF ve FS değişimler saptanmıştır (LVEF için $r^2=0.2327$, FS için $r^2=0.251$ ve $p<0.05$). Bu değişikliklerdeki anlamlılık, 200 mg/m² altında ve 200 mg/m² üstünde kümülatif doz alanlar arasında yapılan istatistiksel analizde de kendini göstermektedir ($p<0.05$). Yüksek doz alanlarda kardiyak fonksiyon bozukluğunun tedavi bitiminden daha uzun sürelerde (6 ay) de devamlığını koruduğu, bir düzelme göstermediği de gözlemlediklerimiz arasındadır (tablö 3.2). Bu gözlem "ilaç kesilse bile iyileşme sağlanamaz" görüşündeki yazların hakkı çıkaracak bir nitelik arz edebilmektedir (Hayakawa ve ark., 2001).

Kalp yetmezliği, nörohormonal aktivasyonu olan ve hasta için kötü prognoza sahip bir

Hastalığın ciddi kalp yetmezliğinde ilerlemesiyle, natriüretik peptider sempatik sinir sistemi ve RAAS ile yeterince mücadele edemeye ve bunları baskılayamaz. Baro refleks bozulmuştur ve sempatik sinir sistemi ve RAAS’nın artık yeterince inhibe edilmemesi sonucunda vasokonstrüktör etkiler baskın hale gelir ve semptomlar gelişir. KKY artış ile renal perfüzyon bozulur ve natriüretik peptider böbrekler üzerindeki fizyolojik etkilerini kaybeder. Sonuçta sodyum ve su tutulumu meydana gelir, ciddi kalp
yeteşmliğinde de RAAS hormonları ve norepinefrin plazmada artmıştır. Bu yüzden ciddi kalp yeteşmliğinin klinik teşhisi hekimler için gerçek bir problem değildir, oysa semptomsuz sol ventrikül disfonksiyonlu hastaları doğru şekilde tespit etmek zordur (Mair ve ark., 1999).

Fonksiyon bozukluğu göstergesinde BNP’nin yerine baktığımızda; daha önce de belirtildiği gibi, BNP ilk kez uygulama alanına aktarıldığında, bu testin teknik yönünden geliştirilmesi, tanı ve tedavide etkin rolü üzerinde araştırmaların yoğunlaştırılması yönünde öneriler de yoğunlaşılmıştır (Wu, 2001). Bu ugraşlar sonucu farklı test kitleri piyasaya çıkarılmaya başlanmıştır. Bunlardan en önemli olanları IRMA ve IFMA tekniklerine dayalı kitlerdir.

IRMA testi, radyoaktif işaretli, plazmalar bıçaktırdığı sonra çalışmaya musait kit ile yapılırken, IFMA testi florasan işaretli özel bir düzenek (TRIAGE) sayesinde tek tek kan veya plazmada çalışılabilen hızlı bir kit özelliği arz etmektedir. BNP, yapı yönünden ANP, CNP ve urodilatin büyük benzerlik gösterdiğiinden özgül antikor üretimindeki zorluğu ve çapraz reaksiyonlara farklı kitlelerin farklı sonuçlar vermesi, BNP için çok önemli olan maksimum duyarlık, tekrarlanabilirlik ve doğruluk konusunda tereddütler neden olmakta (Del Ry ve ark., 2001) ve güvenilir yöntem araştırmaları sürdürülmektedir (Clerico ve ark., 2000).

Biz de bu bilgilerden hareketle söz konusu iki kiti aynı plazma örnekleri ile karşılaştırdık. Gerek regresyon analizi gerekse Bland-Altman analizi ile, sonuçların birbirleri ile tam bir uyum içerisinde olduklarını gördük ($r^2=0.93$ p<0.01) (Şekil 3.3 ve 3.4). Del Ry ve arkadaşlarının 83 hastada yaptıkları benzer bir çalışmada IRMA ve IFMA tayin yöntemleri arasında bizim bulduğumuz ilişkiye çok yakın ($r=0.932$) korelasyon bulmuşlardır (Del Ry ve ark., 2001). Sonuçlarımız ışığında, bıçaktırdılmış plazmaldarda tanı ve araştırmama amacı ile daha ucuz olan IRMA testinin kullanılmasını önerirken, hasta başı analizlerde 15-20 dakika gibi kısa zamanda sonuç veren
radyoaktivite kapsamayan ve radyoaktivite sorun problemi olmayan tam otomatik IFMA testinin uygulanabileceğini önerbiliriz.

Kümülatif ilaç dozu ile plazma BNP düzeyi arasındaki iliškiiyi incelediğimizde, her iki yöntemle de (IRMA-IFMA) doz artıktça plazma BNP miktarının arttuğunu gözlemiş bulunmaktayız (sekil 3.5 ve 3.6) 200 mg/m² üzerinde doz alan (maksimum tavan 374 mg/m²) çocuklardaki BNP miktari 200 mg/m² altında doz alanlara oranla anlamli olarak yüksek bulunmuştur (p<0,05). Bu bulgular doza bağlı plazma BNP düzeyinin arttuğunu savunan araştırcı bulguları ile uyum içindedir (Wu, 2001).

Plazma BNP miktari yükseklikte LVEF ve FS değerlerinin düştüğü bu değişimin her iki BNP ölçüm yöntemi ile de istatistiksel olarak anlamli ilişkiler içinde olduğu gözlenmiştir (sekil 3.7, 3.8 ve 3.9) (IRMA için \(r^2=0,246 \) p<0,05, IFMA için \(r^2=0,184 \) p<0,05). Bu bulgular bizde; plazma BNP düzeyinin ekokardiografik değişiklikler hakkında bilgi verecek nitelikte olduğunu ancak daha yüksek ilaç dozu alanlarda benzer araştırmalarda desteklenmesine ihtiyaç olduğunu düşündücesini uyanırmaktadır.

Elde ettğimiz bulgular literatürle karşılaştırıldığında, Hayakawa ve Okumura’nın yaptıkları çalışmaların bizim sonuçlarımızıza oldukça benzerlik gösterdiği görülmektedir.

Hayakawa ve arkadaşlarının 34 kanserli çocuk hastası yaptığı araştırmada, kümülatif doksorubisin dozunun artışıla paralel olarak plazma BNP düzeyinin arttuğu ve bununla birlikte plazma BNP düzeyinin sol ventrikül diyastolik fonksiyonu ile korele olmamasına rağmen sistolik fonksiyonu ile belirgin şekilde korele olduğunu belirtmişlerdir. Araştırcılar plazma BNP düzeyinin çocuklarda doksorubisinin uyardığı kardiyotoksik etkiler için marker olabileceğini belirtmektedirler (Hayakawa ve ark., 2001).
Benzer şekilde Okumura ve arkadaşlarının 26 erişkin lösemili hastada yaptığı çalışmada araştırcılar sitotoksik antibiyotiklere bağlı gelişen KKY’de BNP’nin önemli patofizyolojik rolü olduğu ve BNP plazma düzeylerinin seri ölçümünün daha basit ve invaziv olmayan bir yöntem olarak objektif bir gösterge olabileceğini öne sürmüştülerdir (Okumura ve ark., 2000):

Miyokard enfarktüsü gibi geriye dönüşümsüz ve akut kardiyak hücresel hasar varlığının söz konusu olduğu miyokard hasarlanmalarında, cTnI ve cTnT 4-6 saat içinde serumda artmaya başlayıp, 10 güne kadar bu yüksekliğini devam ettirmektedir (Ravel, 1995). Serum cTnI ve cTnT’deki bu hızlı ve erken yüksekliğin akut miyosit hasarını takiben hücrelerdeki solubil sitozolik havuzdan kaynaklandığı düşünülmektedir. Miyositlerdeki en büyük cTnI ve cTnT havuzunu ise kontraktıl aparat olarak adlandırılan yapı oluşturmakta ve sitotoksik antibiyotiklerin enfarktüsün aksine, miyositlerde akut nekroz yerine zamanla artan diffüz dejenerasyona sebep olmaları, miyofibriller kontraktıl yapılandırtaki troponin havuzunun devamlı bir cTnI ve cTnT yüksekliği sağladığı savunulmaktadır (Herman ve ark., 1999). Bu nedenle akut miyokard enfarktüsü, akut miyokardit, anstabıl anjına, kardiyak cerrahi gibi miyokard hasarı oluşan durumlarda son yıllarda Laktat dehidrogenaz ve Kreatin kinaz MB’den daha spesifik ve daha hızlı yükselen bir marker olarak cTnI, sitotoksik antibiyotiklere bağlı kardiyotoksisitenin erken dönemde saptanmasında üzerinde çalışılan biyokimyasal göstergelerdendir.

Lipshultz ve arkadaşları ALL tanılarıyla doksrubisin tedavisi uygulanan 7 çocukta, ilk doksrubisin uygulamasından sonra ölçülen serum cTnT düzeylerinin klinik olarak miyokard hasarı gösterdiği olarak kabul edilen 0,10 ng/ml’nin altında ancak submiyokardiyal enfarktüs aralığı olarak tanımladıkları 0,00-0,10 ng/ml aralığında serum cTnT düzeylerinde artış olduğu, kardiyotoksik olmayan diğer kemoterapotik ilacların uygulanmasından sonra ise böyle bir artış gözlemlenmediklerini bildirmişlerdir (Lipshultz ve ark., 1997).
O'Brien ve arkadaşları beş gün boyunca 10 mg/kg/gün dozunda doksurubisin uygulanan ratlarda cTnT düzeylerinde anlamlı artış saptanmıştır (O'Brien ve ark., 1997). Yine ratlarda yapılan bir çalışmada 2, 4, 6, 8, 10 ve 12 hafta boyunca doksurubisin uygulamasından sonra kümulatif dozların kardiyotoksik etkisi cTnT düzeyleri ve biyopsi bulguları ile karşılaştırılmış, kümulatif dosyörubisin dozu ile ortalama cTnT düzeyleri arasında korelasyon olduğu gösterilmiştir (Herman ve ark., 1999).

Fink ve arkadaşları 11 tanesine ilk kez 11 tanesine de daha önceden sitotoksik antibiyotik tedavisi uygulanmış olan 22 çocuğa yaptıkları çalışmada, ilaç uygulamasından sonraki ilk üç gün içinde kardiyak zedelenmenin bir göstergesi olarak serum cTnT düzeylerini takip etmişler ancak tedavi öncesine göre anlamlı bir değişiklik bulunamamışlardır (Fink ve ark., 1995). Meinardi ve arkadaşlarının yaptıkları bir çalışmada da troponinlerin kardiyak toksisite göstergesi olarak kullanımı ile ilgili yapılan çalışmaların yetersiz olduğu ve bu konuda daha çok araştırma yapılması gerekliği vurgulanmıştır (Meinardi ve ark., 1999).

Özellikle akut miyokard enfarktusünde erken bir belirtec olarak önemli yeri olan plazma cTnI testinin araştırma alanımızda önemli bir yeri olmadığını gözlemiş bulunmaktadır. Hasta grubumuzdan elde ettiğimiz plazma cTnI değerlerinin gerek doz, gerek plazma BNP düzeyleri ve diğer kan parametre düzeyleri (TAOS ve AOP) ile anlamlı bir bağlantı içinde olduğu görülmektedir (p>0,05). Özellikle cTnI ile çalışan ve anlamlı ilişkiden söz eden araştırmacılar, anlamlılığın söz konusu tedavide yüksek doz uygulanan olgularda belirgin klinik belirti verenlerde gözlemişlerdir. Bizim olgularımızda klinik komplikasyon görülmemiş ancak kardiyak fonksiyon değişikliği gözlenmiştir. Boyle bir ortamda cTnI’nin, kardiyak fonksiyon değişikliğinin göstergesi olamayacağı izlenimi alınmaktadır.

Serbest radikallerle antioksidan karşı koyucular arasındaki denge oksidatif hasarda ve dejeneratif hastalıktan katarakt, aterosklerozi, karsinogenez gibi hastalıklarda bozulur ve

Tedavi gören olgularımızda, benzer anlamlı taşıyan ancak yöntem olarak farklı fonksiyonel prensibe dayanan iki ayrı plazma antioksidan araştırması yaptık. Bunlardan birinde (AOP) doz ve diğer parametrelerle ilişki saptayamazken, TAOS'da anlamlı ilişkiler gözleddik. Randox firmasından sağladığımız reaktiv ve kitlerle gerek manuel, gerekse otomasyona uyugalığımız ve sonuçları irdelediğimiz ve birbirleri ile uyum içinde olduğunu saptadığımız plazma TAOS düzeyleri (Şekil 3.14 ve 3.15) ile ilaç dozları arasında istatistiksel olarak anlamlı bir ilişki gözleddik (Manuel TAOS için \(r^2=0.28 \), Otomatik TAOS için \(r^2=0.317 \) ve \(p<0.01 \)). Bu ilişki ilaç dozu artıkça plazma TAOS düzeylerinin azalması şeklinde olmaktadır. Bu bulgular, radikal üreten bir ilaç grubu için ilk bakışta mantıksal görülmektedir. (AOP'de de görülmemesi şaşırtıcı olmuştur. Durak ve arkadaşlarının 1994 yılında yaptıkları çalışmada TAOS'a benzer bulguları göremememiz irdelemeye fırsat bulmadığımız tekниğe yönelik bir eksikliğe bağlı olabilir görüşüldeyiz. İlk fırsatta tekrarlanması önerilerimiz içinde bulunmaktadır).

Ancak plazma TAOS düzeylerini irdelediğimizde dikkatimi çeken ilginç bir gözlemle karşılaştık;

1) TAOS-BNP-Doz arasında % 34,5 ilişki \((p<0.01) \)
2) TAOS-BNP-Doz-LVEF arasında % 45,6 ilişki \((p<0.01) \)
3) TAOS-BNP-Doz-FS arasında % 40,8 ilişki \((p<0.01) \) görülmektedir. Bu bulgular plazma TAOS ölçümü yapıldığında, kardiyotoksik ilacin kalp fonksiyonu üzerinde oluşurabileceğini, bozukluğu hatta BNP düzeyi hakkında da bir ön bilgi verebileceğini göstermektedir. Şimdiye kadar yaptığımız kaynak taramalarında buna benzer bir bulguya veya bir çalışmaya rastlamadık. Çalışmamız sonucu göz önüne alınındığında sitotoksik antibiyotik grubu ilaç alanlarda kalp komplikasyonunun erken habercisi olarak üzerinde önemle durulan plazma BNP düzeyleri araştırmalarına TAOS düzeylerinin de katılmazsa yararlı olabileceğini önerabiliriz.
5. SONUÇ

Çalışmamızda sitotoksik antibiyotik içeren kemoterapi protokollerini ile tedavi edilen çocukluk çağı ALL olgularında sitotoksik antibiyotiklerin kardiak yan etkileri ve erken tanı yöntemlerini araştırmak üzere ekokardiyografik olarak kalbin sistolik ve diyastolik fonksiyonları ve plazma BNP, cTnl, antioksidan potansiyel düzeyleri incelenmiştir.

Sitotoksik ilacın oluşturabileceği kalp yetmezliği komplikasyonunun erken belirteçlerinden olan kardiyak fonksiyon göstergesi LVEF ve FS ile plazma BNP düzeyleri arasında istatistiksel bir ilişki bulunmaktadır. Bu yüzden sadece komplikasyon geliştiğten sonra değil fonksiyon bozulmaya başlandıktan sonra da plazma BNP düzeyleri hareketlendmeye başlamaktadır.

Bizim olgu grubumuzda, tedavi annında veya sonrasında kalp yetersizliği gelişen hastamız olmadığı için yetersizlik annında BNP düzeyleri üzerinde bir fikir yürütmemiyoruz. Ancak total olarak sonuçlara baktığımızda saptadığımız en yüksek BNP düzeyini kabaca cut-off değeri olarak kullanabiliriz. Diğer bir ifade ile saptadığımız değerler içindeki olgular için plazma BNP düzeylerini bize negatif tahmin değeri (negatif prediktif) olarak alabileceğimiz izlenimini vermektedir.

Plazma total antioksidan (TAOS) düzeyleri ile LVEF, FS, ilaç dozu ve plazma BNP düzeyleri arasında iki ve üç açıklayıcı değişkenli lineer regresyon analiz istatistik yöntemine göre ters bir ilişki bulunmaktadır. Bu bulgu ilk kez taraflarımızdan gözlenmiştir. Plazma TAOS düzeyi ölçümu ucuz ve hızlı bir yöntemdir. Otomatik ve manuel olarak uygulanabilmektedir. Bulgularımız en azından bu testin, bir ön test olarak diğer test (plazma BNP) ve incelemelerin başlatılmasına yardımcı olabileceği karakter
taşyıabileceğini göstermesi yönünden önemli görülmektedir.

Lösemi tedavisinde etkin ve vazgeçilmez bir ilaç grubu olan sitotoksik antibiyotiklerin çok önemli komplikasyonu olan KKY’nin erken öğrenilmesi her tür zaman ve para harcamalarına değecek niteliktedir. Ancak daha ucuz ve hızlı kan testleri ile yapılacak ön incelemede çok büyük değer taşımaktadır. Kan testleri üzerinde yapılacak ileri araştırmalar, potansiyel olarak ekonomik ve klinik yarar sağlayacaktır.

Bunlar göz önüne alınırsak; özgül, duyarlı, hızlı ve ekonomik kan testleri;

1) Diğer uzun, pahalı ve uzmanlık gerektiren, bir kısımda invaziv olan diğer tanı testlerinin azaltılması veya eliminasyonuna sebep olacak,

2) Tanıesi süresini kısaltacak,

3) Erken tanı sayesinde komplikasyon insidansını azaltacak,

4) Tedavi çevabına hâlâ bilgi verecektir.

Yaptığımız araştırma verilerine göre plazma BNP ve TAOS testleri; söz konusu getirilere aday olabilecek bir görüntü arz etmektedir.
ÖZET

Sitotoksk Antibiyotik Kullanımına Bağlı Gelişen Kardiyak Toksisitenin Erken Belirlenmesinde Plazma BNP, cTnI ve Antioksidan Potansiyel Değerleri

Çalışmamızda, sitotoksik antibiyotik içeren kemoterapi protokollerini ile tedavi edilen çocukluk çağı lösemilerinde kümülatif ilaç dozuya ekokardiyografik olarak belirlenen sistolik ve diyaistolik kardiyak fonksiyonlar ve plazma BNP, cTnI, antioksidan potansiyel değerlerini karşılaştırarak erken kardiyotoksisinin tespitinde plazma BNP, cTnI ve antioksidan potansiyel değerlerinin tanı kriteri olup olamayacağını araştırılması amaçlanmıştır.

Bu amaçla ALL tanısı ile izlenerek sitotoksik antibiyotik grubu kemoterapi içeren tedavi protokolleri uygulanan, yaşları 1 ile 16 arasında olan 29 lösemili hasta çalışma grubu olarak kullanıldı. Çalışma grubundan alınan kanların plazmaları ayrılarak BNP (IRMA ve IFMA yöntemleri ile), cTnI, TAOS (manuel ve otomatik olarak) ve AOP ölçüldü.

Hasta grubu aldıkları ilaç dozları bakımından 200 mg/m² nin altında ve üstü olmak üzere iki gruba ayrıldı. Gruplara göre ilaç dozu arttıktan, ekokardiyografik sistolik LVEF ve FS değerlerinin azaldığı (LVEF için r²=0,2327 ve FS için r²=0,251), diyaistolik değerlerde (E/A) değişiklik olmadığı gözlemledik. Diğer taraftan plazma BNP düzeyinin arttığını (IRMA için r²=0,246 ve IFMA için r²=0,184), plazma cTnI düzeyinde değişiklik olmadığı, plazma TAOS düzeyinin azaldığını (manuel TAOS için r²=0,28 ve otomatik TAOS için r²=0,317), plazma AOP düzeyinde değişiklik olmadığını saptadık. Plazma BNP miktarı yükseldiğinde LVEF ve FS değerinin düştüğünü (LVEF için r²=0,25 ve FS için r²=0,195) saptadık. Gerek BNP IRMA ve IFMA (r²=0,93) yöntemleri gerekse TAOS manuel ve otomatik (r²=0,918) yöntemlerde birbirleri ile tam uyum içerisinde olduklarını saptadık.

Sitotoksik antibiyotik kullanımına bağlı gelişen kardiyak toksisitenin erken belirlenmesinde plazma BNP ve TAOS testleri; uzun, pahalı ve uzmanlık gereken bir kısmında invaziv olan diğer tanı testlerinin azaltılması veya eliminasyonuna sebep olacak, tanı süresini kısaltacak, erken tanı sayesinde komplikasyon insidansını azaltacak, tedavi cevabı hakkında bilgi verecek getirilere aday olabileceğini düşündürmektedir.

Anahtar Sözcükler: Antioksidan potansiyel, beyin natriüretik peptid, kardiyak troponin, kardiyotoksisite, sitotoksik antibiyotik.
SUMMARY

Plasma BNP, cTnI and Antioxidant Potential Values in Early Determination of Cardiac Toxicity Due to Cytotoxic Antibiotic Usage

In our study, it has been intended to investigate if cumulative drug dosage, echocardiographically determined systolic and diastolic cardiac functions and plasma BNP, cTnI and antioxidant potential values can be used as diagnostic criteria in childhood leukemia that were treated with chemotherapy protocols containing cytotoxic antibiotics.

For this purpose, 29 patients with leukemia who have been followed with ALL diagnosis and who were administered a treatment protocol containing chemotherapy of cytotoxic antibiotics, ranged between 1 and 16 years of age were used as the study group. BNP (by IRMA and IFMA methods), cTnI, TAOS (manually and automatically) and AOP were studied in plasma samples from the study group.

Patient group has been divided into two subgroups for drug doses below and over the 200 mg/m². According to the groups, we determined that as the drug dose increased echocardiographic systolic LVEF and FS values decreased (for LVEF \(r^2 = 0.2327 \), FS \(r^2 = 0.251 \)), we didn’t observe any change in the diastolic values (E/A) for these parameters. On the other hand plasma BNP levels increased significantly (for IRMA \(r^2 = 0.246 \) and for IFMA \(r^2 = 0.184 \)), there was no change in plasma cTnI levels, plasma TAOS levels decreased (for manual TAOS \(r^2 = 0.28 \) and for automatic TAOS \(r^2 = 0.317 \)) and there was no change in plasma AOP levels. We observed increased levels of plasma BNP as LVEF and FS values decreased (for LVEF \(r^2 = 0.25 \) and for FS \(r^2 = 0.195 \)). Both BNP IRMA and IFMA methods \((r^2 = 0.93) \) and manual and automatic TAOS methods \((r^2 = 0.918) \) were found to be in complete harmony with each other.

Plasma BNP and TAOS tests in the early determination of cardiac toxicity due to cytotoxic antibiotic use are thought to be a candidate for gains that cause reduction and elimination of other diagnostic tests, some parts of which require speciality, shorten the diagnosis time, decrease the complication incidence due to early diagnosis and provide information about therapeutic response.

Keywords: Antioxidant potential, brain natriuretic peptide, cardiac troponin, cardiotoxicity, cytotoxic antibiotic.
KAYNAKLAR

DEMİRTAŞ, S., NERGİSOĞLU, G., AKBAY, A. KARACA, L. (2002): The relation between low-density lipoprotein (LDL) oxidation and hemodialysis with respect to membrane types. Turkish Journal of Medical Science: 32; 93-100

GUTTERIDGE, JMC. (1993): Anthracycline toxicity, iron and oxygen radicals, and chelation therapy. *Journal of Laboratory and Clinical Medicine*: 122(3);228-229

Marx JJM. (1996): Use of iron chelators in preventing hydroxyl radical damage: Adult respiratory distress syndrome as an experimental model for the pathophysiology and treatment of oxygen-radical-mediated tissue damage. *Acta Haematologica*: 95;49-62

O'Brien, PJ., Domeron, GW., Beck, ML., Kang, JY. (1997): Cardiac troponin T is a sensitive,
specific biomarker of cardiac injury in laboratory animals. *Laboratory Animal Science*: 47(5);486-495.

SAITO, Y., NAKAO, K., ARAI, H., NISHIMURA, K., OKUMURA, K., OBATA, K., TAKEMURA, G., FUJIWARA, H., SUGAWARA, A., YAMADA, T., ITOH, H., Mukoyama, M., Hosoda, K.,

