Mycobacterium tuberculosis SUŞLARINDA EFLÜKS POMPASINI OLUŞTURAN GEN EKSPRESYONLARININ ÇOKLU İLAÇ DİRENÇ GELİŞİMİ ÜZERİNE ETKİSİNİN ARAŞTIRILMASI

Dr. Mustafa Kerem ÇALGIN

TIBBİ MİKROBİYOLOJİ ANABİLİM DALI
TIPTA UZMANLIK TEZİ

DANİŞMAN
Prof. Dr. Mehmet KIYAN

ANKARA
2012
Mycobacterium tuberculosis SUŞLARINDA EFLÜKS POMPASINI OLUŞTURAN GEN EKSPRESYONLARININ ÇOKLU İLAÇ DİRENÇ GELİŞİMİ ÜZERİNE ETKİSİNİN ARAŞTIRILMASI

Dr. Mustafa Kerem ÇALGIN

TIBBİ MİKROBIYOLOJİ ANABİLİM DALI
TIPTA UZMANLIK TEZİ

DANİŞMAN
Prof. Dr. Mehmet KIYAN

Bu tez, TÜBİTAK tarafından 108S247 Proje numarası ile desteklenmiştir

ANKARA
2012
Ankara Üniversitesi Tıp Fakültesi
Tıbbi Mikrobiyoloji Anabilim Dalı
Tıpta Uzmanlık eğitimi çerçevesinde yürütülmüş olan

Mycobacterium tuberculosis Suşlarında Eflüks Pompasını Oluşturan Gen Ekspresyonlarının Çoklu İlaç Direnç Gelişimi Üzerine Etkisinin Araştırılması başlıklı, Dr. Mustafa Kerem ÇALGIN’ a ait bu çalışma aşağıdaki jüri tarafından Tıpta Uzmanlık Tezi olarak kabul edilmiştir.

Tez Savunma Tarihi: 27/01/2012

Prof. Dr. Aydın KARAARSLAN
Ankara Üniversitesi Tıp Fakültesi
Tıbbi Mikrobiyoloji Anabilim Dalı Başkanı
Jüri Başkanı

Prof. Dr. Mehmet KIYAN
Ankara Üniversitesi Tıp Fakülitesi
Tıbbi Mikrobiyoloji Anabilim Dalı Tez Danışmanı

Doç. Dr. Fikret ŞAHİN
Ankara Üniversitesi Tıp Fakültesi
Tıbbi Mikrobiyoloji Anabilim Dalı Üye
ÖNSÖZ

Eflüks pompalarının Mycobacterium tuberculosis’ te çoklu ilaç direnci gelişmesi üzerindeki rolünün araştırıldığı bu çalışma Türkiye Bilimsel ve Teknik Araştırma Kurumu (TÜBİTAK) tarafından 108S247 nolu proje kapsamında desteklenmiştir.

Uzmanlık eğitimim ve tez çalışma süresince bana gösterdiği eşsiz sabırdan ve inançtan dolayı ve gerek bilimsel, gerekse hayat görüşü konularında bana sayısız bilgi ve destek veren ve yetişmemde büyük emeği olan değerli danışmanım Sayın Prof. Dr. Mehmet Kıyan’ a sonsuz teşekkürlerimi ve saygılarımı sunarım.

Tez çalışmalarının her aşamasında yardımcılarını ve dostluğuunu esirgeme yenen, desteğini sürekli hissettim, her konuda bilgi ve deneyimleri ile bana yol gösteren Doç. Dr. Fikret Şahin’ e, laboratuvar çalışmalarında değerli yardımcılarımдан dolayı Djursun Karasartova’ ya, örnek sağlama konusundaki yardımcılarımdan dolayı Uzm. Dr. Melike Atasever ve Doç. Dr. Deniz Köksal’ a, eğitimim boyunca destek ve anlayışlarını esirgemeyen çalışma arkadaşlarımız olan Ankara Üniversitesi Tıp Fakültesi Tibbi Mikrobiyoloji Anabilim Dalı’ nun değerli öğretim üyeleri, araştırma görevlileri ve personeline, başarılarının esas kaynağı olan ve bu günler gelmem için her türlü fedakarlığı yapan sevgili anneme, babama ve kardeşlerime, destek ve sabırları için sevgili eşim Ülkü’ ye teşekkür ederim.

Dr. Mustafa Kerem ÇALGIN
İÇINDEKİLER

Kabul ve Onay... i
Önsöz .. ii
İçindekiler... iii
Simgeler ve Kısaltmalar ... viii
Şekiller Dizini.. xi
Tablolar Dizini.. xii
1. GİRİŞ... 1
2. GENEL BİLGİLER... 4
 2.1. Tarihçe ... 4
 2.2. Epidemiyoloji ... 5
 2.3. Mikrobiyoloji ... 5
 2.3.1. Morfoloji .. 6
 2.3.2. Hücre Duvarı ... 8
 2.3.2.1. Plazma membranı .. 9
 2.3.2.2. Orta tabaka .. 9
 2.3.2.3. Pepdidoglikan yapı .. 10
 2.3.2.4. Arabinogalaktan .. 10
 2.3.2.5. Mikolik asitler ... 11
 2.4. Tedavi ve Direnç ... 12
 2.4.1. Mikobakteriyel İntrinsik Rezistom .. 17
 2.4.2. Çoklu İlaç Direnç Eflüks Pompaları ... 18
 2.4.2.1. Sekonder çoklu ilaç taşıyıcıları ... 20
 2.4.2.2. ABC tipi çoklu ilaç taşıyıcılar ... 20
3. GEREÇ VE YÖNTEM... 23
 3.1. M. tuberculosis Suşları ... 23
 3.2. Eflüks Pompa Genleri .. 24
 3.3. Gereçler .. 25
 3.3.1. Besiyerleri ... 25
 3.3.2. Kimyasal Madde ve Malzemeler ... 25
 3.3.3. Sarf Malzemeleri .. 25
3.3.4. Araçlar .. 26
3.3.5. Jel Elektroforez İşleminde Kullanılan Solüsyonlar .. 26
3.4. M. tuberculosis Suşlarından RNA Ekstraksiyonu ... 27
3.5. Elde Edilen RNA’ların Spektrofotometre ile Ölçümü .. 28
3.6. cDNA Sentezi .. 28
3.7. Polimeraz Zincir Reaksiyonu (PZR) .. 29
3.7.1. Örneklerin Hazırlanması ... 29
3.7.2. Primerlerin Seçilmesi ... 29
3.7.3. DNA Amplifikasyonu .. 31
3.7.4. PZR Ürünlerinin Saptanması .. 31
3.7.5. Duyarlı ve Dirençli Suşlar Arasındaki Ekspresyon Farkı Ölçümü 31
3.7.6. İstatistiksel değerlendirme ... 31
3.8. Logaritmik Artış Fazlarını Belirleme .. 32
3.8.1. PZR Yöntemi ile Rv1410c ve Rv2333c Genlerinin Logaritmik Artış Fazlarını Belirleme ... 32
3.8.2. PZR Yöntemi ile drrA, drrB, iniA ve mmpL7 Genlerinin Logaritmik Artış Fazlarını Belirleme ... 34
3.8.3. PZR Yöntemi ile Rv1258c Geninin Logaritmik Artış Fazını Belirleme 36
3.8.4. PZR Yöntemi ile Rv1273c, Rv1687c, Rv3000, mmpL4, Rv1250, Rv1634, Rv0783c ve Rv0037c Genlerinin Logaritmik Artış Fazlarını Belirleme ... 38
3.9. Multipleks PZR çalışmalar .. 41
3.9.1. Rv1410c Geninin Multipleks PZR ile Amplifikasyonu .. 41
3.9.1.1. PZR ürününün agaroz jel elektroforezinde saptanması 42
3.9.1.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farklı ölçümü 42
3.9.2. Rv2333c Geninin Multipleks PZR ile Amplifikasyonu .. 43
3.9.2.1. PZR ürününün agaroz jel elektroforezinde saptanması 44
3.9.2.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farklı ölçümü 44
3.9.3. drrA Geninin Multipleks PZR ile Amplifikasyonu ... 44
3.9.3.1. PZR ürününün agaroz jel elektroforezinde saptanması 45
3.9.3.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farklı ölçümü 45
3.9.4. drrB Geninin Multipleks PZR ile Amplifikasyonu ... 46
3.9.4.1. PZR ürününün agaroz jel elektroforezinde saptanması 47
3.9.4.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farklı ölçümü 47
3.9.5. iniA Geninin Multipleks PZR ile Amplifikasyonu ... 47
3.9.5.1. PZR ürününün agaroz jel elektroforezinde saptanması 48
3.9.5.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farklı ölçümü 48
3.9.6. mmpL7 Geninin Multipleks PZR ile Amplifikasyonu .. 49
3.9.6.1. PZR ürününün agaroz jel elektroforezinde saptanması 50
3.9.6.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farklı ölçümü 50
3.9.7. Rv1258c Geninin Multipleks PZR ile Amplifikasyonu 50
3.9.7.1. PZR ürününün agaroz jel elektroforezinde saptanması 51
3.9.7.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farklı ölçümü 51
3.9.8. Rv1273c Geninin Multipleks PZR ile Amplifikasyonu 52
3.9.8.1. PZR ürününün agaroz jel elektroforezinde saptanması 53
3.9.8.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farklı ölçümü 53
3.9.9. Rv1687c Geninin Multipleks PZR ile Amplifikasyonu 53
3.9.9.1. PZR ürününün agaroz jel elektroforezinde saptanması 54
3.9.9.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farklı ölçümü 54
3.9.10. Rv3000 Geninin Multipleks PZR ile Amplifikasyonu 55
3.9.10.1. PZR ürününün agaroz jel elektroforezinde saptanması 56
3.9.10.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farklı ölçümü 56
3.9.11. mmpL4 Geninin Multipleks PZR ile Amplifikasyonu 56
3.9.11.1. PZR ürününün agaroz jel elektroforezinde saptanması 57
3.9.11.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farklı ölçümü 57
3.9.12. Rv1250 Geninin Multipleks PZR ile Amplifikasyonu 58
3.9.12.1. PZR ürününün agaroz jel elektroforezinde saptanması 59
3.9.12.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farklı ölçümü 59
3.9.13. Rv1634 Geninin Multipleks PZR ile Amplifikasyonu 59
3.9.13.1. PZR ürününün agaroz jel elektroforezinde saptanması 60
3.9.13.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farklı ölçümü 60
3.9.14.1. PZR ürününün agaroz jel elektroforezinde saptanması 62
3.9.14.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farklı ölçümü 62
3.9.15. Rv0037c Geninin Multipleks PZR ile Amplifikasyonu 62
3.9.15.1. PZR ürününün agaroz jel elektroforezinde saptanması .. 63
3.9.15.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farkı ölçümü 63
3.10. *M. tuberculosis* Standart Suşlarında Multipleks PZR ile Genlerin Amplifikasyonu .. 64
3.10.1. PZR Ürününün Agaroz Jel Elektroforezinde Saptanması 64
4. BULGULAR ...65
4.1. Logaritmik Artış Fazlarını Belirleme .. 65
4.1.1. PZR Yöntemi ile Rv1410c ve Rv2333c Genlerinin Logaritmik Artış Fazlarını Belirleme .. 65
4.1.2. PZR Yöntemi ile drrA, drrB, iniA ve mmpL7 Genlerinin Logaritmik Artış Fazlarını Belirleme ..66
4.1.3. PZR Yöntemi ile Rv1258c Geninin Logaritmik Artış Fazını Belirleme 68
4.1.4. PZR Yöntemi ile Rv1273c, Rv1687c, Rv3000, *mmpL4*, Rv1250, Rv1634, Rv0783c ve Rv0037c Genlerinin Logaritmik Artış Fazlarını Belirleme 69
4.2. Multipleks PZR Çalışmaları .. 73
4.2.1. Rv1410c Geninin Multipleks PZR ile Amplifikasyonu 73
4.2.2. Rv2333c Geninin Multipleks PZR ile Amplifikasyonu .. 74
4.2.3. *drrA* Geninin Multipleks PZR ile Amplifikasyonu ... 76
4.2.4. *drrB* Geninin Multipleks PZR ile Amplifikasyonu .. 78
4.2.5. *iniA* Geninin Multipleks PZR ile Amplifikasyonu .. 79
4.2.6. *mmpL7* Geninin Multipleks PZR ile Amplifikasyonu 81
4.2.7. Rv1258c Geninin Multipleks PZR ile Amplifikasyonu 82
4.2.8. Rv1273c Geninin Multipleks PZR ile Amplifikasyonu 84
4.2.9. Rv1687c Geninin Multipleks PZR ile Amplifikasyonu 85
4.2.10. Rv3000 Geninin Multipleks PZR ile Amplifikasyonu 87
4.2.11. *mmpL4* Geninin Multipleks PZR ile Amplifikasyonu 89
4.2.12. Rv1250 Geninin Multipleks PZR ile Amplifikasyonu 90
4.2.13. Rv1634 Geninin Multipleks PZR ile Amplifikasyonu 92
4.2.14. Rv0783c Geninin Multipleks PZR ile Amplifikasyonu 93
4.2.15. Rv0037c Geninin Multipleks PZR ile Amplifikasyonu 95
4.3. *M. tuberculosis* Standart Suşlarında Multipleks PZR ile Genlerin Amplifikasyonu .. 96
4.4. Duyarlı, Çoklu Dirençli ve Standart suş Gruplarında Genlerin Rölatif Ekspresyon Profilleri ...100
5. TARTIŞMA ...102
6. SONUÇ ve ÖNERİLER ..112
ÖZET ...114
SUMMARY ...115
KAYNAKLAR...116
SİMGELER ve KISALTMALAR

\(a \)
Alfa

\textbf{A}
Adenin

\textbf{ABC}
ATP-
bağlayıcı kaset

\textbf{AIDS}
Acquired immune deficiency syndrome

\textbf{ATCC}
American Type Culture Collection

\textbf{ATP}
Adenozin trifosfat

\(\beta \)
Beta

\textbf{BCG}
Bacillus Calmette-Guérin

\textbf{C}
Sitozin

\textbf{CCCP}
carbonyl cyanide \(m \)-chlorophenylhydrazone

\textbf{cDNA}
Complementary deoksiribonükleik asit

\textbf{CIP}
Siprofloksasin

\textbf{ÇİD-TB}
Çok ilaca dirençli tüberküloz

\textbf{ddH}_2\text{O}
Çift distile su

\textbf{dH}_2\text{O}
Distile su

\textbf{dk}
Dakika

\textbf{DNA}
deoksiribonükleik asit

\textbf{dNTP}
deoksiribonükleotid trifosfat

\textbf{DSÖ}
Dünya Sağlık Örgütü

\textbf{DTT}
Ditioerithritol

\textbf{EDTA}
Etilendiamin tetraasetik asit

\textbf{EMB}
Etambutol

\textbf{F}
Forward

\textbf{G}
Guanin

\textbf{HIV}
Human immunodeficiency virus

\textbf{IK}
İnternal kontrol

\textbf{INH}
İzoniazid

\textbf{LJ}
Lowenstein-Jensen

\textbf{M}
Moleküler büyüklük belirteci

\textbf{MAC}
\textit{Mycobacterium avium} complex
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATE</td>
<td>Multidrug and toxic compound extrusion</td>
</tr>
<tr>
<td>MDR</td>
<td>Multiple Drug Resistance</td>
</tr>
<tr>
<td>MDR-TB</td>
<td>Multi-drug resistant tuberculosis</td>
</tr>
<tr>
<td>MFS</td>
<td>Major Facilitator superfamily</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnezyum klorid</td>
</tr>
<tr>
<td>MİK</td>
<td>Minimum inhibisyon konsantrasyonu</td>
</tr>
<tr>
<td>µg</td>
<td>Mikrogram</td>
</tr>
<tr>
<td>µl</td>
<td>mikrolitre</td>
</tr>
<tr>
<td>µM</td>
<td>Mikromolar</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>OFL</td>
<td>Ofloksasin</td>
</tr>
<tr>
<td>oligo dT</td>
<td>Oligodeoxythymidylic acid</td>
</tr>
<tr>
<td>PAS</td>
<td>Paraminosalisilik asid</td>
</tr>
<tr>
<td>pmol</td>
<td>Pikomol</td>
</tr>
<tr>
<td>PZA</td>
<td>Pirazinamid</td>
</tr>
<tr>
<td>PZR</td>
<td>Polimeraz zincir reaksiyonu</td>
</tr>
<tr>
<td>R</td>
<td>Dirençli</td>
</tr>
<tr>
<td>R</td>
<td>Reverse</td>
</tr>
<tr>
<td>RIF</td>
<td>Rifampisin</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonükleik asit</td>
</tr>
<tr>
<td>RNAs</td>
<td>Ribonükleaz</td>
</tr>
<tr>
<td>RND</td>
<td>Resistance nodulation cell division</td>
</tr>
<tr>
<td>rpm</td>
<td>Devir/dakika</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribozomal ribonükleik asit</td>
</tr>
<tr>
<td>RT reaction mix</td>
<td>Reverse transcriptase reaction mixture</td>
</tr>
<tr>
<td>RT-PZR</td>
<td>Reverse transcription polimeraz zincir reaksiyonu</td>
</tr>
<tr>
<td>S</td>
<td>Duyarlı</td>
</tr>
<tr>
<td>SMR</td>
<td>Small multidrug resistance</td>
</tr>
<tr>
<td>sn</td>
<td>Saniye</td>
</tr>
<tr>
<td>STR</td>
<td>Streptomisin</td>
</tr>
<tr>
<td>T</td>
<td>Timin</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquaticus</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>TB</td>
<td>Tüberküloz</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris/Borate/EDTA</td>
</tr>
<tr>
<td>TET</td>
<td>Tetrasiklin</td>
</tr>
<tr>
<td>TRIS</td>
<td>Tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviyole</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>XDR-TB</td>
<td>Extensive drug resistant tuberculosis</td>
</tr>
<tr>
<td>YİD-TB</td>
<td>Yaygın ilaç dirençli tüberküloz</td>
</tr>
<tr>
<td>°C</td>
<td>Santigrat derece</td>
</tr>
</tbody>
</table>
ŞEKİLLER DİZİNİ

Şekil 2.1. Mikobakteri hücre duvarı

Şekil 4.1. Rv1410c ve Rv2333c genleri 34. ve 35. döngülerdeki PZR görüntüüsü

Şekil 4.3. Rv1258c geni 26., 29. ve 33. döngülerdeki PZR görüntüüsü

Şekil 4.4. Rv1273c, Rv1687c, Rv3000 ve *mmpL4* genlerinin 29, 33 ve 37. döngülerdeki PZR görüntüüsü

Şekil 4.5. Rv1250, Rv1634 ve Rv0783c genlerinin 29, 33 ve 37. döngülerdeki PZR görüntüüsü

Şekil 4.6. Rv0037c geninin 29, 33 ve 37. döngülerdeki PZR görüntüüsü

Şekil 4.7. Rv1410c geni 33 döngü PZR fotoğrafı

Şekil 4.8. Rv2333c geni 32 döngü PZR fotoğrafı

Şekil 4.9. *drrA* geni 26 döngü PZR fotoğrafı

Şekil 4.10. *drrB* geni 26 döngü PZR fotoğrafı

Şekil 4.11. *iniA* geni 26 döngü PZR fotoğrafı

Şekil 4.12. *mmpL7* geni 26 döngü PZR fotoğrafı

Şekil 4.13. Rv1258c geni 25 döngü PZR fotoğrafı

Şekil 4.14. Rv1273c geni 29 döngü PZR fotoğrafı

Şekil 4.15. Rv1687c geni 30 döngü PZR fotoğrafı

Şekil 4.16. Rv3000 geni 37 döngü PZR fotoğrafı

Şekil 4.17. *mmpL4* geni 29 döngü PZR fotoğrafı

Şekil 4.18. Rv1250 geni 28 döngü PZR fotoğrafı

Şekil 4.19. Rv1634 geni 28 döngü PZR fotoğrafı

Şekil 4.20. Rv0783c geni 29 döngü PZR fotoğrafı

Şekil 4.21. Rv0037c geni 34 döngü PZR fotoğrafı

Şekil 4.22. Tüm genlerin *M. tuberculosis* H37Rv ATCC 25618 suşundaki PZR fotoğrafı

Şekil 4.23. Tüm genlerin *M. tuberculosis* H37Ra ATCC 25177 suşundaki PZR fotoğrafı

Şekil 4.24. Tüm genlerin *M. tuberculosis* H37Rv RSKK 598 Pasteur enstitüsü standart suşundaki PZR fotoğrafı
TABLOLAR DİZİNİ

Tablo 2.1.	Çeşitli anti - TB ilaçlara dirençle ilişkili genler
Tablo 2.2.	*M. tuberculosis* ilaç direncinde rol oynadığı gösterilmiş olan eflüks pompa genleri ve taşıyıcılar
Tablo 3.1.	Çalışmaya alınan MDR suşların primer anti - TB ilaçlara direnç fenotipleri
Tablo 3.2.	Çalışmada araştırılan eflüks pompalarının özellikleri
Tablo 3.3.	PZR’ de kullanılan primerler
Tablo 4.1.	Rv1410c geni, gen/IK ekspresyon oranları tablosu
Tablo 4.2.	Rv2333c geni, gen/IK ekspresyon oranları tablosu
Tablo 4.3.	*drrA* geni, gen/IK ekspresyon oranları tablosu
Tablo 4.4.	*drrB* geni, gen/IK ekspresyon oranları tablosu
Tablo 4.5.	*iniA* geni, gen/IK ekspresyon oranları tablosu
Tablo 4.6.	*mmpL7* geni, gen/IK ekspresyon oranları tablosu
Tablo 4.7.	Rv1258c geni, gen/IK ekspresyon oranları tablosu
Tablo 4.8.	Rv1273c geni, gen/IK ekspresyon oranları tablosu
Tablo 4.9.	Rv1687c geni, gen/IK ekspresyon oranları tablosu
Tablo 4.10.	Rv3000 geni, gen/IK ekspresyon oranları tablosu
Tablo 4.11.	*mmpL4* geni, gen/IK ekspresyon oranları tablosu
Tablo 4.12.	Rv1250 geni, gen/IK ekspresyon oranları tablosu
Tablo 4.13.	Rv1634 geni, gen/IK ekspresyon oranları tablosu
Tablo 4.15.	Rv0037c geni, gen/IK ekspresyon oranları tablosu
Tablo 4.16.	Tüm genlerin rölatif ekspresyon profilleri
1. GİRİŞ

Tüberküloz (TB), insanlık tarihinin en eski ve en çok korkulan hastalıklardan biridir. Sebebinin bilinmesine, son 50 yıldır tedavisinin mümkün olmasına ve korunulabilir bir hastalık olmasına karşın, dünyada en yaygın ve ölümçül bulaşıcı hastalıklardan biri olmaya devam etmektedir (Kıyan, 1999; Kılıçaslan, 2007).

Günümüzde TB tedavisinde birinci seçenek ilaçlar izoniazid, rifampin, pirazinamid, etambutol ve streptomisinidir. Siklooserin, etionamid, tiasetazon, kanamisin, kapreomisin ve paraminosalisilik asid (PAS) gibi ilaçlar ise ikinci seçenek ilaçlardır (Otkun, 2001).

Günümüzde kullanılmakta olan ilaçlara karşı gelişen direnci en aza indirmek ve yeni antitüberküloz ilaçlar geliştirebilmek için, basılin yapısı ve direnç mekanizmaları daha iyi incelenerek, ilaçların etki edebileceği yeni hedef moleküller araştırılmalıdır.

M. tuberculosis tüm birincil antitüberküloz ilaçlara ve çoğu ikincil ilaçlara karşı direnç geliştirmiştir. Bununla birlikte, M. tuberculosis düşük geçirgenliğe sahip, lipidden zengin yapıda, nadir gözlenen bir hücre duvarına sahiptir ve bu nedenle intrinsik olarak çoğu antibiyotigü de dirençlidir. Eflüks pompaları (tek bir antibiyotitken, değişik çok çeşitli kimyasal ve yapısal maddelere kadar hücre dışına
çıkarmaya kabiliyetli, enerji bağımlı membran proteinleri), ilaç direncinin artmasında hücre duvarı geçirgenlik bariyeri ile sinerjik çalışır. Mikobakterilerde çeşitli eflüks pompaları rapor edilmiş ama birçoğu hala iyi bir şekilde karakterize edilememiştir. Florokinolonlar, aminoglikozidler, tetrasiokinler, rifampin ve muhtemelen izoniazid ve etambutol gibi çeşitli antibiyotiklerin transportunda bu pompaların görev aldığı gösterilmiştir (Pasca, 2005; Piddock, 2006; Ramon-Garcia, 2007).

Eflüks pompalarının oluşması ve çalışmasıda rol aldığı belirtilen genlerin mikobakterilerdeki eşdeğerleri veya benzerlerinin varlığı ve ilaç atılımı ile çoklu ilaç direnci gelişimi üzerindeki rolleri ile ilgili çalışmalar sınırlıdır. Özellikle klinik suşlarda bu genlerin ekspresyonlarındaki farklılıkları konu alan çok az çalışma vardır.

Bu çalışmada, mikobakterilerde eflüks pompalarının oluşumunda rol aldığı belirlenmiş olan; Rv1410c (p55), Rv2333c, drrA, drrB, mmpL4, mmpL7, Rv1258c, iniA (Rv0342), Rv0037c, Rv0783c, Rv1250, Rv1273c, Rv1634, Rv1687c ve Rv3000 gen ekspresyonlarının, direkt klinik olarak elde edilmiş olan çoklu ilaç direnci gösteren M. tuberculosis suşlarında multipleks RT - PZR yöntemi kullanılarak çalışılması ve sonuçların direnç göstermeyen suşlardaki ekspresyon miktarları ile kıyaslanarak iki grup arasındaki ekspresyon farklılıklarının belirlenmesi amaçlanmıştır. Bu şekilde çoklu ilaç direnci gösteren grupta rol alan gen veya genlerin belirlenmesi ve direnç mekanizmasının anlaşılması yanında özellikle çoklu ilaç direnci gösteren suşlar ile ortaya çıkan tüberkülöz hastalığın tedavisinde yeni bir hedefin ortaya konması yanında bu genlerin ekspresyon miktarlarının, M. tuberculosis H37Rv ATCC 25618, M. tuberculosis H37Ra ATCC 25177, M. tuberculosis H37Rv RSKK 598 Pasteur enstitüsü standart suşlarında da araştırılması hedeflenmiştir.
Çalışmamızın \textit{M. tuberculosis}’te bulunan eflüks pompalarının bir çok üyesini aynı anda araştırması ve klinik örneklerden izole edilmiş MDR fenotipi bulunduran suşlarla çalışılması açısından bu konuda mevcut literatür bilgilere katkıda bulunacağı düşünülmektedir.
2. GENEL BİLGİLER

2.1. Tarihçe

Tüberkülozla ilgili ilk klinik ve patolojik gözlemler; hastalıktan ölen kişilerin akciğerlerinde kaviter lezyonlar olduğunu bildiren Vesalius (1478) ile başlamaktadır. Sonraki yıllarda Sylvius tarafından tüberküller tanımlanmış, Marton (1689) hastalıktın, bitme tükene anlama gelen, verem tabirini kullanmıştır (Kıyan, 1999).

2.2. Epidemiyoloji

Tüberküloz insidansı sosyoekonomik özelliklere bağlı olarak ülkeden ülkeye değişmektedir. Gelişmiş ülkelerde tüberküloz insidansının çok düşük olmasına karşın, geri kalmış ve gelişmekte olan ülkelerde hız çok yüksektir. Hindistan’da tüberküloz insidansı 100.000 kişide 450’ den daha fazla tahmin edilmektedir, İngiltere’de bu rakam 12.2/100.000, Hollanda’da ve Avustralya’da yaklaşık 5/100.000’dir (Lin, 1986; Göçmen, 1992).

1950’li yıllarda tüberküloz yurdumuzda birinci derece ölüm nedeni iken, yapılan mücadele sonucu günümüzde ölüm nedenleri arasında daha alt sıralarda yer almaktadır. 1950 yılında % 0.25 oranında olan aktif tüberküloz sıklığı 1976’ya kadar % 0.1’e inmiştir (Bilgiç, 1991).

Yıllar içinde tüberkülozla mücadelede önemli ilerlemeler kaydedilmiş olmakla birlikte, Türkiye halen orta insidansa sahip ülkeler arasında yer almaktadır. Buna ilave olarak, antitüberküloz ilaçlara direnç oranları da oldukça dikkat çeken boyutlardadır. Ulusal direnç durumunu yansıtan veri olmamakla birlikte, farklı illerden yapılan çalışmaların sonuçları değerlendirildiğinde başlangıç ve kazanılmış çoğul ilaca direnç oranlarının sırasıyla % 1.3 - 4.8 ve % 4.4 - 16.6 arasında değiştiği görülmektedir. En az bir ilaca karşı primer ve sekonder direnç oranları ise sırasıyla % 18 - 26.6 ve % 28 - 53.4 arasında değişmektedir (Tahaoğlu, 1994; Yolsal, 1998; Bilgiç, 2003).

2.3. Mikrobiyoloji

Bakteriyolojik özellikleri ve DNA benzerlikleri nedeniyle birbiriyle yakın ilişkili türler, "kompleks" başlığı altında toplanmaktadır. "M. tuberculosis kompleks" M. tuberculosis, M. bovis, M. microti, M. africanum ve M. bovis BCG’yi içermektedir. Klinik açıdan bakıldığında hastalık yapma potansiyeli ve halk sağlığı ile yakının ilişkisi nedeniyle M. tuberculosis cinsin en önemli üyesidir ve günümüzde insanlarda görülen tüberkülozun esas nedenidir. Çok az sayıda (% 1 - 2) olguda M. bovis ve M.
africanum etken olarak saptanır. M. microti ise kemiriciler için patojen olup insanlarda hastalık yapmaz (Murray, 2005).

M. tuberculosis kompleks dışındaki mikobakterilere "tüberküloz dışı mikobakteriler" veya "atipik mikobakteriler" denmektedir. Bunlar doğada, toprakta, suda bolca bulunurlar, insandan insana geçişleri çok enderdir ve çoğu patojen değildir. Bu grubun üyeleri ender olarak hastalık oluştururlar (Murray, 2005).

Son derece özelleşmiş olan hücre duvar yapıları ile her türlü saldırıya karşı korunarak kronik enfeksiyonlara yol açabilen mikobakteriler, tarihin ilk çağlarından beri korku ve ilginin odagında yer almışlardır. Özellikle *M. tuberculosis* kompleksini içerdiği yer alan *M. tuberculosis*, *M. bovis*, *M. africanum*, *M. canettii*, *M. pinnipedii*, *M. shottsii* ve *M. microti* ile *M. lepra* gibi yavaş üretilen bașta olmak üzere, mikobakteriler hücre duvarı komplekslerinin düşük permeabilite ve hidrofobisite gibi özellikleri nedeni ile bazı yararlı metabolitleri kullanabilmeye güçlüklerine karşı, hidrofilik antibiyotikler, metal iyonları ve dezenfektanlar gibi kimyasal toksik ajanlar, oksijen radikalleri gibi hücresel toksinlere, asit (pH: 5 - 6) ve alkali ortama ve alanın boyalara karşı intrinsik dirence sahipler. Bu özellikleri ile kendiini hücre içi ve hücre dışı zararlara karşı intrinsik dirence sahipli, hücre duvarlarında taşdıkları bazı yapı elemanları ile konağın immün cevabını da etkileyerek asemptomatik taşıyıcılıktan, kronik granülomatöz, tedaviye cevap vermenin yüksek mortalite ile seyreden enfeksiyonlara kadar değişen klinik tablolara yol açarlar (Köksal, 2003).

2.3.1. Morfoloji

Mikobakteriler silindir şeklinde, uçları yuvarlak, 0.3 - 0.6 μm en ve 1 - 4 μm boyunda, düz veya hassaf kıvırcık, ince bir basırdır. Hareketsiz, sporsuz ve kapsülüsüzdür. Eski kültürlerde ve uygunsuz koşullarda üretilen bakterilerin daha uzun, ipliği ya da daha kısa hatta koklara benzer değişik şekilleri ortaya çıkmaktadır. Balgam ve diğer hastalık maddelerinden yapılan preparatlarda tek ya da ikiğli üçlü gruplar halinde ve birbirlerine paralel ya da uçlarından birbirlerine

2.3.2. Hücre Duvarı

Mikobakterilerin hücre duvarı yapısı altılagelmiş gram negatif veya gram pozitif bakteri hücre duvarlarından oldukça farklı, kompleks bir yapıdır. Bu kompleksde en iç tabaka diğer bakterilerde de görülen plazma membranıdır. Orta tabakanın koro ve duvarın iskeleti, pepdidoglikan arabinoagalaktan’ın mikolik asit esterinden oluşan mycolylarabinogalaktan pepdidoglikan tarafından oluşturulur. Mikolik asitlerin dışında çok sayıda farklı polar veya apolar yapıda nonkovalent bağlı lipid ve glikolipidler hücre duvarında yer alır. Ökaryot hücreler için biyolojik aktif olan bu lipidler ve glikolipidlerin bolluğu ve asimetrik dizilisi hücre duvarına aşırı derecede hidrofobite kazandırır. Non kovalent bağlı lipidler arasında, α,α’ trehalose dimycolates ve α,α’ trehalose monomycolates gibi açılımış trehalozlar, glycerol monomycolates ve fosfolipidler önemlidir (Chatterjee, 1997; Brennan, 2003).

Mikobakterilerin en dışında ise özellikle enfekte makrofajlardan hazırlanan preparatlarda açık olarak gösterilebilen ağrılı olarak polisakkarit ve proteinlerden az miktarda da lipidleri içeren kapsül yer almaktadır. Bu yapılar içerisinde alfa-1,4 glukan, bir arabinomannan ve mannan içeren lipomannan ve lipiarabinomannan gibi kapsüller polisakkaritler, son derece önem arz eder. Mikobakterilerin hücre duvarında gram negatif bakterilerde görülen porin proteinleri de bulunur. Mikobakterilerin olağanüstü hücre duvarı yapıları bu bakterileri diğer bakterilerden ayırt eden, intrasellüler yaşam ve kronik enfeksiyon yapma, asit ve alkali ortama direnç, antibiyotiklere direnç, dezenfektan, enzimler, serbest radikaller gibi kimyasal toksik maddelere direnç ve ekmek kıvrımtısı gibi toplu kümelere halinde kuru kolonileri oluşturma özelliğini kazandırmaktadır (Köksal, 2003).

Mikobakteri hücre duvarı yapısı Şekil 2.1’de gösterilmiştir.

2.3.2.1. Plazma membranı
Mikobakterilerin plazma membranları diğer bakterilerin plazma membranları ile benzer özelliklere sahiptir. Membran tipik olarak protein ve fosfolipidlerden oluşan çift katmanlı bir yapıdadır. Kuramsal olarak bir periplazmik boşluk sayesinde orta tabaka yani pepidoglikandan ayrılr (Chatterjee, 1997).

2.3.2.2. Orta tabaka
2.3.2.3. Pepdidoglikan yapı

Pepdidoglikan yapı bakteriye şeklini verir, hücre duvarına bütünlik ve sertlik kazandırır. Tetrapeptid yapıda yer alan diaminopimelik asit nedeni ile lizozimlere karşı dirençlidir ve kesin delilier olmamakla beraber muramik asit rezidündeki N-glycosyl gruplar organizmayı degradasyona karşı korur (Köksal, 2003).

2.3.2.4. Arabinogalaktan

2.3.2.5. Mikolik asitler

Meromikolat üzerindeki fonksiyonel grupların mikobakterilerin virulansı ve konakla ilişkisi üzerine önemli etkileri görülür. *M. kansasii* ve *M. tuberculosis* gibi patojen mikobakterilerde siklopropan halka, çift bağların yerini almıştır. Buna karşılık hızlı

2.4. Tedavi ve Direnç

Tüberküloz tedavisinde kullanılan ilaclar ikiye ayrılır: 1) Kabul edilebilir düzeydeki toksisite profil ile birlikte en efektif olan “birinci sır” ilaclar, 2) Genellikle daha az etkili, daha pahalı ve daha çok toksisitesi olan “ikinci sır” ilaclar. Birinci sına bulunanlar; başta izoniazid olmak üzere, rifampisin, etambutol, streptomisin ve pirazinamid (ve onun türevi morfozinamid)’dir. Tüberkülozlu hastaların büyük çoğunluğu bu ilaclarla başarılı bir şekilde tedavi edilirler. İkinci sına sahip olanlar, paraminosalisilik asid, tiasetazon (amitiozon), sikloserin, siprofloksasin, ofloksasin ve streptomisin dışı aminoglikozidler olan viomisin, kapreomisin, kanamisin ve amikasin bulunur. Son 20 yılda AIDS olgularının artması ve bu hastalığın ileri döneminde olguların yaklaşık 1/3’ünde *Mycobacterium avium* kompleksi (MAC) bakterilere bağlı dissemine atipik tüberküloz enfeksiyonu gelişmesi yukarıdaki sınıflandırmaya “MAC türü mikobakterilere karşı kullanılan” ilacların eklenmesini gerektirmiştir. MAC mikobakterileri yukarıda belirtilen birinci sınıfı ilaçlara ve ikinci sınıfı ilaçlara gehören chốnguna dirençlidir. Bu üçüncü sınıfı bulunan ilaçlar rifabutin, makrolid antibiyotikler olan klaritromisin ve azitromisin,
fluorokinolon türevleri olan siprofloksasin ve ofloksasin, aminoglikozitlerden amikasin ve bir lepra ilacı olan klofazimin’dir (Çilli, 2003).

Tedavinin yeterli sayıda ilaç içermemesi ve düzensiz olması gibi nedenlerle bu düşük oranlardaki dirençli suşlar seçilerek hakim suş haline gelmekte ve hastanın o ilaçlara dirençli olmasını yol açmaktadır. Dirençli basillerin belirgin oranlarda ortaya çıkmıştır. Bir bakteri için bir hücre bölünmesindeki mutasyonların, rifampisin için 3.32×10^{-9} ve izoniazid için 2.56×10^{-8} olduğu gösterilmiştir (Zainuddin, 1990; Özkara, 2007).

Dirençli TB’de daha uzun süreli, daha çok yan etkisi olan ve daha pahalı bir tedaviye gerek duylmaktadır. Dirençli hastada düşensiz ve kötü tedavinin sonucu ise “tedavi edilemez” TB hastalarının ortaya çıkmıştır. Bu hastalar nadiren ortaya çıkmakla birlikte, toplumda kendi basillerini yaymayı sürdürmeleri nedeniyle toplum için büyük bir tehdit oluştururken, hastaların da bir süre sonra kaybedilmesine yol açmaktadır. TB hastalığındaki ilaç direnci şu gruplara ayrılabılır;
Yeni olguda ilaç direnci: Bir aydan daha kısa süre tedavi görmüş ya da hiç tedavi görmemiş hastadaki ilaç direncidir. Bu tanım daha önce “primer ilaç direnci” olarak adlandırılıyordu.

Çok ilaca dirençli tüberküloz (ÇİD - TB) [multi drug resistant tuberculosis (MDR - TB)]: İzoniazid ve rifampisine dirençli TB’dir. Bu iki ilaç ek başka ilaç direnci de olabilir.

Yaygın ilaç dirençli tüberküloz (YİD - TB) [extensive drug resistant tuberculosis (XDR - TB)]: İzoniazid, rifampisine direnç ve bir kinolona direnç ve de parenteral kullanılan ilaçlardan (kanamisin, kapreomisin, amikasin) birisine direnç olması olarak tanımlanmaktadır (Özkara, 2007).

mutasyonların farklı ilaçlara karşı direnç fenotiplerine neden olabileceğini göstermektedir (Baulard, 2000; Morlock, 2003; Louw, 2009).

Tablo 2.1. Çeşitli anti - TB ilaçlara dirençle ilişkili genler (Louw, 2009).

2.4.1. Mikobakteriyel Intrinsik Rezistom

İntrinsik rezistom herhangi bir bakteri türünün antibiyotik karşılanamayış sonucu zamanla kazanmadığı intrinsik direnç olarak tanımlanmaktadır. Intrinsik direnç genellikle bakteriyel zarın azalmış geçirgenliğinin ve çoklu ilaç atın pompa aktivitelerinin bir sonucudur. Bu, intrinsik direnç bileşenlerinin ana fizyolojik rolünün, hücre geçirgenliğini sınırlayarak toksik metabolitlerin hücre içine girişini önlemek ve toksik bileşenleri veya bunların metabolitlerini aktif olarak hücre dışına atmak olduğunu göstermektedir (Nikaido, 2001; Fajardo, 2008).

2.4.2. Çoklu İlaç Direnç EfLüks Pompaları

Tablo 2.2. *M. tuberculosis* ilaç direncinde rol oynadığı gösterilmiş olan eflüks pompa genleri ve taşıyıcılar (Louw, 2009).

<table>
<thead>
<tr>
<th>Gen</th>
<th>İhraç ettiği muhtemel ilaçlar</th>
<th>Taşıyıcı ailesi</th>
<th>Fonksiyon</th>
<th>Protein ürünü</th>
</tr>
</thead>
<tbody>
<tr>
<td>pstB</td>
<td>INH, RIF, EMB, Siprofloksasin</td>
<td>ABC</td>
<td>İnorganik fosfatın aktif importu ve ilaç ihraç</td>
<td>Fosfat transport ATP bağlayıcı protein</td>
</tr>
<tr>
<td>Rv2686c</td>
<td>Siprofloksasin (CIP)</td>
<td>ABC</td>
<td>İlaçların aktif transportu</td>
<td>İntegral membran ABC taşıyıcı</td>
</tr>
<tr>
<td>Rv2687c</td>
<td>CIP</td>
<td>ABC</td>
<td>Yüksekt hidrofobik ilaçların ihraç</td>
<td>Antibiyotik transport integral protein</td>
</tr>
<tr>
<td>Rv2688c</td>
<td>CIP</td>
<td>ABC</td>
<td>Toksik bileşik ihraç</td>
<td>Antibiyotik transport ATP bağlayıcı protein</td>
</tr>
<tr>
<td>Rv1747</td>
<td>INH</td>
<td>ABC</td>
<td>Membrandan ilaç transportu</td>
<td>Korunmuş transmembran ATP bağlayıcı protein</td>
</tr>
<tr>
<td>drrA</td>
<td>Tetrasiklin(TET), STR, EMB</td>
<td>ABC</td>
<td>Hücre duvarından antibiyotik ihraç</td>
<td>ATP bağlayıcı protein DrrA</td>
</tr>
<tr>
<td>drrB</td>
<td>TET, STR, EMB</td>
<td>ABC</td>
<td>Hücre duvarından antibiyotik ihraç</td>
<td>ATP bağlayıcı protein DrrB</td>
</tr>
<tr>
<td>drrC</td>
<td>TET, STR, EMB</td>
<td>ABC</td>
<td>Hücre duvarından antibiyotik ihraç</td>
<td>ATP bağlayıcı protein DrrC</td>
</tr>
<tr>
<td>Rv1348</td>
<td>Çoklu ilaç</td>
<td>ABC</td>
<td>İlaçların membrandan aktif ihraç/translokasyon</td>
<td>Muhtemel ilaç taşıyıcı transmembran ATP bağlayıcı protein</td>
</tr>
<tr>
<td>Rv1456c</td>
<td>Belirsiz</td>
<td>ABC</td>
<td>Antibiyotiklerin membrandan aktif ihraç</td>
<td>Integral membran protein</td>
</tr>
<tr>
<td>Rv1463</td>
<td>Belirsiz</td>
<td>ABC</td>
<td>Membrandan aktif transport</td>
<td>Muhtemel korunmuş ATP bağlayıcı protein</td>
</tr>
<tr>
<td>Rv1258c</td>
<td>INH, RIF, EMB, Ofloksasin(OFL)</td>
<td>MFS</td>
<td>İlaç ihraç</td>
<td>Korunmuş membran protein</td>
</tr>
<tr>
<td>Rv2994</td>
<td>Belirsiz</td>
<td>MFS</td>
<td>İlaç ihraç</td>
<td>Korunmuş membrand protein</td>
</tr>
<tr>
<td>Rv1877</td>
<td>TET, eritromisin</td>
<td>MFS</td>
<td>İlaç ihraç</td>
<td>Korunmuş membrand protein</td>
</tr>
<tr>
<td>Rv1634</td>
<td>Belirsiz</td>
<td>MFS</td>
<td>İlaç ve şeker ihraç</td>
<td>İlaç ihraç membran protein</td>
</tr>
<tr>
<td>efsA</td>
<td>Muhtemelen INH</td>
<td>MFS</td>
<td>İlaç ihraç</td>
<td>Integral membran ilaç protein</td>
</tr>
<tr>
<td>Rv2333c</td>
<td>TET</td>
<td>MFS</td>
<td>İlaç ihraç</td>
<td>Korunmuş integral membran transport protein</td>
</tr>
<tr>
<td>Rv2459c</td>
<td>İlaçlar</td>
<td>MFS</td>
<td>Substrat transportu</td>
<td>Korunmuş integral membran transport protein</td>
</tr>
<tr>
<td>Rv3239c</td>
<td>İlaç veya şeker</td>
<td>MFS</td>
<td>İhraçla ilişkili olabilir</td>
<td>Korunmuş transmembran transport protein</td>
</tr>
<tr>
<td>Rv3728</td>
<td>İlaç veya şeker</td>
<td>MFS</td>
<td>İhraçla ilişkili</td>
<td>Korunmuş 2 bölgeli membran protein</td>
</tr>
<tr>
<td>mmpL7</td>
<td>INH</td>
<td>RND</td>
<td>Antibiyotik ihraç</td>
<td>Transmembran transport protein</td>
</tr>
<tr>
<td>emrB</td>
<td>Belirsiz</td>
<td>SMR</td>
<td>Çoklu ilaç ihraç</td>
<td>Integral membran ilaç protein</td>
</tr>
<tr>
<td>mnr</td>
<td>Eritromisin</td>
<td>SMR</td>
<td>Çoklu ilaç ihraç</td>
<td>Integral membran ilaç protein</td>
</tr>
<tr>
<td>whiB7</td>
<td>RIF</td>
<td>Regülatör protein</td>
<td>Transkripsiyonel regülasyon</td>
<td>Transkripsiyonel regülasyon protein ve efektör gen</td>
</tr>
<tr>
<td>Rv2989</td>
<td>Belirsiz</td>
<td>Transkripsiyonel regülatör</td>
<td>Transkripsiyonel mekanizma</td>
<td>Transkripsiyonel regülatör protein</td>
</tr>
<tr>
<td>iniA</td>
<td>INH, EMB</td>
<td>Membran proteini</td>
<td>İlaç transportu</td>
<td>INH-indükleyici protein IniA</td>
</tr>
<tr>
<td>iniB</td>
<td>INH</td>
<td>Membran proteini</td>
<td>İlaç transportu</td>
<td>INH-indükleyici protein IniB</td>
</tr>
<tr>
<td>iniC</td>
<td>INH</td>
<td>Membran proteini</td>
<td>İlaç transportu</td>
<td>INH-indükleyici protein IniC</td>
</tr>
<tr>
<td>Rv1002c</td>
<td>Belirsiz</td>
<td>Membran proteini</td>
<td>Fonksiyonu bilinmiyor</td>
<td>Integral membran protein</td>
</tr>
<tr>
<td>Rv3806c</td>
<td>Belirsiz</td>
<td>Membran proteini</td>
<td>Fonksiyonu bilinmiyor</td>
<td>Integral membrand protein</td>
</tr>
<tr>
<td>Rv3679</td>
<td>Belirsiz</td>
<td>ATPaz</td>
<td>Anyon ihraç</td>
<td>Muhtemelen anyon taşıyıcı</td>
</tr>
</tbody>
</table>

2.4.2.1. Sekonder çoklu ilaç taşıyıcıları

Sekonder çoklu ilaç taşıyıcıları, ilaçları hücreden ihraç etmek için protonların veya sodyum iyonlarının transmembran elektrokimyasal akımını kullanırlar. 4 aileye ayrılır: Major Facilitator superfamily (MFS), Small multidrug resistance family (SMR), Resistance nodulation cell division family (RND) ve Multidrug and toxic compound extrusion family. Çoğu RND proteini çoklu ilaç taşıyıcılarıdır ve çoğunlukla gram negatif bakterilerde bulunurlar. SMR proteinleri katyonik, lipofilik antibiyotikleri bağlar ve proton değiş tokuşu ile membrandan dışarı taşırlar. MFS ve RND ailelerinin taşıyıcılarının ekspresyonları regülatör kontrollere bağlıdır (Ainsa, 1998; Kumar, 2005; Marquez, 2005; De Rossi, 2006).

2.4.2.2. ABC tipi çoklu ilaç taşıyıcılar

ABC bağlayıcı kaset (ABC) tipi çoklu ilaç taşıyıcılar, ilaçları hücre dışına pompalamak için ATP hidrolizi ile açılabilen serbest enerjiyi kullanırlar. ABC taşıyıcılar M. tuberculosis genomunun % 2,5’ unu kapsarlar ve substratlarının translokasyon yönlerine dayanarak içe aktarıcı veya dışa ihraç edici olarak sınıflandırılabilirler. İsimlerinden de anlaşılacağı gibi, ihraç edici moleküller substratlardan hücre dışına çıkarırken, içe aktarıcı olanlar ekstrasellüler moleküllerin hücreye girişi ile ilgilidirler (Louw, 2009).

MFS süperailesinden olan *tap* benzeri Rv1258c geninin, *M. smegmatis*’ te ekspres edildiğinde tetrasiklin ve aminoglikozillerle düşük seviyede direncе neden olduğu belirlenmiştir. Aynı zamanda MDR - TB izolatında INH ve RIF varlığında Rv1258c ekspresyonunun arttığı gösterilmiştir. TET ve aminoglikozidlere eflüks aracılı ilaç direncine bir başka örnek de *M. bovis*’ den izole edilen, mikobakterilerde TET ve
3. GEREÇ ve YÖNTEM

3.1. M. tuberculosis Suşları

Duyarlı suşlar S1-S10, çoklu dirençli suşlar ise R1-R10 olarak adlandırılarak çalışılmıştır. Çoklu dirençli suşların primer anti-TB ilaçlara gösterdikleri direnç fenotipleri Tablo 3.1’de sunulmuştur.

Tablo 3.1. Çalışmaya alınan MDR suşların primer anti-TB ilaçlara direnç fenotipleri (R:Dirençli, S: Duyarlı)

<table>
<thead>
<tr>
<th>Suş</th>
<th>INH</th>
<th>RIF</th>
<th>STR</th>
<th>EMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R2</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R3</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>R4</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R5</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R6</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R7</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>R8</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>R9</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>R10</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
</tr>
</tbody>
</table>
M. tuberculosis H37Rv ATCC 25618, M. tuberculosis H37Ra ATCC 25177, M. tuberculosis H37Rv RSKK 598 Pasteur enstitüsü standart suşu olmak üzere 3 standart suş, Refik Saydam Hıfzıssıhha Merkezi Başkanlığı’ndan temin edilmiştir.

3.2. Eflüks Pompa Genleri

<table>
<thead>
<tr>
<th>Gen</th>
<th>Pompa Ailesi</th>
<th>Fonksiyon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Rv1410c</td>
<td>MFS</td>
<td>Tetrasiklin ve Aminoglikozidlerin membrandan ihraci</td>
</tr>
<tr>
<td>2- Rv2333c</td>
<td>MFS</td>
<td>İlaçların ihraci (TET)</td>
</tr>
<tr>
<td>3- drrA</td>
<td>ABC</td>
<td>Hücre duvarından antibiyotik ihraci (TET, STR, EMB)</td>
</tr>
<tr>
<td>4- drrB</td>
<td>ABC</td>
<td>Hücre duvarından antibiyotik ihraci (TET, STR, EMB)</td>
</tr>
<tr>
<td>5- iniA</td>
<td>Membran proteini</td>
<td>İlaç taşıyıcı (INH, EMB)</td>
</tr>
<tr>
<td>6- mmpL7</td>
<td>RND</td>
<td>Antibiyotik ihraci (INH)</td>
</tr>
<tr>
<td>7- Rv1258c</td>
<td>MFS</td>
<td>İlaçların ihraci (INH, RIF, EMB, OFL)</td>
</tr>
<tr>
<td>8- Rv0783c</td>
<td>MFS</td>
<td>İhraç ile çoklu ilaç direnci</td>
</tr>
<tr>
<td>9- Rv1273c</td>
<td>ABC</td>
<td>İhraç ile çoklu ilaç direnci</td>
</tr>
<tr>
<td>10- Rv1687c</td>
<td>ABC</td>
<td>Membrandan aktif transportla ilaç ihraci</td>
</tr>
<tr>
<td>11- Rv1250</td>
<td>MFS</td>
<td>İhraç mekanizması ile ilaç direnci</td>
</tr>
<tr>
<td>12- Rv1634</td>
<td>MFS</td>
<td>İhraç mekanizması ile ilaç direnci</td>
</tr>
<tr>
<td>13- Rv3000</td>
<td>ABC</td>
<td>Çoklu İlaç İhraci?</td>
</tr>
<tr>
<td>14- mmpL4</td>
<td>RND</td>
<td>İhraç?</td>
</tr>
<tr>
<td>15- Rv0037c</td>
<td>MFS</td>
<td>Muhtemelen makrolidlerin membrandan taşınmalarıyla ilişkili</td>
</tr>
</tbody>
</table>
3.3. Gereçler

3.3.1. Besiyerleri

Lowenstein Jensen Besiyeri

3.3.2. Kimyasal Madde ve Malzemeler

Etil Alkol (SIGMA, USA)
Agaroz (VIVANTIS, AG6330)
Etidyum bromür (APPLICHEM, 1239458)
Taq DNA Polimeraz (FERMENTAS, 37)
10X PZR Buffer (FERMENTAS, 37)
10 mM MgCl₂ (FERMENTAS, 37)
dNTP Karışımı (FERMENTAS, 37)
Primerler (IDT)
DNA moleküler büyüklük belirteci (Doç. Dr. Fikret ŞAHİN)
1X Loading Dye Solution (FERMENTAS, 9903)
RNA Ekstraksiyon kiti (Trizol Reagent, Klороформ, İzopropil Alkol, Etanol) (INVITROGEN, 15596-026)
EZ-First Strand cDNA Synthesis Kit (oligo dT Primer, RT Reaction Mix, DTT Solution) (BIOLOGICAL INDUSTRIES, 20-800-50)

3.3.3. Sarf Malzemeleri

Steril 1,5 ml' lik eppendorf (ORANGE SCIENTIFIC, Belçika)
Steril PZR Tüpü 0,2 ml (ORANGE SCIENTIFIC, Belçika)
Steril Filtreli Pipet Uçları 10 µl, 20 µl, 200 µl, 1000 µl (RATIOLAB, Almanya)
Lateks Muayene Eldiveni (DOLPHIN, Türkiye)
3.3.4. Araçlar

Santrifüj (EPPENDORF, Almanya)
Soğutmalı Santrifüj (HERMLE Z233 MK-2, Almanya)
Kuru Isıçıcı Blok (HVD, Avusturya)
Elektroforez Tankı (SUNRISE, ABD)
Elektroforez Güç Kaynağı (BIO-RAD, ABD)
Otomatik Pipetler (EPPENDORF, Almanya)
UV Transluminaatör (VIBER-LOURMAT TFX-20.M, Fransa)
İş Döngü Cihazı (Thermalcyclers) (TECHNE, İngiltere)
Otoklav (NÜVE, Türkiye)
Vorteks (HVD, Avusturya)
Fotoğraf Makinesi (CANON POWER SHOT G5, Kanada)
Çalkalayıcı (HVD, Avusturya)
Etüv (HERAEUS, Almanya)
Spektrofotometre (HITACHI, Japonya)
Class II Güvenlik Kabini (CLEANLAF, Danimarka)
Mikrodalga Fırın (VESTEL, Türkiye)
Hassas Terazi (METTLER- TOLEDO, İsviçre)
Derin Dondurucu (BOSCH, Almanya)

3.3.5. Jel Elektroforez İşleminde Kullanılan Solüsyonlar

Agaroz Jel (%1,2):

Hazırlanışı:
Agar ... 1,7 g
TBE X 1 ... 140 ml
Etidyum Bromür 7,5 µl
TBE X 5 Tamponu:

Hazırlanışı:
TRIS base ... 54 g
Borik Asit ... 27,5 g
0,5 M EDTA (pH 8,0) 20 ml
dd H₂O ... 980 ml

TBE X 1 Tamponu:

Hazırlanışı:
TBE X 5 ... 200 ml
dd H₂O ... 800 ml

3.4. M. tuberculosis Suşlarından RNA Ekstraksiyonu

INVITROGEN RNA Ekstraksiyon kiti protokolünde ufak değişiklik yapılarak, duyarlı ve dirençli her bir suşa ve M. tuberculosis H37Rv ATCC 25618, M. tuberculosis H37Ra ATCC 25177, M. tuberculosis H37Rv RSKK 598 Pasteur enstitüsü standart suşlarına RNA ekstraksiyon işlemi uygulandı.

1. Ependorflara 1 ml trizol reagent kondu.
2. LJ besiyerinde üremiş olan M. tuberculosis suşlarından özel imal edilmiş kalın özeler yardımcı ile koloniler, besiyeri yüzeyinden 1 öze dolusu olacak şekilde kazınarak toplandı ve trizol reagent içerisinde homojenize edildi.
3. 1 gece boyunca oda ısısında çalkalayıcıda bekletildi.
4. 0,2 ml kloroform eklenedi.
5. 15 sn çok hızlı çalkandı.
6. 3 dk bekletildi.
7. 12.000 rpm’ de 15 dakika + 4 °C’ de santrifüj edildi.
8. Ependorfun üzerindeki saydam fazdan süpernant temiz bir şekilde steril bir ependorfə aktarıldı.
9. 0,5 ml izopropil alkol eklendi ve 8 - 10 defe ters düz edildi.
10. 10 dk oda ısısında bekletildi.
11. 12.000 rpm’ de 10 dk + 4 °C’ de santrifüj edildi.
12. Pelete (Dipteki RNA) dikkat edilerek süpernatan boşaltıldı.
13. 1 ml % 75 etanol ekendi.
14. Vortekslenerek 8.000 rpm’ de 6 dk + 4 °C’ de santrifüj edildi.
15. Süpernatan dikkatli bir şekilde boşaltıldı.
16. Yarım saat etanolün uçması bekledi.
17. 50 µl RNase free H₂O eklenerek agaroz jelde yürütüldü.
18. Her bir suştan elde edilen RNA’ lar - 20 °C’ de saklandı.

Duyarlı ve dirençli suşlardan bezier adet aynı gün yapılmak üzere alınan mikobakterilerden yukarıdaki yöntemle RNA ekstraksyonu yapıldı ve cDNA sentezine hazır hale getirildi. Ayrıca % 1,2’ lik agaroz jel elektroforezinde RNA zincirlerinin bütünlüğü görüldü.

3.5. Elde Edilen RNA’ların Spectrofotometre ile Ölçümü

Her bir suştan aynı miktarda cDNA olması için elde edilen RNA konsantrasyonları absorbans özelliğine göre spektrofotometrede 260 ve 280 nm dalga boyunlarda ölçüldü. Bu ölçümlere göre cDNA sentezinde her suş için RNA miktarları belirlendi.

3.6. cDNA Sentezi

EZ-First Strand cDNA Synthesis Kit protokolüne göre her bir suştan elde edilen RNA’ lara cDNA sentez işlemi uygulandı.

1. Her suş için hesaplanan RNA miktarı ve hacmi tamamlamak amacıyla RNAse free steril distile H₂O, toplam hacim 9 µl olacak şekilde karıştırıldı. Üzerine 1 µl oligo dT eklendi, vorteksleme ve santrifüjleme işlemlerinden sonra kuru isıtma bloğunda 70 °C’ de 10 dk bekletildi.
2. Sonra buza kondu.
3. 8 µl RT Reaksiyon Mix ve 2 µl DTT Çözeltisi eklendi, vorteksleme ve santrifüjleme işlemlerinden sonra kuru ısıtma bloğunda 42 °C’de 1 saat bekletildi.

4. Elde edilen cDNA’lar -20 °C’de saklandığı.

3.7. Polimeraz Zincir Reaksiyonu (PZR)

Çalışmamızda koamplifikasyon ve hedef gen ile internal kontrolün karşılaştırılabilmesi için multipleks RT - PZR uygulanmıştır. Bu amaçla her reaksiyonda biri internal kontrol olmak üzere 2 primer çifti kullanılmıştır (Wilson, 1999).

PZR uygulaması sırasında kontaminasyonu önlemek amacıyla; deneyler sırasında tek kullanımlık pipet uçları ve tüpler kullanılmış, test karışımları ile örneklerin hazırlanması, amplifikasyon ve elektroforez aşamaları farklı odalarda yapılmıştır. Örneklerin PZR için hazırlanması aşamaları class II güvenlik kabininde gerçekleştirilmiştir, çalışmaya başlanmadan önce kabin içi %70’lik etil alkol ile silinmiş, kabin yarımdan az olmak kaydıyla hava akımı sağlanacak şekilde çalıştırılmış ve ultraviyole ışığına tabi tutulmuştur.

3.7.1. Örneklerin Hazırlanması

Elde edilen cDNA’lar 1/10 olarak sulandırılmış ve PZR’de kullanılmıştır.

3.7.2. Primerlerin Seçilmesi

Tablo 3.3. PZR’de kullanılan primerler.

<table>
<thead>
<tr>
<th>Gen</th>
<th>Primer Sekansı</th>
<th>PZR ürününün büyüklüğü (bc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rv1410c</td>
<td>5’TCT TGG ACT TCC GGT TCA TC-3’
5’TAC CGG TTC AAC CAG ATC CTG-3’</td>
<td>221</td>
</tr>
<tr>
<td>Rv2333c</td>
<td>5’ATA TGA CTA ACC GCG CAC TC-3’
5’TTG CGG AGG AGG ATT TCA TC-3’</td>
<td>178</td>
</tr>
<tr>
<td>drrA</td>
<td>5’ATG GTG GAC ATC TTG TCG AC-3’
5’AGG TTC TGC TCA CCG GAA AG-3’</td>
<td>158</td>
</tr>
<tr>
<td>drrB</td>
<td>5’AAT ACA TCA CGC CGT TGG TC-3’
5’AAC GGA ATC CGA TGA CGT AG-3’</td>
<td>224</td>
</tr>
<tr>
<td>iniA</td>
<td>5’TGA TCT AGT ACA GCG GTT GAC G-3’
5’TGT AGC TTA CGA CGG TGA TC-3’</td>
<td>187</td>
</tr>
<tr>
<td>mmpL7</td>
<td>5’TAC CCA AGC TGG AAA CAA CC-3’
5’AAG GTC CAG TTG TCC GTC AG-3’</td>
<td>227</td>
</tr>
<tr>
<td>Rv1258c</td>
<td>5’AGT TAT AGA TCG GCT GGA TGG-3’
5’AAT ACT TCA CCG ACC ACC AGC AAC-3’</td>
<td>255</td>
</tr>
<tr>
<td>Rv1273c</td>
<td>5’TCC GAG AAG GTG ATG ATG TG-3’
5’TAC TCC CGA CGG TCA AC-3’</td>
<td>214</td>
</tr>
<tr>
<td>Rv1687c</td>
<td>5’ACA GAA ACG CTT CCT CCA GTG-3’
5’ATT GCG CGT CGA ATT ATG G-3’</td>
<td>200</td>
</tr>
<tr>
<td>Rv1250</td>
<td>5’TGT CTG GTG CGG GAA TGT TTC-3’
5’TTG AAG ACC TCC AGT GGG ATC-3’</td>
<td>172</td>
</tr>
<tr>
<td>Rv1634</td>
<td>5’TAT CTG GGC ACC TTC ATA GTG-3’
5’AAC ATC GTA TTT CCG CAG ACC ATG-3’</td>
<td>182</td>
</tr>
<tr>
<td>Rv3000</td>
<td>5’TCT GGA TGT GCT GTT AC-3’
5’AAC GAC TTT CTT CTA GGA TCC GAT C-3’</td>
<td>238</td>
</tr>
<tr>
<td>mmpL4</td>
<td>5’TTG CAC GTG CTT CTG ATC GG-3’
5’TGC GTC GTT GTC ACC GTA TTT G-3’</td>
<td>246</td>
</tr>
<tr>
<td>Rv0783c</td>
<td>5’TAT GAG CGG ATG TTC TGT GC-3’
5’AAC TTC GAC TAC ATG GG CTT C-3’</td>
<td>186</td>
</tr>
<tr>
<td>Rv0037c</td>
<td>5’AAA GGA AGC CGC ATA CCA CCA TC-3’
5’TCA CTG CTG ATC TTG CTC CTG-3’</td>
<td>244</td>
</tr>
<tr>
<td>16S rRNA (internal kontrol)</td>
<td>5’CTT AAC ACA TGC AAG TCG AAC-3’
5’GTA TCT CAG TCC CAG TGT G-3’</td>
<td>280</td>
</tr>
</tbody>
</table>
3.7.3. DNA Amplifikasyonu

Her bir suştan elde edilen cDNA’ lar, internal kontrol primerleri ve duyarlı ve dirençli suşlar arasındaki ekspresyon farkını araştırdığımız genlerin primerleri ile multipleks PZR yapılmıştır. Bunun için PZR karışımı hazırlanı: 10X PZR tamponu; 2,5 U Taq DNA Polimeraz; 1,5 mM MgCl₂; 200 µM dNTP; 1µg cDNA, her genin logaritmik artış fazını belirleme PZR’inde her bir primerden 25 pmol, döngü sayısını belirledikten sonra her primer o oranda ayarlanıp son hacim 50 µl olacak şekilde hazırlanı. Örnekler; ısı döngü cihazında (thermalcycler); ilk denatürasyon için 94 °C’de 2 dk, daha sonra her bir gen için belirlenen döngü sayısında (94 °C’de 50 sn, 60 °C’de 50 sn, 72 °C’de 1 dk) olacak şekilde çalıştırıldı. Son olarak, 72 °C’de 10 dk bekletilerek PZR sonlandırıldı.

3.7.4. PZR Ürünlerinin Saptanması

PZR ürünlerinin saptanması amacıyla 10 µl PZR ürününün, TBE tampon ile hazırlanan %1,2’lik agarozda jel elektroforezi yapıldı. Agaroz jeldede yürütülen DNA’lar etidyum bromür ile işaretlenerek UV translüminatör ile incelendi. PZR ürünlerinin büyüklükleri DNA moleküler belirtecinin bantları ile karşılaştırılarak doğrulandı ve jel görüntüleri dijital fotoğraf makinesi ile görüntülenerek bilgisayar ortamına aktarıldı.

3.7.5. Duyarlı ve Dirençli Suşlar Arasındaki Ekspresyon Farkı Ölçümü

Bu amaçla imageJ programı kullanıldı. Bu program ile fotoğraftaki her bir bant yoğunluğunun ölçümü yapılarak Microsoft Excel programına aktarıldı. Microsoft Excel programı ile duyarlı ve dirençli suşlar arasında fark aranan gen bantlarının yoğunlukları ile o suştaki internal kontrol bant yoğunluğu oranlandı. Son olarak bu oranlar tablo haline getirildi.

3.7.6. İstatistiksel değerlendirme

Çalışmalar üç kez tekrarlanmış ve sonuçlar Student’ s T-testi (two-tailed t-test) ile istatistiksel açıdan değerlendirilmiştir.
3.8. Logaritmik Artış Fazlarını Belirleme

Multipleks PZR’de incelenecik olan genlerin exprsion miktarları arasındaki farklılığın, genlerin logaritmik artış fazında artırılması gerekmektedir. Bu nedenle öncelikle genlerin hangi döngüde logaritmik artış fazında olduklarını araştırılmıştır. Her gen ile internal kontrol bantlarını eşit veya yakın yoğunlukta gösterecek primer miktarlarını belirleme amacıyla belirli döngüerde multipleks PZR uygulanıp daha sonra her gen için belirlenen döngü ve gen/internal kontrol primer oranlarında multipleks PZR uygulanmıştır.

Bu amaçla, Rv1410c ve Rv2333c genleri 34. ve 35. döngüerde; drrA, drrB, iniA ve mmpL7 genleri 27., 30. ve 33. döngüerde; Rv1258c geni 26., 29. ve 33. döngüerde; Rv1273c, Rv1687c, Rv3000, mmpL4, Rv1250, Rv1634, Rv0783c ve Rv0037c genleri 29, 33 ve 37. döngüerde internal kontrollü multipleks PZR yapılmıştır.

Bu PZR’lerde kullanılan cDNA, tüm suşlardan daha önce elde edilen cDNA’ların karışımından hazırlanan cDNA mixten alınmıştır. Aynı zamanda her gen ve internal kontrol primerleri 1/1 oranında PZR karışımına eklenmiştir. Daha sonra elde edilen görüntülere göre araştırılan her gen için, gen/IK oranı ve logaritmik artış fazının gözlemdiği döngü sayısı belirlenip, buna göre asıl multipleks PZR çalışmalarına geçilmiştir.

3.8.1. PZR Yöntemi ile Rv1410c ve Rv2333c Genlerinin Logaritmik Artış Fazlarını Belirleme

Rv1410c ve Rv2333c genlerinin logaritmik artış fazlarını belirleme amacıyla, 1 µg cDNA kalıp DNA olarak PZR karşısında eklenmiştir (Tüm suşlardan daha önce elde ettiğimiz cDNA’ların karşısından hazırladığımız cDNA mixten alınmıştır). PZR karşısını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, her bir primerden 25 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarda distile su, son hacim 50 µl olarak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’de 2 dk bekletildikten
sonra her bir döngü sırasıyla 94 °C’ de 50 sn, 60 °C’ de 50 sn, 72 °C’ de 1 dk olacak şekilde 2 seferde 34 ve 35 döngü çalıştırılmıştır. Son olarak, 72 °C’ de 10 dk beklentilerek PZR sonlandırılmıştır.

PZR protokolü

<table>
<thead>
<tr>
<th>Master mix (Rv1410c)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 μM×N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1410c F primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1410c R primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 μg×N</td>
</tr>
</tbody>
</table>

TV = 50 μl×N

PZR protokolü

<table>
<thead>
<tr>
<th>Master mix (Rv2333c)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 μM×N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv2333c F primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv2333c R primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 μg×N</td>
</tr>
</tbody>
</table>

TV = 50 μl×N

PZR programı

Başlangıç denatürasyonu	94 °C’ de 2 dakika
Denatürasyon aşaması	94 °C’de 50 saniye
Primer yapışması (anneling)	60 °C’de 50 saniye
Sentez (uzama) aşaması	72 °C’de 1 dakika
Son uzama	72 °C’de 10 dakika
PZR ürününün agaroz jeldeki elektroforezinde saptanması

Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanmış 1,2’lik agarozda, 40 dakika 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürününün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırılarak doğrulanmış ve İK ve genin bant yoğunluklarına göre bir sonraki aşamadaki primer miktarları ile düğüm sayısına karar verilmiştir. Son olarak dijital fotoğraf makinesi ile jel görüntümüştür.

3.8.2. PZR Yöntemi ile dtrA, dtrB, iniA ve mmpL7 Genlerinin Logaritmik Artış Fazlarını Belirleme

dtrA, dtrB, iniA ve mmpL7 genlerinin logaritmik artış fazlarını belirlemek amacıyla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir (Tüm suşlardan daha önce elde ettğimiz cDNA’ların karışımından hazırladığımız cDNA mixten alınmıştır). PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, her bir primerden 25 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarda distille su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler termal düğüm cihazında ilk denatürasyon için 94 °C’de 2 dk bekletildikten sonra her bir düğüm sırasıyla 94 °C’de 50 sn, 60 °C’de 50 sn, 72 °C’de 1 dk olarak şekilde 3 seferde 27, 30 ve 33 düğüm çalıştırılmıştır. Son olarak, 72 °C’de 10 dk bekletilerek PZR sonlandırılmıştır.

PZR protokolü

<table>
<thead>
<tr>
<th>Master mix (dtrA)</th>
<th>N</th>
<th>dH₂O</th>
<th>Master mix (dtrA)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄</td>
<td>×N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgCl₂</td>
<td>200 µM</td>
<td>×N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>1,5 mM</td>
<td>×N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol</td>
<td>×N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dtrA F primer</td>
<td>25 pmol</td>
<td>×N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dtrA R primer</td>
<td>25 pmol</td>
<td>×N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U</td>
<td>×N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg</td>
<td>×N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TV = 50 µl×N
PZR protokolü Master mix (drrB) N

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Koncentre</th>
<th>Miktari</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>×N</td>
<td></td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄</td>
<td>×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM</td>
<td>×N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM</td>
<td>×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol</td>
<td>×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol</td>
<td>×N</td>
</tr>
<tr>
<td>drrB F primer</td>
<td>25 pmol</td>
<td>×N</td>
</tr>
<tr>
<td>drrB R primer</td>
<td>25 pmol</td>
<td>×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U</td>
<td>×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg</td>
<td>×N</td>
</tr>
</tbody>
</table>

TV = 50 µl × N

PZR protokolü Master mix (iniA) N

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Koncentre</th>
<th>Miktari</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>×N</td>
<td></td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄</td>
<td>×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM</td>
<td>×N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM</td>
<td>×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol</td>
<td>×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol</td>
<td>×N</td>
</tr>
<tr>
<td>iniA F primer</td>
<td>25 pmol</td>
<td>×N</td>
</tr>
<tr>
<td>iniA R primer</td>
<td>25 pmol</td>
<td>×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U</td>
<td>×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg</td>
<td>×N</td>
</tr>
</tbody>
</table>

TV = 50 µl × N

PZR protokolü Master mix (mmpL7) N

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Koncentre</th>
<th>Miktari</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>×N</td>
<td></td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄</td>
<td>×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM</td>
<td>×N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM</td>
<td>×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol</td>
<td>×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol</td>
<td>×N</td>
</tr>
<tr>
<td>mmpL7 F primer</td>
<td>25 pmol</td>
<td>×N</td>
</tr>
<tr>
<td>mmpL7 R primer</td>
<td>25 pmol</td>
<td>×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U</td>
<td>×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg</td>
<td>×N</td>
</tr>
</tbody>
</table>

TV = 50 µl × N
PZR programı

Başlangıç denatürasyonu, 94 °C’de 2 dakika
Denatürasyon aşaması, 94 °C’de 50 saniye
Primer yapışması (anneling), 60 °C’de 50 saniye
Sentez (uzama) aşaması, 72 °C’de 1 dakika
Son uzama, 72 °C’de 10 dakika

PZR ürününün agaroz jel elektroforezinde saptanması
Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanaran % 1,2’ lik agaroz, 1 saat 170 Volt elektrik akına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürününün büyüklüğü, moleküler büyüklik belirteci bantları ile karşılaştırılarak doğrulanmış ve IK ve genin bant yoğunluklarına göre bir sonraki aşamadaki primer miktarları ile döngü sayısına karar verilmiştir. Son olarak dijital fotoğraf makinesi ile jel görüntülenmiştir.

3.8.3. PZR Yöntemi ile Rv1258c Geninin Logaritmik Artış Fazını Belirleme

Rv1258c geninin logaritmik artış fazını belirlemek amacıyla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir (Tüm suşlardan daha önce elde ettiğimiz cDNA’ların karışımından hazırladığımız cDNA mixten alınmıştır). PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, her bir primerden 25 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarda distile su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’de 2 dk bekletildikten sonra her bir döngü sırasıyla 94 °C’de 50 sn, 60 °C’de 50 sn, 72 °C’de 1 dk olarak şekildedir 3 seferde 26, 29 ve 33 döngü çalıştırılmıştır. Son olarak, 72 °C’de 10 dk bekletilerek PZR sonlandırılmıştır.
PZR protokolü

<table>
<thead>
<tr>
<th>Master mix (Rv1258c)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH$_2$O</td>
<td>×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH$_4$)$_2$SO$_4$×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM×N</td>
</tr>
<tr>
<td>MgCl$_2$</td>
<td>1,5 mM×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1258c F primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1258c R primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
</tr>
</tbody>
</table>

TV = 50 µl×N

PZR programı

- Başlangıç denatürasyonu, 94 ºC’de 2 dakika
- Denatürasyon aşaması, 94 ºC’de 50 saniye
- Primer yapışması (anneling), 60 ºC’de 50 saniye (26, 29 ve 33 döngü)
- Sentez (uzama) aşaması, 72 ºC’de 1 dakika
- Son uzama, 72 ºC’de 10 dakika

PZR ürünüün agaroz jel elektroforezinde saptanması

Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanlan % 1,2’ lik agarozda, 1,5 saat 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürünüün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırılarak doğrulanmış ve IK ve genin bant yoğunluklarına göre bir sonraki aşamadaki primer miktarları ile döngü sayısına karar verilmiştir. Son olarak dijital fotoğraf makinesi ile jel görüntülenmiştir.
3.8.4. PZR Yöntemi ile Rv1273c, Rv1687c, Rv3000, mmpL4, Rv1250, Rv1634, Rv0783c ve Rv0037c Genlerinin Logaritmik Artış Fazlarını Belirleme

Rv1273c, Rv1687c, Rv3000, mmpL4, Rv1250, Rv1634, Rv0783c ve Rv0037c genlerinin logaritmik artış fazlarını belirlemek amacıyla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir (Tüm suşlardan daha önce elde ettigimiz cDNA’ların karışımından hazırladığımız cDNA mixten alınmıştır). PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, her bir primerden 25 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarda distile su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’ de 2 dk bekletildikten sonra her bir döngü sırasıyla 94 °C’ de 50 sn, 60 °C’ de 50 sn, 72 °C’ de 1 dk olacak şekilde 3 seferde 29, 33 ve 37 döngü çalıştırılmıştır. Son olarak, 72 °C’ de 10 dk bekletilerek PZR sonlandırılmıştır.

PZR protokolü

<table>
<thead>
<tr>
<th>Master mix (Rv1273c)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM×N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1273c F primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1273c R primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
</tr>
</tbody>
</table>

TV = 50 µl×N

PZR protokolü

<table>
<thead>
<tr>
<th>Master mix (Rv1687c)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM×N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1687c F primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1687c R primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
</tr>
</tbody>
</table>

TV = 50 µl×N
<table>
<thead>
<tr>
<th>PZR protokolü</th>
<th>Master mix (Rv3000)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>10X (NH₄)₂SO₄×N</td>
<td>×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>200 µM×N</td>
<td></td>
</tr>
<tr>
<td>dNTP</td>
<td>1,5 mM×N</td>
<td></td>
</tr>
<tr>
<td>MgCl₂</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Rv3000 F primer</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Rv3000 R primer</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
<td></td>
</tr>
<tr>
<td>TV</td>
<td>50 µl×N</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PZR protokolü</th>
<th>Master mix (mmpL4)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>10X (NH₄)₂SO₄×N</td>
<td>×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>200 µM×N</td>
<td></td>
</tr>
<tr>
<td>dNTP</td>
<td>1,5 mM×N</td>
<td></td>
</tr>
<tr>
<td>MgCl₂</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>mmpL4 F primer</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>mmpL4 R primer</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
<td></td>
</tr>
<tr>
<td>TV</td>
<td>50 µl×N</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PZR protokolü</th>
<th>Master mix (Rv1250)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>10X (NH₄)₂SO₄×N</td>
<td>×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>200 µM×N</td>
<td></td>
</tr>
<tr>
<td>dNTP</td>
<td>1,5 mM×N</td>
<td></td>
</tr>
<tr>
<td>MgCl₂</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Rv1250 F primer</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Rv1250 R primer</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
<td></td>
</tr>
<tr>
<td>TV</td>
<td>50 µl×N</td>
<td></td>
</tr>
</tbody>
</table>
PZR protokolü: Master mix (Rv1634)

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Miktari</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>×N</td>
<td></td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄×N</td>
<td></td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM×N</td>
<td></td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM×N</td>
<td></td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Rv1634 F primer</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Rv1634 R primer</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
<td></td>
</tr>
</tbody>
</table>

TV = 50 µl×N

PZR protokolü: Master mix (Rv0783c)

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Miktari</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>×N</td>
<td></td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄×N</td>
<td></td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM×N</td>
<td></td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM×N</td>
<td></td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Rv0783c F primer</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Rv0783c R primer</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
<td></td>
</tr>
</tbody>
</table>

TV = 50 µl×N

PZR protokolü: Master mix (Rv0037c)

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Miktari</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>×N</td>
<td></td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄×N</td>
<td></td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM×N</td>
<td></td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM×N</td>
<td></td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Rv0037c F primer</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Rv0037c R primer</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
<td></td>
</tr>
</tbody>
</table>

TV = 50 µl×N
PZR programı

Başlangıç denatürasyonu .. 94 °C’de 2 dakika
Denatürasyon aşaması .. 94 °C’de 50 saniye
Primer yapışması (anneling) 60 °C’de 50 saniye
Sentez (uzama) aşaması ... 72 °C’de 1 dakika
Son uzama ... 72 °C’de 10 dakika

PZR ürününün agaroz jel elektroforezinde saptanması

Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanılan % 1,2’ lik agarozda, 1 saat 10 dakika 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürününün büyüklik, moleküler büyüklik belirteci bantları ile karşılaştırılarak doğrulanmış ve IK ve genin bant yoğunluklarına göre bir sonraki aşamadaki primer miktarları ile döngü sayısına karar verilmiştir. Son olarak dijital fotoğraf makinesi ile jel görüntülenmiştir.

3.9. **Multipleks PZR çalışmaları**

3.9.1. **Rv1410c Geninin Multipleks PZR ile Amplifikasyonu**

Bir önceki aşamada gen/IK oranının hesaplanması ile ve logaritmik artış fazının görülüğü 33 döngüde, Rv1410c geninin 16S rRNA ile karşılaştırılarak multipleks PZR’ si yapıldı. Bu amaçla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir. PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, her bir primerden 25 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarda distile su, son hacim 50 µl olarak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’ de 2 dk bekletilikten sonra her bir döngü sırasıyla 94 °C’ de 50 sn, 60 °C’ de 50 sn, 72 °C’ de 1 dk olacak şekilde 33 döngü çalıştırılmıştır. Son olarak, 72 °C’ de 10 dk bekletilerek PZR sonlandırılmıştır.
PZR protokolü

<table>
<thead>
<tr>
<th>Master mix</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dh₂O</td>
<td>×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM×N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1410c F primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1410c R primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
</tr>
<tr>
<td>TV</td>
<td>50 µl×N</td>
</tr>
</tbody>
</table>

PZR programı

- **Başlangıç denatürasyonu**: 94 °C’de 2 dakika
- **Denatürasyon aşaması**: 94 °C’de 50 saniye
- **Primer yapışması (anneling)**: 60 °C’de 50 saniye (33 döngü)
- **Sentez (uzama) aşaması**: 72 °C’de 1 dakika
- **Son uzama**: 72 °C’de 10 dakika

3.9.1.1. PZR ürününün agaroz jel elektroforezinde saptanması

Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süpanse edilerek, 1X TBE tampon ile hazırlanmış %1,2’lik agarozda, 1 saat 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürününün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırılarak doğrulanmış ve son olarak dijital fotoğraf makinesi ile jel görüntülənmiştir.

3.9.1.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farkı ölçümü

imageJ programı ile fotoğraftaki her bir bant yoğunluğunu ölçümü yapılarak Microsoft Excel programına aktarılmıştır. Microsoft Excel programı ile duyarlı ve dirençli suşlardaki Rv1410c gen bantlarının yoğunlukları ile o suştaki internal kontrol bant yoğunluğunu oranlanarak tablo haline getirilmiştir.
3.9.2. Rv2333c Geninin Multipleks PZR ile Amplifikasyonu

Bir önceki aşamada gen/IK oranının hesaplanması ile ve logaritmik artış fazının görüldüğü 32 döngüde, Rv2333c geninin 16S rRNA ile karşılaştırmalı multipleks PZR’i yapıldı. Bu amaçla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir. PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, 16S rRNA gen primerlerinden 25 pmol, Rv2333c gen primerlerinden 12,5 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarında distile su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’de 2 dk bekletildikten sonra her bir döngü sırasıyla 94 °C’de 50 sn, 60 °C’de 50 sn, 72 °C’de 1 dk olarak 32 döngü çalıştırılmıştır. Son olarak, 72 °C’de 10 dk bekletilerek PZR sonlandırılmıştır.

PZR protokolü

<table>
<thead>
<tr>
<th>dH₂O</th>
<th>Master mix</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10X (NH₄)₂SO₄×N</td>
<td>N</td>
</tr>
<tr>
<td>Tampon</td>
<td>200 µM×N</td>
<td>N</td>
</tr>
<tr>
<td>dNTP</td>
<td>1,5 mM×N</td>
<td>N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>25 pmol×N</td>
<td>N</td>
</tr>
<tr>
<td>16S rRNA R primer (İK)</td>
<td>12,5 pmol×N</td>
<td>N</td>
</tr>
<tr>
<td>16S rRNA F primer (İK)</td>
<td>12,5 pmol×N</td>
<td>N</td>
</tr>
<tr>
<td>Rv2333c F primer</td>
<td>25 pmol×N</td>
<td>N</td>
</tr>
<tr>
<td>Rv2333c R primer</td>
<td>2,5 U×N</td>
<td>N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>1 µg×N</td>
<td>N</td>
</tr>
<tr>
<td>DNA</td>
<td>TV = 50 µl×N</td>
<td></td>
</tr>
</tbody>
</table>

PZR programı

- Başlangıç denatürasyonu: 94 °C’de 2 dakika
- Denatürasyon aşaması: 94 °C’de 50 saniye
- Primer yapışması (anneling): 60 °C’de 50 saniye
- Sentez (uzama) aşaması: 72 °C’de 1 dakika
- Son uzama: 72 °C’de 10 dakika
3.9.2.1. PZR ürününün agaroz jel elektroforezinde saptanması

Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanmış % 1,2’ lik agaroza, 45 dakika 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürününün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırılarak doğrulanmış ve son olarak dijital fotoğraf makinesi ile jel görüntülendiştir.

3.9.2.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farkı ölçümü

imageJ programı ile fotoğraftaki her bir bant yoğunluğunun ölçümü yapılarak Microsoft Excel programına aktarılmıştır. Microsoft Excel programı ile duyarlı ve dirençli suşlardaki Rv2333c gen bantlarının yoğunlukları ile o suştaki internal kontrol bant yoğunluğu oranlanarak tablo haline getirilmiştir.

3.9.3. drrA Geninin Multipleks PZR ile Amplifikasyonu

Bir önceki aşamada gen/IK oranının hesaplanması ile ve logaritmik artış fazının görüldüğü 26 döngüde, drrA geninin 16S rRNA ile karşılaştırmalı multipleks PZR’ si yapıldı. Bu amaçla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir. PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, her bir primerden 25 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarda distile su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’ de 2 dk bekletildikten sonra her bir döngü sırasıyla 94 °C’ de 50 sn, 60 °C’ de 50 sn, 72 °C’ de 1 dk olacak şekilde 26 döngü çalıştırılmıştır. Son olarak, 72 °C’ de 10 dk bekletilerek PZR sonlandırılmıştır.
PZR protokolü

<table>
<thead>
<tr>
<th>Master mix</th>
<th></th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{dH}_2\text{O})</td>
<td>(\times N)</td>
<td>(\times N)</td>
</tr>
<tr>
<td>Tampon</td>
<td>(10\text{X} (\text{NH}_4)_2\text{SO}_4 \times N)</td>
<td>(200 \mu\text{M} \times N)</td>
</tr>
<tr>
<td>dNTP</td>
<td></td>
<td>(1,5 \text{ mM} \times N)</td>
</tr>
<tr>
<td>(\text{MgCl}_2)</td>
<td></td>
<td>(25 \text{ pmol} \times N)</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td></td>
<td>(25 \text{ pmol} \times N)</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td></td>
<td>(25 \text{ pmol} \times N)</td>
</tr>
<tr>
<td>(\text{drrA}) F primer</td>
<td></td>
<td>(25 \text{ pmol} \times N)</td>
</tr>
<tr>
<td>(\text{drrA}) R primer</td>
<td></td>
<td>(25 \text{ pmol} \times N)</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td></td>
<td>(2,5 \text{ U} \times N)</td>
</tr>
<tr>
<td>DNA</td>
<td></td>
<td>(1 \mu\text{g} \times N)</td>
</tr>
</tbody>
</table>

\(TV = 50 \mu\text{l} \times N \)

PZR programı

- Başlangıç denatürasyonu: \(94 \degree \text{C}' \) de 2 dakika
- Denatürasyon aşaması: \(94 \degree \text{C}' \) de 50 saniye
- Primer yapışması (anneling): \(60 \degree \text{C}' \) de 50 saniye
- Sentez (uzama) aşaması: \(72 \degree \text{C}' \) de 1 dakika
- Son uzama: \(72 \degree \text{C}' \) de 10 dakika

\[
\{ 26 \text{ döngü} \}
\]

3.9.3.1. PZR ürününün agaroz jel elektroforezinde saptanması

Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanan %1,2’lik agarozda, 50 dakika 170 Volt elektrik akımı tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürününün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırılarak doğrulanmış ve son olarak dijital fotoğraf makinesi ile jel görüntülenmiştir.

3.9.3.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farkı ölçümü

imageJ programı ile fotoğraftaki her bir bant yoğunluğunun ölçümü yapılarak Microsoft Excel programına aktarılmıştır. Microsoft Excel programı ile duyarlı ve dirençli suşlardaki \(\text{drrA} \) gen bantlarının yoğunlukları ile o suştaki internal kontrol bant yoğunluğu oranlanarak tablo haline getirilmiştir.
3.9.4. *drrB* Geninin Multipleks PZR ile Amplifikasyonu

Bir önceki aşamada gen/IK oranının hesaplanması ile ve logaritmik artış fazının görüldüğü 26 döngüde, *drrB* geninin 16S rRNA ile karşılaştırılmış multipleks PZR’ si yapıldı. Bu amaçla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir. PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl$_2$, 200 µM dNTP, 16S rRNA gen primerlerinden 25 pmol, *drrB* gen primerlerinden 12,5 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarda distile su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’ de 2 dk bekleterildikten sonra her bir döngü sırasıyla 94 °C’ de 50 sn, 60 °C’ de 50 sn, 72 °C’ de 1 dk olarak 26 döngü çalıştırılmıştır. Son olarak, 72 °C’ de 10 dk bekleterek PZR sonlandırılmıştır.

PZR protokolü

<table>
<thead>
<tr>
<th>Master mix</th>
<th></th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH$_2$O</td>
<td></td>
<td>×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH$_4$)$_2$SO$_4$</td>
<td>×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM×N</td>
<td></td>
</tr>
<tr>
<td>MgCl$_2$</td>
<td>1,5 mM×N</td>
<td></td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
<td></td>
</tr>
<tr>
<td>drrB F primer</td>
<td>12,5 pmol×N</td>
<td></td>
</tr>
<tr>
<td>drrB R primer</td>
<td>12,5 pmol×N</td>
<td></td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
<td></td>
</tr>
</tbody>
</table>

TV = 50 µl×N

PZR programı

- Başlangıç denatürasyonu: 94 °C’ de 2 dakika
- Denatürasyon aşaması: 94 °C’ de 50 saniye
- Primer yapışması (anneling): 60 °C’ de 50 saniye
- Sentez (uzama) aşaması: 72 °C’ de 1 dakika
- Son uzama: 72 °C’ de 10 dakika
3.9.4.1. PZR ürününün agaroz jel elektroforezinde saptanması
Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanan %1,2’ lik agarozda, 1 saat 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminator ile değerlendirilmiştir. PZR ürününün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırılarak doğrulanmış ve son olarak dijital fotoğraf makinesi ile jel görüntülennmiştir.

3.9.4.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farkı ölçümü
imageJ programı ile fotoğraftaki her bir bant yoğunluğunu ölçülerlerak Microsoft Excel programına aktarılmıştır. Microsoft Excel programı ile duyarlı ve dirençli suşlardaki drrB gen bantlarının yoğunlukları ile o suştaki internal kontrol bant yoğunluğu oranlanarak tablo haline getirilmiştir.

3.9.5. iniA Geninin Multipleks PZR ile Amplifikasyonu
Bir önceki aşamada gen/IK oranının hesaplanması ile ve logaritmik artış fazının görülügü 26 döngüde, iniA geninin 16S rRNA ile karşılaştırmalı multipleks PZR’ si yapıldı. Bu amaçla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir. PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, her bir primerden 25 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önden hesaplanarak belirlenen miktarda distile su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’ de 2 dk bekletildikten sonra her bir döngü sırasıyla 94 °C’ de 50 sn, 60 °C’ de 50 sn, 72 °C’ de 1 dk olacak şekilde 26 döngü çalıştırılmıştır. Son olarak, 72 °C’ de 10 dk bekletilerek PZR sonlandırılmıştır.
PZR protokolü

Master mix

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Ölçümü</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄</td>
<td>N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM</td>
<td>N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM</td>
<td>N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol</td>
<td>N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol</td>
<td>N</td>
</tr>
<tr>
<td>iniA F primer</td>
<td>25 pmol</td>
<td>N</td>
</tr>
<tr>
<td>iniA R primer</td>
<td>25 pmol</td>
<td>N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2.5 U</td>
<td>N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg</td>
<td>N</td>
</tr>
</tbody>
</table>

TV = 50 µl×N

PZR programı

- **Başlangıç denatürasyonu**: 94 °C’de 2 dakika
- **Denatürasyon aşaması**: 94 °C’de 50 saniye
- **Primer yapışması (anneling)**: 60 °C’de 50 saniye
- **Sentez (uzama) aşaması**: 72 °C’de 1 dakika
- **Son uzama**: 72 °C’de 10 dakika

3.9.5.1. PZR ürününün agaroz jel elektroforezinde saptanması

Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanmış 1,2’ lik agarozda, 50 dakika 170 Volt elektrik akımı tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürününün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırarak doğrulanmış ve son olarak dijital fotoğraf makinesi ile jel görüntülenmiştir.

3.9.5.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farkı ölçümü

imageJ programı ile fotoğraftaki her bir bant yoğunluğunun ölçümü yapılarak Microsoft Excel programına aktarılmıştır. Microsoft Excel programı ile duyarlı ve dirençli suşlardaki iniA gen bantlarının yoğunlukları ile o suştaki internal kontrol bant yoğunluğu oranlanarak tablo haline getirilmiştir.
3.9.6. mmpL7 Geninin Multipleks PZR ile Amplifikasyonu

Bir önceki aşamada gen/IK oranının hesaplanması ile ve logaritmik artış fazının görüldüğü 26 dönüge, mmpL7 geninin 16S rRNA ile karşılaştırmalı multipleks PZR’ si yapılmalıdır. Bu amaçla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir. PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, her bir primerden 25 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarına distile su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’de 2 dk bekletildikten sonra her bir dönü sırasıyla 94 °C’de 50 sn, 60 °C’de 50 sn, 72 °C’de 1 dk olacak şekilde 26 dönü çalıştırılmıştır. Son olarak, 72 °C’de 10 dk bekletilerek PZR sonlandırılmıştır.

PZR protokolü

<table>
<thead>
<tr>
<th>Master mix</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>xN</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄ xN</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM xN</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM xN</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol xN</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol xN</td>
</tr>
<tr>
<td>mmpL7 F primer</td>
<td>25 pmol xN</td>
</tr>
<tr>
<td>mmpL7 R primer</td>
<td>25 pmol xN</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U xN</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg xN</td>
</tr>
</tbody>
</table>

TV = 50 µl x N

PZR programı

Başlangıç denatürasyonu ... 94 °C’de 2 dakika
Denatürasyon aşaması .. 94 °C’de 50 saniye
Primer yapışması (anneling) 60 °C’de 50 saniye
Sentez (uzama) aşaması .. 72 °C’de 1 dakika
Son uzama ... 72 °C’de 10 dakika

49
3.9.6.1. PZR ürününün agaroz jel elektroforezinde saptanması
Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanan % 1,2’ lik agarozda, 1 saat 15 dakika 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürününün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırılarak doğrulanmış ve son olarak dijital fotoğraf makinesi ile jel görüntülenmiştir.

3.9.6.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farkı ölçümü
imageJ programı ile fotoğraftaki her bir bant yoğunluğunun ölçümü yapılarak Microsoft Excel programına aktarılmıştır. Microsoft Excel programı ile duyarlı ve dirençli suşlardaki mmpL7 gen bantlarının yoğunlukları ile o suştaki internal kontrol bant yoğunluğu oranlanarak tablo haline getirilmiştir.

3.9.7. Rv1258c Geninin Multipleks PZR ile Amplifikasyonu

Bir önceki aşamada gen/IK oranının hesaplanması ile ve logaritmik artış fazının görüldüğü 25 döngüde, Rv1258c geninin 16S rRNA ile karşılaştırımlı multipleks PZR’ si yapıldı. Bu amaçla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir. PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, her bir primerden 25 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarda distile su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’ de 2 dk bekletilikten sonra her bir döngü sırasıyla 94 °C’ de 50 sn, 60 °C’ de 50 sn, 72 °C’ de 1 dk olacak şekilde 25 döngü çalıştırılmıştır. Son olarak, 72 °C’ de 10 dk bekletilikten sonra PZR sonlandırılmıştır.
PZR protokolü

<table>
<thead>
<tr>
<th>Master mix</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM×N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1258c F primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1258c R primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
</tr>
</tbody>
</table>

TV = 50 µl×N

PZR programı

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Başlangıç denatürasyonu</td>
<td>94 °C’de 2 dakika</td>
<td></td>
</tr>
<tr>
<td>Denatürasyon aşaması</td>
<td>94 °C’de 50 saniye</td>
<td></td>
</tr>
<tr>
<td>Primer yapışması (anneling)</td>
<td>60 °C’de 50 saniye</td>
<td>25 döngü</td>
</tr>
<tr>
<td>Sentez (uzama) aşaması</td>
<td>72 °C’de 1 dakika</td>
<td></td>
</tr>
<tr>
<td>Son uzama</td>
<td>72 °C’de 10 dakika</td>
<td></td>
</tr>
</tbody>
</table>

3.9.7.1. PZR ürününün agaroz jel elektroforezinde saptanması

Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanmış % 1,2’ lik agarozda, 1,5 saat 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürününün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırılarak doğrulanmış ve son olarak dijital fotoğraf makinesi ile jel görüntülenmiştir.

3.9.7.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farkı ölçümü

imageJ programı ile fotoğraftaki her bir bant yoğunluğunun ölçümü yapılarak Microsoft Excel programına aktarılmıştır. Microsoft Excel programı ile duyarlı ve dirençli suşlardaki Rv1258c gen bantlarının yoğunlukları ile o suştaki internal kontrol bant yoğunluğu oranlanarak tablo haline getirilmiştir.
3.9.8. Rv1273c Geninin Multipleks PZR ile Amplifikasyonu

Bir önceki aşamada gen/IK oranının hesaplanması ile ve logaritmik artış fazının görülüğü 29 döngüde, Rv1273c geninin 16S rRNA ile karşılaştırılmış multipleks PZR’si yapıldı. Bu amaçla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir. PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, 16S rRNA gen primerlerinden 19 pmol, Rv1273c gen primerlerinden 25 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarına distile su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’de 2 dk bekletildikten sonra her bir döngü sırasıyla 94 °C’de 50 sn, 60 °C’de 50 sn, 72 °C’de 1 dk olacak şekilde 29 döngü çalıştırılmıştır. Son olarak, 72 °C’de 10 dk bekletilerek PZR sonlandırılmıştır.

PZR protokolü

<table>
<thead>
<tr>
<th>Master mix</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM×N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>19 pmol×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>19 pmol×N</td>
</tr>
<tr>
<td>Rv1273c F primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1273c R primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
</tr>
</tbody>
</table>

TV = 50 µl×N

PZR programı

<table>
<thead>
<tr>
<th>Başlangıç denatürasyon</th>
<th>94 °C’de 2 dakika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denatürasyon aşaması</td>
<td>94 °C’de 50 saniye</td>
</tr>
<tr>
<td>Primer yapışması (anneling)</td>
<td>60 °C’de 50 saniye</td>
</tr>
<tr>
<td>Sentez (uzama) aşaması</td>
<td>72 °C’de 1 dakika</td>
</tr>
<tr>
<td>Son uzama</td>
<td>72 °C’de 10 dakika</td>
</tr>
</tbody>
</table>

52
3.9.8.1. PZR ürününün agaroz jel elektroforezinde saptanması

Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanan % 1,2’ lik agarozda, 40 dakika 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürününün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırılarak doğrulanmış ve son olarak dijital fotoğraf makinesi ile jel görüntülenmiştir.

3.9.8.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farkı ölçümü

imageJ programı ile fotoğraftaki her bir bant yoğunluğunun ölçümü yapılarak Microsoft Excel programına aktarılmıştır. Microsoft Excel programı ile duyarlı ve dirençli suşlardaki Rv1273c gen bantlarının yoğunlukları ile o suştaki internal kontrol bant yoğunluğu oranlanarak tablo haline getirilmiştir.

3.9.9. Rv1687c Geninin Multipleks PZR ile Amplifikasyonu

Bir önceki aşamada gen/IK oranının hesaplanması ile ve logaritmik artış fazının görülüğü 30 döngüde, Rv1687c geninin 16S rRNA ile karşılaştırılarak multipleks PZR’si yapıldı. Bu amaçla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir. PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, her bir primerden 25 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarda distile su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’ de 2 dk bekletildikten sonra her bir döngü sırasında 94 °C’ de 50 sn, 60 °C’ de 50 sn, 72 °C’ de 1 dk olacak şekilde 30 döngü çalıştırılmıştır. Son olarak, 72 °C’ de 10 dk beklentilerek PZR sonlandırılmıştır.
PZR protokolü

<table>
<thead>
<tr>
<th>Master mix</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X ((NH₄)₂SO₄)×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM×N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1.5 mM×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1687c F primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1687c R primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2.5 U×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
</tr>
</tbody>
</table>

TV = 50 µl×N

PZR programı

- Başlangıç denatürasyonu: 94 °C’de 2 dakika
- Denatürasyon aşaması: 94 °C’de 50 saniye
- Primer yapışması (anneling): 60 °C’de 50 saniye 30 döngü
- Sentez (uzama) aşaması: 72 °C’de 1 dakika
- Son uzama: 72 °C’de 10 dakika

3.9.9.1. **PZR ürününün agaroz jel elektroforezinde saptanması**

Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanış % 1,2’ lik agarozda, 50 dakika 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürününün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırılarak doğrulanmış ve son olarak dijital fotoğraf makinesi ile jel görüntülenmiştir.

3.9.9.2. **Duyarlı ve dirençli suşlar arasındaki ekspresyon farkı ölçümü**

imageJ programı ile fotoğraftaki her bir bant yoğunluğunun ölçümü yapılarak Microsoft Excel programına aktarılmıştır. Microsoft Excel programı ile duyarlı ve dirençli suşlardaki Rv1687c gen bantlarının yoğunlukları ile o suştaki internal kontrol bant yoğunluğu oranlanarak tablo haline getirilmiştir.
3.9.10. Rv3000 Geninin Multipleks PZR ile Amplifikasyonu

Bir önceki aşamada gen/IK oranının hesaplanması ile ve logaritmik artış fazının görüldüğü 37 döngüde, Rv3000 geninin 16S rRNA ile karşılaştırmalı multipleks PZR’ si yapıldı. Bu amaçla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir. PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, 16S rRNA gen primerlerinden 12,5 pmol, Rv3000 gen primerlerinden 25 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarda distile su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler teral döngü cihazında ilk denatürasyon için 94 °C’ de 2 dk bekletildikten sonra her bir döngü sırasıyla 94 °C’ de 50 sn, 60 °C’ de 50 sn, 72 °C’ de 1 dk olacak şekilde 37 döngü çalıştırılmıştır. Son olarak, 72 °C’ de 10 dk bekletilerek PZR sonlandırılmıştır.

PZR protokolü

<table>
<thead>
<tr>
<th>Master mix</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM×N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>12,5 pmol×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>12,5 pmol×N</td>
</tr>
<tr>
<td>Rv3000 F primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv3000 R primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
</tr>
</tbody>
</table>

TV = 50 µl×N

PZR programı

Başlangıç denatürasyonu .. 94 °C’ de 2 dakika
Denatürasyon aşaması .. 94 °C’ de 50 saniye
Primer yapışması (anneling) .. 60 °C’ de 50 saniye 37 döngü
Sentez (uzama) aşaması .. 72 °C’ de 1 dakika
Son uzama .. 72 °C’ de 10 dakika

55
3.9.10.1. PZR ürününün agaroz jel elektroforezinde saptanması

Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanan %1,2’lik agarozda, 1,5 saat 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürününün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırılarak doğrulanmış ve son olarak dijital fotoğraf makinesi ile jel görüntülenmiştir.

3.9.10.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farkı ölçümü

imageJ programı ile fotoğraftaki her bir bant yoğunluğunun ölçümü yapılarak Microsoft Excel programına aktarılmıştır. Microsoft Excel programı ile duyarlı ve dirençli suşlardaki Rv3000 gen bantlarının yoğunlukları ile o suştaki internal kontrol bant yoğunluğu oranlanarak tablo haline getirilmiştir.

3.9.11. mmpL4 Geninin Multipleks PZR ile Amplifikasyonu

Bir önceki aşamada gen/IK oranının hesaplanması ile ve logaritmik artış fazının görüldüğü 29 döngüde, mmpL4 geninin 16S rRNA ile karşılaştırılarak multipleks PZR’ si yapıldı. Bu amaçla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir. PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, 16S rRNA gen primerlerinden 37,5 pmol, mmpL4 gen primerlerinden 12,5 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarda distile su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’ de 2 dk bekletildikten sonra her bir döngü sırasıyla 94 °C’ de 50 sn, 60 °C’ de 50 sn, 72 °C’ de 1 dk olacak şekilde 29 döngü çalıştırılmıştır. Son olarak, 72 °C’ de 10 dk bekletilerek PZR sonlandırılmıştır.
PZR protokolü

Master mix

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Miktar</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>N</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM×N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>37,5 pmol×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>37,5 pmol×N</td>
</tr>
<tr>
<td>mmpL4 F primer</td>
<td>12,5 pmol×N</td>
</tr>
<tr>
<td>mmpL4 R primer</td>
<td>12,5 pmol×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
</tr>
</tbody>
</table>

TV = 50 µl×N

PZR programi

- **Başlangıç denatürasyonu**: 94 °C’de 2 dakika
- **Denatürasyon aşaması**: 94 °C’de 50 saniye
- **Primer yapışması (anneling)**: 60 °C’de 50 saniye (29 döngü)
- **Sentez (uzama) aşaması**: 72 °C’de 1 dakika
- **Son uzama**: 72 °C’de 10 dakika

3.9.11.1. PZR ürünü'nün agaroz jel elektroforezinde saptanması

Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanan % 1,2’ lik agarozda, 1,5 saat 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transillumınatör ile değerlendirilmiştir. PZR ürünü'nün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırılarak doğrulanmış ve son olarak dijital fotoğraf makinesi ile jel görüntülenmiştir.

3.9.11.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farkı ölçümü

ImageJ programı ile fotoğraftaki her bir bant yoğunluğunu ölçülü olarak Microsoft Excel programına aktarılmıştır. Microsoft Excel programı ile duyarlı ve dirençli suşlardaki mmpL4 gen bantlarının yoğunlukları ile o suştaki internal kontrol bant yoğunluğu oranlanarak tablo haline getirilmiştir.
3.9.12. Rv1250 Geninin Multipleks PZR ile Amplifikasyonu

Bir önceki aşamada gen/IK oranının hesaplanması ile ve logaritmik artış fazının görüldüğü 28 döngüde, Rv1250 geninin 16S rRNA ile karşılaştırımlı multipleks PZR’ si yapıldı. Bu amaçla, 1 µg cDNA kalıp DNA olarak PZR karışığuna eklenmiştir. PZR karışığını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, her bir primerden 25 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarda distile su, son hacim 50 µl olarak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’ de 2 dk bekletildikten sonra her bir döngü sırasıyla 94 °C’ de 50 sn, 60 °C’ de 50 sn, 72 °C’ de 1 dk olarak çalıştırılmıştır. Son olarak, 72 °C’ de 10 dk bakımlıkta PZR sonlandırılmıştır.

PZR protokolü

<table>
<thead>
<tr>
<th>Master mix</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>(\times N)</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (\text{(NH}_4\text{)}_2\text{SO}_4\times N)</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM×N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1250 F primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1250 R primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
</tr>
</tbody>
</table>

TV = 50 µl×N

PZR programı

<table>
<thead>
<tr>
<th>Başlangıç denatürasyonu</th>
<th>94 °C’ de 2 dakika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denatürasyon aşaması</td>
<td>94 °C’ de 50 saniye</td>
</tr>
<tr>
<td>Primer yapışması (anneling)</td>
<td>60 °C’ de 50 saniye</td>
</tr>
<tr>
<td>Sentez (uzama) aşaması</td>
<td>72 °C’ de 1 dakika</td>
</tr>
<tr>
<td>Son uzama</td>
<td>72 °C’ de 10 dakika</td>
</tr>
</tbody>
</table>

58
3.9.12.1. PZR ürününün agaroz jel elektroforezinde saptanması
Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanan % 1,2’lik agarozda, 40 dakika 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transillumınatör ile değerlendirilmiştir. PZR ürününün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırılarak doğrulanmış ve son olarak dijital fotoğraf makinesi ile jel görüntülmiştir.

3.9.12.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farkı ölçümü
imageJ programı ile fotoğraftaki her bir bant yoğunluğunun ölçümü yapılarak Microsoft Excel programına aktarılmıştır. Microsoft Excel programı ile duyarlı ve dirençli suşlardaki Rv1250 gen bantlarının yoğunlukları ile o suştaki internal kontrol bant yoğunluğu oranlanarak tablo haline getirilmiştir.

3.9.13. Rv1634 Geninin Multipleks PZR ile Amplifikasyonu
Bir önceki aşamada gen/IK oranının hesaplanması ile ve logaritmik artış fazının görüldüğü 28 döngüde, Rv1634 geninin 16S rRNA ile karşılaştırılmış multipleks PZR’si yapıldı. Bu amaçla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir. PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, her bir primerden 25 pmol, 2,5 U Taq DNA Polimeraż enzimi ve önceden hesaplanarak belirlenen miktarda distile su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’de 2 dk bekletildikten sonra her bir döngü sırasıyla 94 °C’de 50 sn, 60 °C’de 50 sn, 72 °C’de 1 dk olarak şekilde 28 döngü çalıştırılmıştır. Son olarak, 72 °C’de 10 dk bekletilerek PZR sonuçlandırılmıştır.
PZR protokolü

<table>
<thead>
<tr>
<th>Master mix</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dh<sub>2</sub>O</td>
<td>×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM×N</td>
</tr>
<tr>
<td>MgCl<sub>2</sub></td>
<td>1,5 mM×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1634 F primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv1634 R primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
</tr>
<tr>
<td>TV</td>
<td>50 µl×N</td>
</tr>
</tbody>
</table>

PZR programı

- Başlangıç denatürasyonu, 94 °C’de 2 dakika
- Denatürasyon aşaması, 94 °C’de 50 saniye
- Primer yapışması (anneling), 60 °C’de 50 saniye
- Sentez (uzama) aşaması, 72 °C’de 1 dakika
- Son uzama, 72 °C’de 10 dakika

3.9.13.1. **PZR ürününün agaroz jel elektroforezinde saptanması**

Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanan % 1,2’ lik agarozda, 45 dakika 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürününün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırılarak doğrulanmış ve son olarak dijital fotoğraf makinesi ile jel görüntülenmiştir.

3.9.13.2. **Duyarlı ve dirençli suşlar arasındaki ekspresyon farkı ölçümü**

imageJ programı ile fotoğraftaki her bir bant yoğunluğunun ölçümü yapılarak Microsoft Excel programına aktarılmıştır. Microsoft Excel programı ile duyarlı ve dirençli suşlardaki Rv1634 gen bantlarının yoğunlukları ile o suştaki internal kontrol bant yoğunluğu oranlanarak tablo haline getirilmiştir.

Bir önceki aşamada gen/IK oranının hesaplanması ile ve logaritmik artış fazının görüldüğü 29 döngüde, Rv0783c geninin 16S rRNA ile karşılaştırmalı multipleks PZR’i yapıldı. Bu amaçla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir. PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, 16S rRNA gen primerlerinden 12,5 pmol, Rv0783c gen primerlerinden 25 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarda distile su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’de 2 dk bekletildikten sonra her bir döngü sırasıyla 94 °C’de 50 sn, 60 °C’de 50 sn, 72 °C’de 1 dk olacak şekilde 29 döngü çalıştırılmıştır. Son olarak, 72 °C’de 10 dk bekletilerek PZR sonlandırılmıştır.

PZR protokolü

<table>
<thead>
<tr>
<th>Master mix</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dh₂O</td>
<td>×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>10X (NH₄)₂SO₄×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM×N</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1,5 mM×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>12,5 pmol×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>12,5 pmol×N</td>
</tr>
<tr>
<td>Rv0783c F primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv0783c R primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>2,5 U×N</td>
</tr>
<tr>
<td>DNA</td>
<td>1 µg×N</td>
</tr>
</tbody>
</table>

TV = 50 µl×N

PZR programı

Başlangıç denatürasyonu .. 94 °C’de 2 dakika
Denatürasyon aşaması .. 94 °C’de 50 saniye
Primer yapışması (anneling) .. 60 °C’de 50 saniye
Sentez (uzama) aşaması .. 72 °C’de 1 dakika
Son uzama .. 72 °C’de 10 dakika

61
3.9.14.1. PZR ürününün agaroz jel elektroforezinde saptanması
Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanan % 1,2’ lik agarozda, 1 saat 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürününün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırarak doğrulanmış ve son olarak dijital fotoğraf makinesi ile jel görüntülmenmiştir.

3.9.14.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farkı ölçümü
imageJ programı ile fotoğraftaki her bir bant yoğunluğunun ölçümü yapılarak Microsoft Excel programına aktarılmıştır. Microsoft Excel programı ile duyarlı ve dirençli suşlardaki Rv0783c gen bantlarının yoğunlukları ile o suştaki internal kontrol bant yoğunluğu oranlanarak tablo haline getirilmiştir.

3.9.15. Rv0037c Geninin Multipleks PZR ile Amplifikasyonu
Bir önceki aşamada gen/IK oranının hesaplanması ile ve logaritmik artış fazının görülüğü 34 döngüde, Rv0037c geninin 16S rRNA ile karşılaştırmalı multipleks PZR’si yapıldı. Bu amaçla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir. PZR karışımı hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, 16S rRNA gen primerlerinden 19 pmol, Rv0037c gen primerlerinden 25 pmol, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen miktarda distile su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’ de 2 dk bekletildikten sonra her bir döngü sırasıyla 94 °C’ de 50 sn, 60 °C’ de 50 sn, 72 °C’ de 1 dk olacak şekilde 34 döngü çalıştırılmıştır. Son olarak, 72 °C’ de 10 dk bekletilerek PZR sonlandırılmıştır.
PZR protokolü

<table>
<thead>
<tr>
<th>Master mix</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH$_2$O</td>
<td>10X (NH$_4$)$_2$SO$_4$×N</td>
</tr>
<tr>
<td>Tampon</td>
<td>200 µM×N</td>
</tr>
<tr>
<td>dNTP</td>
<td>1,5 mM×N</td>
</tr>
<tr>
<td>MgCl$_2$</td>
<td>19 pmol×N</td>
</tr>
<tr>
<td>16S rRNA F primer (IK)</td>
<td>19 pmol×N</td>
</tr>
<tr>
<td>16S rRNA R primer (IK)</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv0037c F primer</td>
<td>25 pmol×N</td>
</tr>
<tr>
<td>Rv0037c R primer</td>
<td>2,5 U×N</td>
</tr>
<tr>
<td>Taq polimeraz</td>
<td>1 µg×N</td>
</tr>
<tr>
<td>DNA</td>
<td>TV = 50 µl×N</td>
</tr>
</tbody>
</table>

PZR programı

Başlangıç denatürasyonu ... 94 °C’de 2 dakika
Denatürasyon aşaması ... 94 °C’de 50 saniye
Primer yapışması (anneling) 60 °C’de 50 saniye
Sentez (uzama) aşaması ... 72 °C’de 1 dakika
Son uzama ... 72 °C’de 10 dakika

3.9.15.1. PZR ürününün agaroz jel elektroforezinde saptanması

Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanı 1,2’ lik agarozda, 1,5 saat 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürününün büyüküğü, moleküler büyüklik belirteci bantları ile karşılaştırılarak doğrulanmış ve son olarak dijital fotoğraf makinesi ile jel görüntülüenmiştir.

3.9.15.2. Duyarlı ve dirençli suşlar arasındaki ekspresyon farkı ölçümü

imageJ programı ile fotoğraftaki her bir bant yoğunluğunu ölçümü yapılarak Microsoft Excel programına aktarılmıştır. Microsoft Excel programı ile duyarlı ve dirençli suşlardaki Rv0037c gen bantlarının yoğunlukları ile o suştaki internal kontrol bant yoğunluğu oranlanarak tablo haline getirilmiştir.
3.10. *M. tuberculosis* Standart Suşlarında Multipleks PZR ile Genlerin Amplifikasyonu

Çalışılan genlerin ekspresyon miktarları, *M. tuberculosis* H37Rv ATCC 25618, *M. tuberculosis* H37Ra ATCC 25177, *M. tuberculosis* H37Rv RSKK 598 Pasteur enstitüsü standart suşlarında da, genlerin logaritmik artış fazındaki döngülerde ve ayarlanan gen/internal kontrol primer oranlarında multipleks PZR yapılarak araştırılmıştır. Bu amaçla, 1 µg cDNA kalıp DNA olarak PZR karışımına eklenmiştir. PZR karışımını hazırlamak için 10X PZR tamponuna 1,5 mM MgCl₂, 200 µM dNTP, 16S rRNA gen primerlerinden her gen için hesaplanan miktarda, her gen primeri için yine o gen için hesaplanan mikarda, 2,5 U Taq DNA Polimeraz enzimi ve önceden hesaplanarak belirlenen mikarda distile su, son hacim 50 µl olacak şekilde ilave edilmiştir. Örnekler termal döngü cihazında ilk denatürasyon için 94 °C’ de 2 dk bekletildikten sonra her bir döngü sırasıyla 94 °C’ de 50 sn, 60 °C’ de 50 sn, 72 °C’ de 1 dk olacak şekilde her gen için daha önceden belirlenen döngülerde çalıştırılmıştır. Son olarak, 72 °C’ de 10 dk bekletilerek PZR sonlandırılmıştır.

3.10.1. PZR Ürününün Agaroz Jel Elektroforezinde Saptanması

Bu amaçla 10 µl PZR ürünü, 2 µl yükleme solüsyonu ile süspanse edilerek, 1X TBE tampon ile hazırlanlan % 1,2’ lik agarozda, 1,5 saat 170 Volt elektrik akımına tabi tutulup jel elektroforezi yapıldıktan sonra, UV transilluminatör ile değerlendirilmiştir. PZR ürününün büyüklüğü, moleküler büyüklük belirteci bantları ile karşılaştırılarak doğrulanmış ve son olarak dijital fotoğraf makinesi ile jel görüntülenmiştir.

Çalışmaya aldığımız genlerin ekspresyon miktarları multipleks PZR yöntemi ile anti-TB ilaçlara duyarlı ve MDR fenotipi gösteren suş gruplarında çalışılmıştır. Multipleks PZR’de incelenerek olan genlerin ekspresyon miktarları arasındaki farklılığın, en belirgin olarak PZR’deki logaritmik artış fazında araştırılması gerekmektedir. Bu nedenle öncelikle genlerin hangi döngüde logaritmik artış fazında oldukları araştırılmıştır. Her gen ile internal kontrol bantlarını eşit veya yakın yoğunlukta gösterecek primer miktarlarını belirlemek amacıyla belirli döngülerde multipleks PZR uygulanıp, daha sonra her gen için belirlenen döngü ve gen/internal kontrol primer oranlarında multipleks PZR uygulanmıştır.

4.1. Logaritmik Artış Fazlarını Belirleme

4.1.1. PZR Yöntemi ile Rv1410c ve Rv2333c Genlerinin Logaritmik Artış Fazlarını Belirleme

Rv1410c ve Rv2333c genlerinin 34. ve 35. döngülerdeki PZR jel fotoğrafları Şekil 4.1’de verilmiştir.
Şekil 4.1. Rv1410c ve Rv2333c genleri 34. ve 35. döngülerdeki PZR görüntüsü (M: Moleküler büyüklük belirteci, IK: İnternal kontrol, 1: 16S rRNA ve Rv1410c 34 döngü, 2: 16S rRNA ve Rv1410c 35 döngü, 3: 16S rRNA ve Rv2333c 34 döngü, 4: 16S rRNA ve Rv2333c 35 döngü).

34 döngüdeki bant yoğunlıklarından daha az yoğunlukta (dansitede) bantlar görmek istediğimiz için Rv1410c geni ile yapılacak olan multipleks PZR’ de döngü sayısının 33 olması, IK ve Rv1410c gen bant oranları eşit yoğunlukta olduklarından primer oranlarının aynı kalmasına karar verilmiştir.

Yine 34 döngüdeki bant yoğunlıklarından daha az yoğunlukta bantlar görmek istediğimiz için Rv2333c geni ile yapılacak olan multipleks PZR döngü sayısının 32 olması, Rv2333c bandı IK bandına göre daha yoğun görüldüğünden, Rv2333c gen primerler miktarının da % 50 azaltılmasına karar verilmiştir.

4.1.2. PZR Yöntemi ile drrA, drrB, iniA ve mmpL7 Genlerinin Logaritmik Artış Fazlarını Belirleme

drrA, drrB, iniA ve mmpL7 genlerinin 27., 30. ve 33. döngülerdeki PZR jel fotoğrafları Şekil 4.2’ de verilmiştir.

Sonuç olarak, 27 döngüdeki bant yoğunluklarından daha az yoğunlukta bantlar görmek istediğimiz için drrA geni ile yapılacak olan multipleks PZR' de döngü sayısının 26 olması, IK ve drrA gen bant oranları eşit yoğunlukta olduklarından primer oranlarının aynı kalmasına karar verilmiştir.

Yine 27 döngüdeki bant yoğunluklarından daha az yoğunlukta bantlar görmek istediğimiz için drrB geni ile yapılacak olan multipleks PZR döngü sayısının 26 olması, drrB bandı IK bandına göre daha yoğun görüldüğünden, drrB gen primerler miktarının da % 50 azaltılması karar verilmiştir.
27 döngüdeki bant yoğunluklarından daha az yoğunlukta bantlar görmek istediğimiz için *iniA* geni ile yapılacak olan multipleks PZR’ de döngü sayısının 26 olması, IK ve *iniA* gen bant oranları eşit yoğunlukta olduklarından primer oranlarının aynı kalmasına karar verilmiştir.

27 döngüdeki bant yoğunluklarından daha az yoğunlukta bantlar görmek istediğimiz için *mmpL7* geni ile yapılacak olan multipleks PZR’ de döngü sayısının 26 olması, IK ve *mmpL7* gen bant oranları eşit yoğunlukta olduklarından primer oranlarının aynı kalmasına karar verilmiştir.

4.1.3. PZR Yöntemi ile Rv1258c Geninin Logaritmik Artış Fazını Belirleme

Rv1258c geninin 26., 29. ve 33. döngülerdeki PZR jel fotoğrafı Şekil 4.3’te verilmiştir.

![PZR jel fotoğrafı](image)

Şekil 4.3. Rv1258c geni 26., 29. ve 33. döngülerdeki PZR görüntüsü (M: Moleküler büyüklük belirteci, IK: İnternal kontrol, 1: 16S rRNA ve Rv1258c 26 döngü, 2: 16S rRNA ve Rv1258c 29 döngü, 3: 16S rRNA ve Rv1258c 33 döngü).
Sonuç olarak, 26 döngüdeki bant yoğunluklarından daha az yoğunlukta bantlar görmek istediğimiz için Rv1258c geni ile yapılacak olan multipleks PZR’ de döngü sayısının 25 olması, IK ve Rv1258c gen bant oranları eşit yoğunlukta olduklarından primer oranlarının aynı kalmasına karar verilmiştir.

4.1.4. PZR Yöntemi ile Rv1273c, Rv1687c, Rv3000, mmpL4, Rv1250, Rv1634, Rv0783c ve Rv0037c Genlerinin Logaritmik Artış Fazlarını Belirleme

Rv1273c, Rv1687c, Rv3000, mmpL4 genlerinin 29., 33. ve 37. döngülerdeki PZR jel fotoğrafları Şekil 4.4’te verilmiştir.

Sonuç olarak, 29 döngüdeki bant yoğunluğuna eşit yoğunlukta bantlar görmek istediğimiz için Rv1273c geni ile yapılacak olan multipleks PZR’de döngü sayısının 29 olması, IK bandı Rv1273c bandına göre daha yoğun görüldüğünden, IK primer miktarının % 25 azaltılmasına karar verilmiştir.

29 döngüdeki bant yoğunluklarından daha yoğun bantlar görmek istediğimiz için Rv1687c geni ile yapılacak olan multipleks PZR döngü sayısının 30 olması, IK ve Rv1687c gen bant oranları eşit yoğunlukta olduklarından primer oranlarının aynı kalmamasına karar verilmiştir.

37 döngüdeki bant yoğunluğuna eşit yoğunlukta bantlar görmek istediğimiz için Rv3000 geni ile yapılacak olan multipleks PZR’de döngü sayısının 37 olması, IK bandı Rv1273c bandına göre daha yoğun görüldüğünden, IK primer miktarının % 50 azaltılmasına karar verilmiştir.

29 döngüdeki bant yoğunluğuna eşit yoğunlukta bantlar görmek istediğimiz için mmpL4 geni ile yapılacak olan multipleks PZR’de döngü sayısının 29 olması, mmpL4 bandı IK bandına göre daha yoğun görüldüğünden, mmpL4 primer miktarının % 50 azaltılmasına, IK primer miktarının da % 50 artırılmasına karar verilmiştir.

Rv1250, Rv1634 ve Rv0783c genlerinin 29., 33. ve 37. döngülerdeki PZR jel fotoğrafları Şekil 4.5’te verilmiştir.

29 döngüdeki bant yoğunluklarından daha az yoğunlukta bantlar görmek istediğimiz için Rv1250 geni ile yapılacak olan multipleks PZR’ de döngü sayısının 28 olması, IK ve Rv1250 gen bant oranları eşit yoğunlukta olduklarından primer oranlarının aynı kalmasına karar verilmiştir.

29 döngüdeki bant yoğunluklarından daha az yoğunlukta bantlar görmek istediğimiz için Rv1634 geni ile yapılacak olan multipleks PZR’ de döngü sayısının 28 olması, IK ve Rv1634 gen bant oranları eşit yoğunlukta olduklarından primer oranlarının aynı kalmasına karar verilmiştir.

29 döngüdeki bant yoğunluğuna eşit yoğunlukta bantlar görmek istediğimiz için Rv0783c geni ile yapılacak olan multipleks PZR’ de döngü sayısının 29 olması, IK bandı Rv0783c bandına göre daha yoğun görüldüğünden, IK primer miktarının % 50 azaltılmasına karar verilmiştir.
Rv0037c geninin 29., 33. ve 37. döngülerdeki PZR jel fotoğrafları Şekil 4.6’da verilmiştir.

Şekil 4.6. Rv0037c geninin 29, 33 ve 37. döngülerdeki PZR görüntüsü (M: Moleküler büyüklük belirteci, IK: İnternal kontrol, 1: 16S rRNA ve Rv0037c 29 döngü, 2: 16S rRNA ve Rv0037c 33 döngü, 3: 16S rRNA ve Rv0037c 37 döngü).

Sonuç olarak, 33 döngüdeki bant yoğunluğundan daha yoğun bantlar görmek istediğimiz için Rv0037c geni ile yapılacak olan multipleks PZR’de döngü sayısının 34 olmasını, IK bandı Rv0037c bandına göre daha yoğun görüldüğünden, IK primer miktarının % 25 azaltılmasına karar verilmiştir.
4.2. Multipleks PZR Çalışmaları

4.2.1. Rv1410c Geninin Multipleks PZR ile Amplifikasyonu

33 döngüde, Rv1410c geninin 16S rRNA ile karşılaştırılmış multipleks PZR’ si yapılmış ve PZR jel fotoğrafı Şekil 4.7’ de verilmiştir.

Şekil 4.7. Rv1410c geni 33 döngü PZR fotoğrafı. (M: Moleküler büyüklük belirteci, IK: İnternal kontrol, S1-S10 Duyarlı M.tuberculosis suşları, R1-R10 MDR M.tuberculosis suşları) (IK/Gen primer oranı: 1/1)

Tablo 4.1’ de imageJ programıyla ölçülen Microsoft Excel programına aktarılan duyarlı ve dirençli suşlardaki Rv1410c gen bantlarının yoğunluk değerleri ile o suştaki internal kontrol bant yoğunluğunun oranlanması ile ortaya çıkan tablo görülmektedir.
Tablo 4.1. Rv1410c geni, gen/IK ekspresyon oranları tablosu (S1-S10 Duyarlı M. tuberculosis suşları, R1-R10 MDR M. tuberculosis suşları).

Bu sonuçlara göre, çoklu ilaç dirençli M. tuberculosis suşlarındaki Rv1410c geni ekspresyon miktarlarında, duyarlı suşlara göre genel bir artma veya azalma görülmemiştir.

4.2.2. Rv2333c Geninin Multipleks PZR ile Amplifikasyonu

32 döngüde, Rv2333c geninin 16S rRNA ile karşılaştırmalı multipleks PZR’ si yapılmış olup PZR jel fotoğrafi Şekil 4.8’ de verilmiştir.
Şekil 4.8. Rv2333c geni 32 döngü PZR fotoğrafı. (M: Moleküler büyüklük belirteci, IK: İnternal kontrol, S1-S10 Duyarlı M. tuberculosis suşları, R1-R10 MDR M. tuberculosis suşları) (IK/Gen primer oranı: 1/0,5)

Tablo 4.2’ de imageJ programıyla ölçülen ve dirençli suşlardaki Rv2333c gen bantlarının yoğunluk değerleri ile suştaki internal kontrol bant yoğunluğunun oranlanması ile ortaya çıkan tablo görülmektedir.

Tablo 4.2. Rv2333c geni, gen/IK ekspresyon oranları tablosu (S1-S10 Duyarlı M. tuberculosis suşları, R1-R10 MDR M. tuberculosis suşları).
Bu sonuçlara göre, çoklu ilaç dirençli *M. tuberculosis* suşlarındaki Rv2333c geni ekpresyon miktarlarında, duyarlı suşlara göre genel bir artma veya azalma görülmemişdir.

4.2.3. *drrA* Geninin Multipleks PZR ile Amplifikasyonu

![drrA geni 26 döngü PZR fotoğrafı](image)

Şekil 4.9. *drrA* geni 26 döngü PZR fotoğrafı. (M: Moleküler büyüklük belirteci, IK: İnternal kontrol, S1-S10 Duyarlı *M.tuberculosis* suşları, R1-R10 MDR *M.tuberculosis* suşları) (IK/Gen primer oranı: 1/1)

Tablo 4.3’te imageJ programıyla ölçülen Microsoft Excel programına aktarılan duyarlı ve dirençli suşlardaki *drrA* gen bantlarının yoğunluk değerleri ile o suştaki internal kontrol bant yoğunluğunun oranlanması ile ortaya çıkan tablo görülmektedir.
Tablo 4.3. *drrA* geni, gen/IK ekspresyon oranları tablosu (S1-S10 Duyarlı *M.tuberculosis* suşları, R1-R10 MDR *M.tuberculosis* suşları).

Bu sonuçlara göre, çoklu ilaç dirençli *M. tuberculosis* suşlarındaki *drrA* geni ekspresyon miktarlarında, duyarlı suşlara göre genel bir artma veya azalma görülmemiştir.
4.2.4. *drrB* Geninin Multipleks PZR ile Amplifikasyonu

26 döngüde, *drrB* geninin 16S rRNA ile karşılaştırmalı multipleks PZR’ si yapılmış olup PZR jel fotoğrafi Şekil 4.10’ da verilmiştir.

![PZR jel fotoğrafı](image)

Şekil 4.10. *drrB* geni 26 döngü PZR fotoğrafı. (M: Moleküler büyüklük belirteci, IK: İnternal kontrol, S1-S10 Duyarlı *M.tuberculosis* suşları, R1-R10 MDR *M.tuberculosis* suşları) (IK/Gen primer oranı: 1/0,5)

Tablo 4.4’ te imageJ programıyla ölçülen ve Microsoft Excel programına aktarılan duyarlı ve dirençli suşlardaki *drrB* gen bantlarının yoğunluk değerleri ile o suştaki internal kontrol bant yoğunluğunun oranlanması ile ortaya çıkan tablo görülmektedir.
<table>
<thead>
<tr>
<th>drrB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,8</td>
</tr>
<tr>
<td>1,6</td>
</tr>
<tr>
<td>1,4</td>
</tr>
<tr>
<td>1,2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0,8</td>
</tr>
<tr>
<td>0,6</td>
</tr>
<tr>
<td>0,4</td>
</tr>
<tr>
<td>0,2</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Bu sonuçlara göre, çoklu ilaç dirençli *M. tuberculosis* suşlarındaki *drrB* geni ekspresyon miktarlarında, duyarlı suşlara göre genel bir artma veya azalma görülmemiştir.

4.2.5. iniA Geninin Multipleks PZR ile Amplifikasyonu

26 döngüde, *iniA* geninin 16S rRNA ile karşılaştırmalı multipleks PZR’ si yapılmış olup PZR jel fotoğrafi Şekil 4.11’ de verilmiştir.

Tablo 4.5’te imageJ programıyla ölçülen Microsoft Excel programına aktarılan duyarlı ve dirençli suşlardaki *iniA* gen bantlarının yoğunluk değerleri ile o suştaki internal kontrol bant yoğunluğunun oranlanması ile ortaya çıkan tablo görülmektedir.

Tablo 4.5. *iniA* geni, gen/IK ekspresyon oranları tablosu (S1-S10 Duyarlı *M.tuberculosis* suşları, R1-R10 MDR *M.tuberculosis* suşları).

![iniA grafik](image-url)
Bu sonuçlara göre, çoklu ilaç dirençli \textit{M.tuberculosis} suşlarındaki \textit{iniA} geni ekspresyon miktarlarında, duyarlı suşlara göre genel bir artma veya azalma görülmemiştir.

4.2.6. \textit{mmpL7} Geninin Multipleks PZR ile Amplifikasyonu

26 döngüde, \textit{mmpL7} geninin 16S rRNA ile karşılaştırmalı multipleks PZR’ si yapılmış olup PZR jel fotoğrafi Şekil 4.12’ de verilmiştir.

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{image1.png}
\caption{\textit{mmpL7} geni 26 döngü PZR fotoğrafı. (M: Moleküler büyüklük belirteci, IK: İnternal kontrol, S1-S10 Duyarlı \textit{M.tuberculosis} suşları, R1-R10 MDR \textit{M.tuberculosis} suşları) (IK/Gen primer oranı: 1/1)}
\end{figure}

Tablo 4.6’ da imageJ programıyla ölçülen Microsoft Excel programına aktarılan duyarlı ve dirençli suşlardaki \textit{mmpL7} gen bantlarının yoğunluk değerleri ile o suştaki internal kontrol bant yoğunluğunun oranlanması ile ortaya çıkan tablo görülmektedir.
Tablo 4.6. *mmpL7* geni, gen/IK ekspresyon oranları tablosu (S1-S10 Duyarlı *M.tuberculosis* suşları, R1-R10 MDR *M.tuberculosis* suşları).

![mmpL7 grafik](image.png)

Bu sonuçlara göre, çoklu ilaç dirençli *M.tuberculosis* suşlarındaki *mmpL7* geni ekspresyon miktarlarında, duyarlı suşlara göre genel bir artma veya azalma görülmemiştir.

4.2.7. Rv1258c Geninin Multipleks PZR ile Amplifikasyonu

25 döngüde, Rv1258c geninin 16S rRNA ile karşılaştırmalı multipleks PZR’ si yapılmış olup PZR jel fotoğrafi Şekil 4.13’ te verilmiştir.

Tablo 4.7’ de imageJ programıyla ölçülen ve Microsoft Excel programına aktarılan duyarlı ve dirençli suşlardaki Rv1258c gen bantlarının yoğunluk değerleri ile suştaki internal kontrol bant yoğunluğunun oranlanması ile ortaya çıkan tablo görülmektedir.

Tablo 4.7. Rv1258c geni, gen/IK ekspresyon oranları tablosu (S1-S10 Duyarlı M. tuberculosis suşları, R1-R10 MDR M. tuberculosis suşları).
Bu sonuçlara göre, çoklu ilaç dirençli *M.tuberculosis* suşlarındaki Rv1258c geni ekspresyon miktarlarında, duyarlı suşlara göre genel bir artma veya azalma görülmemiştir.

4.2.8. Rv1273c Geninin Multipleks PZR ile Amplifikasyonu

29 döngüde, Rv1273c geninin 16S rRNA ile karşılaştırılmış multipleks PZR’ si yapılmış olup PZR jel fotoğrafı Şekil 4.14’ te verilmiştir.

![Rv1273c geni 29 döngü PZR fotoğrafı](image)

Şekil 4.14. Rv1273c geni 29 döngü PZR fotoğrafı. (M: Moleküler büyüklük belirteci, IK: İnternal kontrol, S1-S10 Duyarlı *M.tuberculosis* suşları, R1-R10 MDR *M.tuberculosis* suşları) (IK/Gen primer oranı: 0,75/1)

Tablo 4.8’ de imageJ programıyla ölçülen Microsoft Excel programına aktarılan duyarlı ve dirençli suşlardaki Rv1273c gen bantlarının yoğunluk değerleri ile o suştaki internal kontrol bant yoğunluğunun oranlanması ile ortaya çıkan tablo görülmektedir.
Tablo 4.8. Rv1273c geni, gen/IK ekspresyon oranları tablosu (S1-S10 Duyarlı *M. tuberculosis* suşları, R1-R10 MDR *M. tuberculosis* suşları).

Bu sonuçlara göre, çoklu ilaç dirençli *M. tuberculosis* suşlarındaki Rv1273c geni ekspresyon miktarlarında, duyarlı suşlara göre genel bir artma veya azalma görülmemiş.

4.2.9. Rv1687c Geninin Multipleks PZR ile Amplifikasyonu

30 döngüde, Rv1687c geninin 16S rRNA ile karşılaştırılmış multipleks PZR’ si yapılmış olup PZR jel fotoğrafı Şekil 4.15’ te verilmiştir.
Şekil 4.15. Rv1687c geni 30 döngü PZR fotoğrafı. (M: Moleküler büyüklük belirteci, IK: İnternal kontrol, S1-S10 Duyarlı M.tuberculosis suşları, R1-R10 MDR M.tuberculosis suşları) (IK/Gen primer oranı: 1/1)

Tablo 4.9’ da imageJ programıyla ölçülen Microsoft Excel programına aktarılan duyarlı ve dirençli suşlardaki Rv1687c gen bantlarının yoğunluk değerleri ile o suştaki internal kontrol bant yoğunluğunun oranlanması ile ortaya çıkan tablo görülmektedir.
Tablo 4.9. Rv1687c geni, gen/IK ekspresyon oranları tablosu (S1-S10 Duyarlı *M.tuberculosis* suşları, R1-R10 MDR *M.tuberculosis* suşları).

Bu sonuçlara göre, çoklu ilaç dirençli *M.tuberculosis* suşlarındaki Rv1687c geni ekspresyon miktarlarında, duyarlı suşlara göre genel bir artma veya azalma görülmemiştir.

4.2.10. Rv3000 Geninin Multipleks PZR ile Amplifikasyonu

37 döngüde, Rv3000 geninin 16S rRNA ile karşılaştırılmış multipleks PZR’ si yapılmış olup PZR jel fotoğrafi Şekil 4.16’ da verilmiştir.
Şekil 4.16. Rv3000 geni 37 döngü PZR fotoğrafı. (M: Moleküler büyüklük belirteci, IK: İnternal kontrol, S1-S10 Duyarlı M.tuberculosis suşları, R1-R10 MDR M.tuberculosis suşları) (IK/Gen primer oranı: 0,5/1)

Tablo 4.10’ da imageJ programıyla ölçülen ve Microsoft Excel programına aktarılan duyarlı ve dirençli suşlardaki Rv3000 gen bantlarının yoğunluk değerleri ile suştaki internal kontrol bant yoğunluğunun oranlanması ile ortaya çıkan tablo görülmektedir.

Tablo 4.10. Rv3000 geni, gen/IK ekspresyon oranları tablosu (S1-S10 Duyarlı M.tuberculosis suşları, R1-R10 MDR M.tuberculosis suşları).
Bu sonuçlara göre, çoklu ilaç dirençli *M.tuberculosis* suşlarındaki Rv3000 geni ekspresyon miktarlarında, duyarlı suşlara göre genel bir artma veya azalma görülmemiştir.

4.2.11. *mmpL4* Geninin Multipleks PZR ile Amplifikasyonu

29 döngüde, *mmpL4* geninin 16S rRNA ile karşılaştırılmış multipleks PZR’ si yapılmış olup PZR jel fotoğrafi Şekil 4.17’ de verilmiştir.

![Şekil 4.17. mmpL4 geni 29 döngü PZR fotoğrafı.](image)

(IK/Gen primer oranı: 1,5/0,5)

Tablo 4.11’ de imageJ programıyla ölçülerek Microsoft Excel programına aktarılan duyarlı ve dirençli suşlardaki *mmpL4* gen bantlarının yoğunluk değerleri ile o suştaki internal kontrol bant yoğunluğunun oranlanması ile ortaya çıkan tablo görülmektedir.
Bu sonuçlara göre, çoklu ilaç dirençli *M. tuberculosis* suşlarındaki mmpL4 geni ekspresyon miktarlarında, duyarlı suşlara göre genel bir artma veya azalma görülmemiştir.

4.2.12. Rv1250 Geninin Multipleks PZR ile Amplifikasyonu

28 döngüde, Rv1250 geninin 16S rRNA ile karşılaştırılmış multipleks PZR’ si yapılmış olup PZR jel fotoğrafı Şekil 4.18’ de verilmiştir.
Şekil 4.18. Rv1250 geni 28 döngü PZR fotoğrafı. (M: Moleküler büyüklük belirteci, IK: İnternal kontrol, S1-S10 Duyarlı M. tuberculosis suşları, R1-R10 MDR M. tuberculosis suşları) (IK/Gen primer oranı: 1/1)

Tablo 4.12’ de imageJ programıyla ölçülerek Microsoft Excel programına aktarılan duyarlı ve dirençli suşlardaki Rv1250 gen bantlarının yoğunluk değerleri ile o suştaki internal kontrol bant yoğunluğunu oranelanması ile ortaya çıkan tablo görülmektedir.

Tablo 4.12. Rv1250 geni, gen/IK ekspresyon oranları tablosu (S1-S10 Duyarlı M. tuberculosis suşları, R1-R10 MDR M. tuberculosis suşları).

![Rv1250](image-url)
Bu sonuçlara göre, çoklu ilaç dirençli *M. tuberculosis* suşlarındaki Rv1250 geni ekspresyon miktarlarında, duyarlı suşlara göre genel bir artma veya azalma görülmemiştir.

4.2.13. Rv1634 Geninin Multipleks PZR ile Amplifikasyonu

28 döngüde, Rv1634 geninin 16S rRNA ile karşılaştırılmış multipleks PZR’si yapılmış olup PZR jel fotoğrafı Şekil 4.19’da verilmiştir.

![PZR jel fotoğrafı](image)

Şekil 4.19. Rv1634 geni 28 döngü PZR fotoğrafı. (M: Moleküler büyüklük belirteci, IK: İnternal kontrol, S1-S10 Duyarlı *M. tuberculosis* suşları, R1-R10 MDR *M. tuberculosis* suşları) (IK/Gen primer oranı: 1/1)

Tablo 4.13’te imageJ programıyla ölçülen ve Microsoft Excel programına aktarılan duyarlı ve dirençli suşlardaki Rv1634 gen bantlarının yoğunluğu ile suştaki internal kontrol bant yoğunluğunun oranlanması ile ortaya çıkan tablo görülmektedir.

Bu sonuçlara göre, çoklu ilaç dirençli M. tuberculosis suşlarındaki Rv1634 geni ekspresyon miktarlarında, duyarlı suşlara göre genel bir artma veya azalma görülmemiştir.

4.2.14. Rv0783c Geninin Multipleks PZR ile Amplifikasyonu

29 döngüde, Rv0783c geninin 16S rRNA ile karşılaştırımlı multipleks PZR’ si yapılmış olup PZR jel fotoğrafi Şekil 4.20’ de verilmiştir.
Şekil 4.20. Rv0783c geni 29 döngü PZR fotoğrafı. (M: Moleküler büyüklük belirteci, IK: İnternal kontrol, S1-S10 Duyarlı *M.tuberculosis* suşları, R1-R10 MDR *M.tuberculosis* suşları) (IK/Gen primer oranı: 0,5/1)

Tablo 4.14’te imageJ programıyla ölçülen Moleküler büyüklük belirteci, MDR *M.tuberculosis* suşları ve duyarlı ve dirençli suşlardaki Rv0783c gen bantlarının yoğunluk değerleri ile o suştaki internal kontrol bant yoğunluğunun oranlanması ile ortaya çıkan tablo görülmektedir.

Bu sonuçlara göre, çoklu ilaç dirençli *M. tuberculosis* suşlarındaki Rv0783c geni ekspresyon miktarlarında, duyarlı suşlara göre genel bir artma veya azalma görülmemiştir.

4.2.15. Rv0037c Geninin Multipleks PZR ile Amplifikasyonu

34 döngüde, Rv0037c geninin 16S rRNA ile karşılaştırıma multipleks PZR’ si yapılmış olup PZR jel fotoğrafı Şekil 4.21’ de verilmiştir.

![PZR fotografi](image)

Şekil 4.21. Rv0037c geni 34 döngü PZR fotoğrafı. (M: Moleküler büyüklük belirteci, IK: İnternal kontrol, S1-S10 Duyarlı *M. tuberculosis* suşları, R1-R10 MDR *M. tuberculosis* suşları) (IK/Gen primer oranı: 0,75/1)

Tablo 4.15’ te imageJ programıyla ölçülen Microsoft Excel programına aktarılan duyarlı ve dirençli suşlardaki Rv0037c gen bantlarının yoğunluk değerleri ile o suştaki internal kontrol bant yoğunluğunun oranlanması ile ortaya çıkan tablo görülmektedir.
Bu sonuçlara göre, çoklu ilaç dirençli *M. tuberculosis* suşlarındaki Rv0037c geni ekspresyon miktarlarında, duyarlı suşlara göre genel bir artma veya azalma görülmemiştir.

4.3. *M. tuberculosis* Standart Suşlarında Multipleks PZR ile Genlerin Amplifikasyonu

Şekil 4.22’de tüm genlerin *M. tuberculosis* H37Rv ATCC 25618 suşundaki PZR fotoğrafı görülmektedir.

Şekil 4.23’te tüm genlerin *M. tuberculosis* H37Ra ATCC 25177 suşundaki PZR fotoğrafı görülmektedir.

![PZR fotoğrafı](image)

Şekil 4.24’ te tüm genlerin *M. tuberculosis* H37Rv RSKK 598 Pasteur enstitüsü standart suşundaki PZR fotoğrafı görülmektedir.

![PZR fotoğrafı](image)

Şekil 4.24. Tüm genlerin *M. tuberculosis* H37Rv RSKK 598 Pasteur enstitüsü standart suşundaki PZR fotoğrafı. (M: Moleküler büyüklük belirteci, IK: İnternal kontrol, 1: 16S rRNA ve **Rv1258c** 25 döngü (IK/Gen primer oranı: 1/1), 2: 16S rRNA ve **drrA** 26 döngü (IK/Gen primer oranı: 1/1), 3: 16S rRNA ve **drrB** 26 döngü (IK/Gen primer oranı: 1/0,5), 4: 16S rRNA ve **iniA** 26 döngü (IK/Gen primer oranı: 1/1), 5: 16S rRNA ve **mmpL7** 26 döngü (IK/Gen primer oranı: 1/1), 6: 16S rRNA ve **Rv1250** 28 döngü (IK/Gen primer oranı: 1/1), 7: 16S rRNA ve **Rv1634** 28 döngü (IK/Gen primer oranı: 1/1), 8: 16S rRNA ve **Rv1273c** 29 döngü (IK/Gen primer oranı: 1,5/0,5), 9: 16S rRNA ve **mmpL4** 29 döngü (IK/Gen primer oranı: 1/1), 10: 16S rRNA ve **Rv0783c** 29 döngü (IK/Gen primer oranı: 0,5/1), 11: 16S rRNA ve **Rv1687c** 30 döngü (IK/Gen primer oranı: 1/1), 12: 16S rRNA ve **Rv2333c** 32 döngü (IK/Gen primer oranı: 1/0,5), 13: 16S rRNA ve **Rv1410c** 33 döngü (IK/Gen primer oranı: 1/1), 14: 16S rRNA ve **Rv0037c** 34 döngü (IK/Gen primer oranı: 0,75/1), 15: 16S rRNA ve **Rv3000** 37 döngü (IK/Gen primer oranı: 0,5/1))
4.4. Duyarlı, Çoklu Dirençli ve Standart Suş Gruplarında Genlerin Rölatif Ekspresyon Profileri

Multipleks PZR sonuçları, standart suş grubu ile karşılaştırıldığında klinikten elde edilmiş olan duyarlı ve çoklu dirençli *M. tuberculosis* suş gruplarında test edilen 15 gen için yüksek mRNA seviyeleri bulunduğunu göstermektedir. Student’ın T-testi (two-tailed t-test) olarak yapılan istatistiksel analizler sonucunda değerlendirilen genler arasındaki *p* değerleri 0,009 - 0,00009 arasında bulunmuştur.

Tablo 4.16’da duyarlı, çoklu ilaç dirençli ve standart *M. tuberculosis* suş gruplarında Rv0037c, Rv0783c, Rv1250, Rv1258c, Rv1273c, Rv1410c, Rv1634, Rv1687c, Rv2333c, Rv3000, *drrA*, *drrB*, *iniA*, *mmpL4* ve *mmpL7* genlerinin rölatif ekspresyon profileleri görülmektedir.

<table>
<thead>
<tr>
<th>Gen</th>
<th>S-TB</th>
<th>MDR-TB</th>
<th>St-TB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rv0037c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rv0783c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rv1250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rv1258c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rv1273c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rv1410c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rv1634</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rv1687c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rv2333c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rv3000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>drrA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>drrB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iniA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mmpL4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mmpL7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. TARTIŞMA

Bakterilerde aktif pompa sistemlerini yöneten proteinler besinlerin ve iyonların hücreye alınmasını, metabolik son ürünlerin ve zararlı maddelerin hücre dışına atılmasını, bakterilerin birbirleri ve çevrelere olan ilişkilerini düzenleyen çok sayıda proteini içine alan büyük bir protein ailesinin üyeleridir. Sitoplazmik membranda yerleşim gösteren bu proteinlerin aralarında belirgin homoloji mevcuttur. Biyoenerjetik ve yapısal kriterlere göre çoklu ilaç taşıyıcılar, ATP binding cassette (ABC) ve İkincil Çoklu ilaç Taşıyıcılar olmak üzere 2 büyük sınıfa ayrılırlar. İkincil Çoklu ilaç Taşıyıcılar da kendi içerisinde 4 gruba ayrılır. Bunlar Major facilitator (MFS), Small multidrug resistance (SMR), Multidrug and toxic compound extrusion (MATE) ve Resistance-nodulation-cell division (RND) aileleridir. ABC ailesi üyesi pompalar, ilaçları hücre dışına pompalamak için ATP hidrolizi ile açığa çıkan serbest enerjiyi kullanırlar. İkincil çoklu ilaç taşıyıcılar ise, ilaçların hücre dışına çıkarılması için proton veya sodyum iyonlarının transmembran elektrokimyasal gradientini kullanırlar (Nikaido, 1998; 2001; Li, 2004).

Günümüzde enfeksiyon tedavisinde en büyük sorun olan ilaçlara direnç gelişimi tüberküloz enfeksiyonunda daha da ön plana çıkmaktadır. Bu nedenle tüberküloz tedavisine yeni bir yaklaşım sağlayacak molekül veya molekülerin belirlenmesi toplum sağlığı açısından son derece önemli bir konu olarak
karşımıza çıkmaktadır. Bu tip yeni yaklaşımların belirlenebilmesi ancak, mikroorganizmanın sahip olduğu tüm direnç mekanizmalarının tam olarak anlaşılması ve bu mekanizmaların direnç gelişimindeki kesin rolünün belirlenmesi ile mümkün olacaktır.

Son yıllarda, farklı mikroorganizmalarda ve kanser hücrelerinde çoklu ilaç direnç gelişimi ile eflüks pompası ve ilaç atılımı ile ilgili birçok çalışma yapılmıştır. Çalışmalar daha çok kolay elde edilen ve üretilen gram pozitif ve gram negatif bakterilerde yoğunlaşmıştır. Bu çalışmaların çoğunda, eflüks pompasını inhibe eden ilaçlar kullanılarak, direnç gelişimi ile eflüks pompası arasındaki direkt fonksiyonel ilişki araştırılmış, bir kısmında eflüks pompasını oluştururan genler plazmid içerisinde klonlanarak mikroorganizma içerisinde ekspresyon miktarları artırılmış ve ilaçlara direnç gelişimi değerlendirilmiş, bir kısmında ise izolatların antimikrobiyal MİK değerleri ile eflüks pompalarının ekspresyonlarını karşılaştırılmıştır (Ordway, 2003; Chuanchuen, 2003; 2005; Chollet, 2004; Piddock, 2006; Ruzin 2010).
Ordway ve arkadaşları (2003), Carpobrotus edulis bitkisinin methanol ekstraktının, L5178 fare T hücre lenfoma hücrelerindeki verapamile duyarlı eflüks pompasını inhibe ederek bu çoklu ilaca dirençli hücreleri antikanser ilaçlara duyarlı hale getirdiğini bildirmişlerdir.

Chuanchuen ve arkadaşları (2003), triclosanın yüksek düzeylerine intrinsik olarak dirençli Pseudomonas aeruginosa suşlarını kullandıkları çalışmalarında, agar birleştirme metodu ile bu suşların triclosanın yüksek düzeylerine (> 1000 µg/mL) dirençlerinin asıl nedeninin çoklu ilaç eflüks pompaları olduğunu bildirmişlerdir.

Chollet ve arkadaşları (2004), AcrAB - TolC pompasının Escherichia coli ve Enterobacter aerogenes suşlarında makrolid ve ketolid duyarlılığına olan etkisini araştırdıkları çalışmalarında, çoklu ilaca dirençli izolatlarda eflüks pompası inhibitorü olan phenylalanine arginine beta - naphthylamide ile eritromisin, klaritromisin ve telitromisin duyarlılıkları da artış olduğunu bildirmişlerdir.

Ruzin ve arkadaşları (2010), Acinetobacter calcoaceticus - Acinetobacter baumannii kompleksi klinik izolatlarında tigesiklin MİK değerleri ile adeABC eflüks pompa geninin ekspresyon düzeyleri arasındaki ilişkiyi değerlendirmek ve adeABC pompası bağımlı mekanizmanın tigesikline karşı azalmış duyarlılık üzerine olan etkisini kantlamak amacıyla yaptıkları çalışmalarında, yüksek tigesiklin MİK değerlerine sahip Acinetobacter calcoaceticus - Acinetobacter baumannii suşlarında, adeABC eflüks pompa ekspresyonunun da artış olduğunu tespit etmişlerdir. Ayrıca gen inaktivasyon çalışmaları AdeABC ile birlikte AdeIJK pompasının, Acinetobacter baumannii BM4454 klinik izolatında tetrasiklin, minosiklin ve tigesiklin direncine neden olduğunu göstermiştir.

Eflüks pompasının oluşması ve çalışmasında rol aldığı belirtilen genlerin mikobakterilerdeki eşdeğerleri veya benzerlerinin varlığı ve ilaç atılımı ile çoklu ilaç direnci gelişimi üzerindeki rolleri ile ilgili çalışmalar sınırlıdır. Özellikle klinik suşlarda bu genlerin ekspresyonlarındaki farklılıkları konu alan çok az çalışma vardır (De Rossi, 2006; Jiang, 2008).

Ramon Garcia ve arkadaşları (2009), *Mycobacterium bovis* BCG’yi model olarak aldıkları çalışmalarında, Rv1410c delesyonu ile bu suşu rifampin ve klofazimine daha duyarlı hale getirmişlerdir.

Silva ve arkadaşları (2001), Rv1410c (P55) genini *Mycobacterium smegmatis*’e klonladıklarında, bu bakterinin aminoglikozid ve tetrasiklinlere daha dirençli olduğunu saptamışlar, daha sonra eflüks pompası inhibitörleri olan carbonyl cyanide m-chlorophenylhydrazone (CCCP), verapamil ve rezerpin varlığında streptomisin ve tetrasikline karşı direnç seviyelerinin düştüğünü saptamışlardır.
Siddiqi ve arkadaşları (2004), Rv1258c geninin ekspresyon miktarını PZR ile MDR MTB hasta izolatında (ICC154) araştırdıkları çalışmalarında, rifampisin ve ofloksasin varlığında Rv1258c geninin ekspresyonunun sırasıyla 10 ve 6 kat arttığını saptarmışlardır.

Sharma ve arkadaşları (2010), rifampin ile birlikte piperine kombinasyonunun Mycobacterium tuberculosis H37Rv ve rifampisin dirençli (rif(r)) laboratuvar mutantı Mycobacterium tuberculosis üzerine olan etkilerini araştırdıkları çalışmalarında, bu kombinasyon ile Mycobacterium tuberculosis H37Rv suşlarında rifampisin MİK değerlerinin azaldığını göstermişlerdir. Ayrıca rifampisin dirençli (rif(r)) laboratuvar mutantı Mycobacterium tuberculosis’ de Rv1258c geninin ekspresyon seviyelerini real - time PZR ile ölçümlerinde rifampisin varlığında Rv1258c geninin ekspresyonunun 3,6 kat arttığını saptamışlardır. Sonuç olarak piperine’ in Rv1258c pompasını inhibe ederek gelecekte bu molekülün antimikobakteriyel aktivitede artış amacıyla kullanılabilmesini desteklemiştir.

De Rossi ve arkadaşları (2002), Mycobacterium tuberculosis’ teki MFS ailesine üye 11 eflüks pompasını plazmid içerisinde klonlayıp Mycobacterium smegmatis’ te ilaç direnç fenotiplerini araştırdıkları çalışmalarında, Rv1634 pompasının florokinolonlara (siprofloksasin, norfloksasin, ofloksasin ve lomefloksasin) karşı direnç artışına neden olduğunu ve Rv1258c pompasının da tetrasiklin direncinde artışa neden olduğuunu saptamışlardır.

Ramon Garcia ve arkadaşları (2007), Mycobacterium bovis BCG’ yi model olarak aldıkları çalışmalarında, Mycobacterium bovis BCG kromozomunda Rv2333c genini inaktive ettilerinde spektinomisin ve tetrasiklin MİK değerlerinde bir azalma olduğunu saptayıp, daha sonra Rv2333c genini bir multikopya plazmide klonladıklarında ise spektinomisin ve tetrasiklin MİK değerlerinde artış olduğunu saptamışlardır.
Choudhuri ve arkadaşları (2002), ATP-bağlayıcı kaset (ABC) tipi çoklu ilaç taşıyıcılar grubuna dahil fonksiyonel doxorubicin eflüks pompa yapısına birlikte katılan ATP bağlayıcı protein DrrA ve integral membran proteini DrrB genlerini bir plazmid içerisinde Escherichia coli ve Mycobacterium smegmatis’e entegre edip bu pompanın ekspresyon miktarını artırarak yaptıkları çalışmalarında, Escherichia coli’de bu artışla birlikte etidyum bromide olan direncin 8 kat arttığını, Mycobacterium smegmatis’te ise yapısal olarak farklı bir çok ilaca karşı direnç artışı olduğunu gözlemlemiş ve pompa inhibitörü olan reserpin ile bu direncin azaldığını saptamışlardır.

Pasca ve arkadaşları (2005), Mycobacterium tuberculosis mmpL7 genini Mycobacterium smegmatis’te overekspre edip izoniazid akümülasyonunu öltükleri çalışmalarında, mmpL7 eflüks pompasının izoniazide karşı yüksek düzeyde dirence neden olduğunu bulmuşlardır. Ayrıca bu direncin eflüks pompa inhibitörleri olan rezerpin ve CCCP (carbonyl cyanide m-chlorophenylhydrazone) varlığında azaldığını bildirmiştirler.

Tüm bu sonuçlara göre Mycobacterium tuberculosis, antitüberküloz ilaçlara maruz kaldıkları sona genomunda ihtiva ettiği çeşitli sınıflara üye eflüks pompa genlerinin ekspresyonlarını artırarak, antitüberküloz ilaçlara karşı direnç kazanmaktadır. Kazanılan bu direnç, yukarıdaki çalışmalarında bahsedilen eflüks pompa inhibitörleri ile azaltılabilimbusudır.
Bu çalışmamızda, tüberküloz tedavisinde kullanılabilecek yeni bir hedef molekülün belirlenmesi ve bu molekülü hedef alacak yeni tedavi protokollerinin geliştirilmesi hedeflenmiştir. Bu amaçla çalışmamızda seçtiğimiz eflüks pompalarının klinik olarak elde ettiği, ilaçsız LJ besiyerinde üretilmiş olan ve MDR fenotipindeki Mycobacterium tuberculosis suşlarındaki ekspresyon miktarlarını, yine klinik olarak elde ettiği ve tüm birincil anti tüberküloz ilaçlara duyarlı olan Mycobacterium tuberculosis suşlarındaki ekspresyonları ile kıyaslamalı olarak araştıramak, eflüks pompalarının kalıcı MDR fenotipine neden olup olmadığını sorguladık.

Çalışmamızdaki sonuçlara göre, araştırdığımız eflüks pompalar genlerinin (Rv1410c, Rv2333c, drrA, drrB, mmpL4, mmpL7, Rv1258c, iniA (Rv0342), Rv0037c, Rv0783c, Rv1250, Rv1273c, Rv1634, Rv1687c ve Rv3000) MDR fenotipindeki Mycobacterium tuberculosis suşlarındaki ekspresyonları ile duyarlı suşlardaki ekspresyonları arasında istatistiksel olarak anlamlı bir farklılık gözlenmemiştir. Bu eflüks pompaların her iki grupta da benzer oranlarda eksprese oldukları saptanmıştır.

Bu sonuçlara göre MDR fenotipinde eflüks pompaların katkılarının olmadığı söylenemez çünkü çalışmamızda Mycobacterium tuberculosis genomunda bulunan yaklaşık 150 eflüks proteininden yalnızca 15 pompa geninin ekspresyonları araştırılmıştır. Eflüks pompaların oluşumuna katılan diğer genler MDR fenotipinin ortaya çıkmasına katkıda bulunabilecektir, pompa yapısına katılan genlerin başka mekanizmalarla indirekt olarak Mycobacterium tuberculosis veya diğer bakterilerde MDR fenotipi gelişmesine katkıda bulunabilabilecekleri gibi, pompa yapısına katılan genlerin başka mekanizmalarla indirekt olarak Mycobacterium tuberculosis veya diğer bakterilerde MDR fenotipi gelişmesine katkıda bulunabilmeleri de söz konusudur. Bu konunun ağırlığını vermek için daha ileri çalışmalardan yapılması gerekmektedir.

Jiang ve arkadaşları (2008), Mycobacterium tuberculosis MDR 1499 klinik izolatında ve Mycobacterium tuberculosis H37Rv ATCC standart suşunda, real time PZR ile Rv1410c, Rv1258c, Rv0783c, Rv2136c ve Rv1819c genlerinin ekspresyonlarını araştırdıkları çalışmalardında, Rv1410c, Rv1258c, Rv0783c ve Rv1819c pompalarının ekspresyonlarında iki suş arasında fark bulamamış, sadece
Rv2136c geninin *Mycobacterium tuberculosis* MDR 1499 klinik izolatında daha fazla eksprese olduğunu saptamışlardır.

Anti – TB ilaçların varlığında bazı pompa ilişkili genlerin ekspresyonlarında artış olduğu bilinmektedir. Biz bu çalışmamızda klinik olarak elde ettigimiz suçlar ve standart suçlar çalışmalarda boyunca ilaca maruz bırakmadık. Araştırdığımız pompa genlerinin ekspresyon miktarlarında duyarlı ve MDR fenotipli Mycobacterium tuberculosis suçları arasında fark gözlenmemiş olmasına rağmen, her iki gruptaki ekspresyon miktarlarının standart suçlardaki ekspresyon miktarlarına göre 3 - 4 kat artmış olması, çalışmada kullandığımız suçların ilaçsız ortamda üretilmesine karşın, klinik izolatlarda, muhtemelen kullanılan ilaçlara bağlı olarak pompa genlerinin sürekli olarak daha fazla eksprese olduklarını göstermektedir. M. tuberculosis duyarlılık testlerinde kullanılan ilaç dozlarda duyarlı olarak belirtilen klinik suçların, daha sonra antitüberküloz ilaçlara artmış MİK değerlerine sahip olabileceğini muhtemeldir. Literatür bilgimiz dahilinde incelediğimiz pompa genleri ile ilgili ilk defa tarafımızdan ortaya konulan klinik suçlardaki efflüks pompa ekspresyon artışının, çoklu ilaç direnç gelişiminde ara form oluşturabileceği ve son yıllarda tanımlanan yaygın ilaç dirençli tüberküloz (XDR - TB) fenotipinin oluşmasında rol oynayabileceğini düşünülmektedir.
6. SONUÇ ve ÖNERİLER

2. Bu suşlarda multipleks RT - PZR yöntemi ile Mycobacterium tuberculosis’de eflüks pompa yapısına katıldığı gösterilmiş olan; Rv1410c (p55), Rv2333c, drrA, drrB, mmpL4, mmpL7, Rv1258c, iniA (Rv0342), Rv0037c, Rv0783c, Rv1250, Rv1273c, Rv1634, Rv1687c ve Rv3000 genlerinin ekspresyon miktarları, ilgili genlerin logaritmik artış fazlarında, internal kontrol olarak kullanılan 16S rRNA geni ile oranlanarak araştırılmıştır.

3. Rv1410c (p55), Rv2333c, drrA, drrB, mmpL4, mmpL7, Rv1258c, iniA (Rv0342), Rv0037c, Rv0783c, Rv1250, Rv1273c, Rv1634, Rv1687c ve Rv3000 genlerinin klinik olarak elde edilmiş olan çoklu dirençli Mycobacterium tuberculosis suşlarındaki ekspresyon miktarlarında, duyarlı suşlara oranla belirgin bir farklılık bulunamamıştır.

4. Mycobacterium tuberculosis H37Rv ATCC 25618, Mycobacterium tuberculosis H37Ra ATCC 25177, Mycobacterium tuberculosis H37Rv RSKK 598 Pasteur enstitüsü standart suşlarında ise araştırdığımız eflüks pompalarının tümünün ekspresyonlarını, klinik olarak elde edilmiş olan suşlardaki ekspresyon miktarlarına göre daha az oranlarda olduklarını tespit edilmiştir.
Çalışmamız, eflüks pompasının birçok üyesini aynı anda araştırması ve direkt klinik olarak elde edilmiş MDR fenotipi bulunduran suşlarla çalışılması açısından bu konuda mevcut literatür bilgilerinden daha fazla aydınlatıcı olmuştur.

Çalışmamıza aldığı genlerin ekspresyonlarındaki değişikliklerin, gen ekspresyon farklılıklarını gözlemlemeye RT - PZR yönteminden daha sensitif bir yöntem olan real - time PZR yöntemi kullanılarak araştırılabileceği çalışmalar yapılabilir.

Mycobacterium tuberculosis H37Rv genomonun daha birçok eflüks proteini kodlandığı düşünüldüğünde, bir ileri aşama olarak çalışmamızda almamışız diğer eflüks proteinlerinden seçilecek bir kısmının ekspresyonlarının, klinik olarak elde edilmiş olan MDR fenotipine sahip suşlar üzerinde RT - PZR veya real - time PZR yöntemleri ile araştırılacağı çalışmalar yapılabilir.

Yine bir ileri aşama olarak çalışmamızda almamışız diğer eflüks proteinlerinden seçilecek bir kısmının ekspresyonlarının, standart suşlar ile klinik olarak elde edilmiş olan suşlar üzerinde karşılaştırılacağı olarak RT - PZR veya real - time PZR yöntemleri ile araştırılacağı çalışmalar yapılabilir.

Bu çalışmanın devami olarak, standart suşlar ve klinik olarak ilaçlara duyarlı bulunan suşlarda duyarlılık testlerinin, ilaçların MİK değerlerinin araştırılmasıyla yapılması sonucunda, standart suşlardaki pompa gen ekspresyonlarındaki düşüklüğün sonuçlarını açıklamak mümkün olabilir. Başka bir deyişle, ileri bir çalışmaya standart suşlardaki pompa gen ekspresyon azlığınn, bu suşlarda ilaçların MİK değerlerinin daha düşük seviyede gerçekleşmesine neden oldukları gösterilebilir.
ÖZET

Mycobacterium tuberculosis Suşlarında Eflüks Pompasını Oluşturan Gen Ekspresyonlarının Çoklu İlaç Direnç Gelişimi Üzerine Araştırılması

Yapılan incelemeler sonucunda, araştırdığımız eflüks pompalarının MDR fenotipindeki *M. tuberculosis* suşlarındaki ekspresyonları ile duyarlı suşlardaki ekspresyonları arasında anlamlı bir farklılık gözlenmiş, söz konusu pompa genlerinin her iki grupta da benzer oranlarda eksprese edildikleriaptanmıştır. Aynı zamanda araştırdığımız eflüks pompalarının ekspresyonlarının, klinik olarak elde edilmiş olan suşlardaki ekspresyon miktarlarına göre, her üç *M. tuberculosis* standart suşundan daha az olduğu tespit edilmiştir. Eflüks pompa proteinlerinin klinik suşlarda ekspresyonlarının artması, muhtemelen başka direnç genleriyle veya proteinlerle etkileşime girerek belirli substratların ihraç ile ilişkili olabilecekleri göstermektedir ve *M. tuberculosis’* te birden çok ilacin MIK değerlerini artırmış olması muhtemeldir. Böyle bir ilişkinin varlığını tam olarak ortaya koyabilmek için konu ile ilgili daha ileri çalışmaların yapılması gerekmektedir.

Anahtar Sözcükler: Eflüks pompası, *Mycobacterium tuberculosis*, Çoklu direnç gelişimi
SUMMARY

Investigation of the Relation of Multiple Drug Resistance with the Expression of Genes which Made of Efflux Pump in *Mycobacterium tuberculosis*

Mutations of the drug target genes are known as the important reasons of the drug resistance in the treatment of tuberculosis. However, it is not possible to explain all clinically observed multiple drug resistance to first line drugs such as rifampicin, isoniazid, ethambutol, pyrazinamide and streptomycin only with mutations of the target genes. Beyond drug target gene mutations, other mechanisms such as over expression of efflux pumps has to be considered especially for MDR. Finding a gene or genes that are involved with MDR will not only be helpful to understand the mechanisms of multidrug resistance but also will be useful for finding a new target for the treatment of drug resistant tuberculosis. In this study, we aimed to compare the differences of the expression of the genes including; *Rv1410c* (p55), *Rv2333c*, *drrA*, *drrB*, *mmpL4*, *mmpL7*, *Rv1258c*, *iniA* (*Rv0342*), *Rv0037c*, *Rv0783c*, *Rv1250*, *Rv1273c*, *Rv1634*, *Rv1687c* and *Rv3000* in clinically isolated *M. tuberculosis* strains with and without MDR. To show the expression difference in two groups, we used Multiplex RT - PCR strategy. Additionally we investigate the expression of these genes in *M. tuberculosis* H37Rv ATCC 25618, *M. tuberculosis* H37Ra ATCC 25177, *M. tuberculosis* H37Rv RSKK 598 Pasteur institute reference strains. Our results showed that this pump genes have similar rates of expressions in strains with and without MDR. However, we found the expression level of the all pump genes which we studied lower in standart strains compared to the expression level of the clinical strains. This may indicate that the efflux pump expressions are increased in clinical strains, perhaps may be associated with the export of specific substrates with interact with other resistance genes or proteins and may increase MIC level in *M. tuberculosis*. Further studies are necessary to determine the presence of such an association.

Key Words: Efflux pump, *Mycobacterium tuberculosis*, Multiple Drug Resistance

