KALP CERRAHİSİNDE KULLANILAN ERİTROSİT SÜSPANSİYONLARININ FİLTRE EDİLİP EDİLMEMESİNİN AMELİYAT SONRASI KOMPLİKASYONLARA ETKİSİ

Dr. Bilge CEYDİLEK

İÇ HASTALIKLARI ANABİLİM DALI
TIPTA UZMANLIK TEZİ

DANİŞMAN
Prof. Dr. Önder ARSLAN

ANKARA
2009
TÜRKİYE CUMHURİYETİ
ANKARA ÜNİVERSİTESİ
TIP FAKÜLTESİ

KALP CERRAHİSİNDE KULLANILAN ERİTROSİT SÜSPANSİYONLARININ FİLTRE EDİLİP EDİLMEMESİNİN AMELİYAT SONRASI KOMPLİKASYONLARA ETKİSİ

Dr. Bilge CEYDİLEK

İÇ HASTALIKLARI ANABİLİM DALI
TIPTA UZMANLIK TEZİ

DANİŞMAN
Prof. Dr. Önder ARSLAN

Bu tez Türk Hematoji Derneği tarafından 29 Nisan 2006 tarih ve 06-A nolu karar ile desteklenmiştir.

ANKARA
2009
TÜRKİYE CUMHURİYETİ
ANKARA ÜNİVERSİTESİ TIP FAKÜLTESİ HASTANELERİ
İç Hastalıkları Anabilim Dahı Başkanlığı

Kısım:...
Dosya No:..............Sayı:........
Konu:...

...

Ankara Üniversitesi Tıp Fakültesi
İç Hastalıkları Anabilim Dahı
Tıpta Uzmanlık eğitimi çerçevesinde yürütülmüş olan

“Kalp Cerrahisinde Kullanılan Eritrosit Süspansiyonlarının Filtre Edilip Edilmemesinin Ameliyat Sonrası Komplikasyonlara Etkisi” başlıklı, Dr.Bilge Ceydilek’e ait bu çalışma aşağıdaki jüri tarafından Tıpta Uzmanlık Tezi olarak kabul edilmiştir.

Tez Savunma Tarihi 23 / 03 / 2009

Prof.Dr.Necati ÖRMECİ
Ankara Üniversitesi Tıp Fakültesi
İç Hastalıkları Anabilim Dahı Başkanı
Jüri Başkanı

Prof.Dr.Önder ARSLAN
Ankara Üniversitesi Tıp Fakültesi
Hematoloji Bilim Dahı
Tez Danışmanı

Doç.Dr.Mutlu ARAT
Ankara Üniversitesi Tıp Fakültesi
Hematoloji Bilim Dahı
Öylene
ÖNSÖZ

Çalışmamız süresince önume çıkan tüm zorlukları aşmamı sağlayan, her konuda destek olan, bilgi ve deneyimlerini aktaran değerli hocam ve tez danışmanım Prof. Dr. Önder Arslan’a,

Tez çalışlığının yürüyebilmesi için her türlü kolaylığı gösteren ve istatistiklerimi yapmama yardımcı olan, tezim için son derece özverili davranan değerli hocam Doç. Dr. Rüçhan Akar’a,

Meslek hayatımın ilk günlerinden itibaren yoluma ışık tutan değerli hocam Prof. Dr. Muhit Özcan’a,

Bundan sekiz yıl önce, hayatımın ilk bilimsel çalışmasını yapmama yardımcı olan çok değerli abim Doç. Dr. Mutlu Arat’a,

Eğitim hayatına katkılarından dolayı başta İç Hastalıkları Anabilim Dalı Başkanı Prof. Dr. Necati Örmeci olmak üzere, İç Hastalıkları Anabilim Dalı’nın tüm öğretim üyelerine,

Kalp merkezinin özverili elemanlarından perfüzyonist Emre Özsoy’ya ve hemşire Fulya Atak’a,

Ankara Üniversitesi Tıp Fakültesi Serpil Akdağ Kan Merkezi çalışanlarına,

Tezimi destekleyen Türk Hematoloji Derneği’ne,

ve son olarak her zaman yanımda olan çok sevgili arkadaşım ve aileme teşekkür ederim.

Dr. Bilge CEYDİLEK
İÇİNDEKİLER

Önsöz..ii
İçindekiler...iii
Simgeler ve kısaltmalar dizini..iv
Şekiller dizini ..v
Tablolar dizini ..vi
1. GİRİŞ ...1
2. GENEL BİLGİLER...3
 2.1. Kalp Cerrahisi ve Transfüzyon ...3
 2.2. Transfüzyonla İlişkili İmmün Modülasyon..4
 2.2.1. TRIM Etkisinin Fizyopatolojisi ...10
 2.3. Lökositi Azaltılmış Eritrosit Süspansiyonu...13
3. HASTALAR VE YÖNTEM ..16
 3.1. Çalışma Tasarımı..16
 3.2. Hastalar ...17
 3.3. Kan Ürünleri...18
 3.4. İstatistiksel Değerlendirme ...18
4. BULGULAR ..19
 4.1. Renal komplikasyonlar...21
 4.2. Pulmoner komplikasyonlar ..22
 4.3. Kardiyak komplikasyonlar ...22
 4.4. Postoperatif enfeksiyonlar ...23
 4.5. Mortalite ve yoğun bakımda kalış süreleri ...24
5. TARTIŞMA ..25
6. SONUÇ ..28
ÖZET..29
İNGİLİZCE ÖZET (SUMMARY)..30
KAYNAKÇA..31
SİMGELER VE KISALTMALAR

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-ES</td>
<td>Allojeneik eritrosit süspansiyonu</td>
</tr>
<tr>
<td>AF</td>
<td>Atriyal fibrilasyon</td>
</tr>
<tr>
<td>BCLA-ES</td>
<td>Buffy-coat lökosit azaltılmış allojeneik eritrosit süspansiyonu</td>
</tr>
<tr>
<td>CCS</td>
<td>Canadian Cardiovascular Society</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalovirus</td>
</tr>
<tr>
<td>HBV</td>
<td>Hepatit B virüsü</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatit C virüsü</td>
</tr>
<tr>
<td>HIV</td>
<td>İnsan immün yetmezlik virüsü (human immun deficiency virus)</td>
</tr>
<tr>
<td>HLA</td>
<td>Human leukocyte antigen</td>
</tr>
<tr>
<td>KOAH</td>
<td>Kronik obstrüktif akciğer hastalığı</td>
</tr>
<tr>
<td>KPB</td>
<td>Kardiyopulmoner bypass</td>
</tr>
<tr>
<td>MI</td>
<td>Miyokard enfarktüsü (myokardial infarction)</td>
</tr>
<tr>
<td>MODS</td>
<td>Çoklu organ bozukluğu sendromu (multiorgan dysfunction syndrome)</td>
</tr>
<tr>
<td>NYHA</td>
<td>New York Kalp Cemiyeti (New York Heart Association)</td>
</tr>
<tr>
<td>O-ES</td>
<td>Otolog eritrosit süspansiyonu</td>
</tr>
<tr>
<td>SÖLAA-ES</td>
<td>Stok öncesi lökosit azaltılmış allojeneik eritrosit süspansiyonu</td>
</tr>
<tr>
<td>SSLAA-ES</td>
<td>Stok sonrası lökosit azaltılmış allojeneik eritrosit süspansiyonu</td>
</tr>
<tr>
<td>SVEF</td>
<td>Sol ventrikül ejeksyon fraksiyonu</td>
</tr>
<tr>
<td>TDP</td>
<td>Taze donmuş plazma</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Tümör büyüme faktörü-beta (tumor growth factor-beta)</td>
</tr>
<tr>
<td>TRIM</td>
<td>Transfüzyonla ilişkili immunomodülasyon (transfuzyon related immunomodulation)</td>
</tr>
<tr>
<td>VSD</td>
<td>Ventral septal defekt</td>
</tr>
</tbody>
</table>
ŞEKİLLER DİZİĞİ

<table>
<thead>
<tr>
<th>Şekil No</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>9</td>
</tr>
<tr>
<td>4.1</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>21</td>
</tr>
<tr>
<td>4.3</td>
<td>22</td>
</tr>
<tr>
<td>4.4</td>
<td>23</td>
</tr>
</tbody>
</table>

2.1 Kardiyak cerrahide, tüm nedenlere bağlı kısa dönem mortalite (postoperatif 3 ay içinde) ve lökosit içeren allojeneik kan transfüzyonu arasındaki ilişkiyi gösteren randomize kontrollü çalışmalarda elde edilen odds ratio (OR) sonuçları.

4.1 Operasyon önceliğine göre gruplarda dağılım.

4.2 Preoperatif kreatinin düzeylerine göre gruplarda dağılım.

4.3 Preoperatif KOAH GOLD sınıflamasına göre gruplarda dağılım.

4.4 Preoperatif ritm statusuna göre grupların dağılımı.
TABLOLAR DİZİNİ

<table>
<thead>
<tr>
<th>Şekil No</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>6-7</td>
</tr>
<tr>
<td>4.1</td>
<td>19</td>
</tr>
<tr>
<td>4.2</td>
<td>20</td>
</tr>
<tr>
<td>4.3</td>
<td>24</td>
</tr>
</tbody>
</table>

2.1. TRIM etkisinin araştırıldığı randomize kontrollü çalışmalar.

4.1 Olguların demografik özellikleri ve ameliyat öncesi klinik bulguların gruplara göre dağılımı.

4.2 Operasyon detayları.

4.3 Sonuçlar
1. GİRİŞ

Bu çalışmanın amacı, kalp cerrahisi uygulanan hastalarda kullanılan eritrosit süspansiyonlarında lökosit azaltılması işlemi uygulanmış ve uygulanmamışlar arasında, postoperatif enfeksiyonlar, çoklu organ yetmezliği, diğer komplikasyonlar ve ölüm oranları açısından anlamlı bir fark olup olmadığını gösterebilmektedir.
2. GENEL BİLGİLER

2.1. Kalp Cerrahisi ve Transfüzyon

Kalp ve büyük damarlardaki cerrahi müdahaleler, doğumsal ve edinsel hastalıkların (koroner arter hastalıkları, kapak hastalıkları, aort anevrizması) tedavisi için düzenlenen major girişimsel işlemleridir. Kalp cerrahisi ve özellikle KPB’ye girilen hastalar, altta yatan birçok nedenden dolayı, perioperatif aşırı kanama için artmış riskle sahiptirler. Operasyon sırasında KPB’in kullanılması ile hemodilüsyon, koagülasyon sisteminin aktivasyonu ve tüketim koagülopatisi ortaya çıkabilmektedir. KBP sırasında kanın yabancı yüzeylerle ve perikard, plevra, toraks gibi endotelle kaplı olmayan dokularla teması sonucu koagülasyon sistemi aktive olmaktadır. Diğer yandan kardiyak operasyonlar sırasında yüksek doz heparinizasyona rağmen trombin oluşumu tamamen engellenemektedir. Kalp cerrahisi uygulanan hastaların %80’den fazlasına kan ürünü transfüzyonu yapılmaktadır.(1) Kan ürünü transfüzyonlarının sağladığı yararları yanında bir takım risklerinin de olduğu bilinmektedir. Son 40 yıl içerisinde gelişen teknoloji ve ameliyat teknikleri ile kalp cerrahisi uygulanan hastaların transfüzyon ihtiyacını azaltma çabalarına rağmen (ki gelişmiş ülkelerde hasta başına 2 ünitye kadar indirilmiş) bugün halen ABD’de transfüze edilen kan ürünlerinin yaklaşık %10-20’si kalp cerrahisinde tüketilmektedir.(2)

Yapılan çalışmalarında, kan transfüzyonu ile postoperatif mortalite ve morbidite artışı arasında güçlü bir ilişki saptanmıştır. Morbiditeden değerlendirilirin durumlar sistemik enfeksiyon, renal yetmezlik, uzamsı ventilasyon, düşük kardiyak indeks, miyokard enfarktüsü ve inmeyi içermektedir.(3) Bunlara bağlı olarak yoğun bakımda kalış süresi ve hastanede takip süresi ile eritrosit süspansiyonu transfüzyonu arasında da güçlü bir ilişkiye bulunmaktadır. Günümüzde transfüzyon yan etkilerinden viral enfeksiyon geçişi artık oldukça düşük düzeylerdedir, ancak daha yeni bir tanımlama olan transfüzyon ilişkili
immunmodülasyonun (TRIM), transfüzyon ile ilişkili olabilecek postoperatif morbidite ve mortaliteden sorumlu olabileceğini düşünülmektedir.

2.2. Transfüzyonla İlişkili İmmünmodülasyon (TRIM)

ikiye ayrılmıştır. Birinci yılın sonunda renal allogreft sağkalımı transfüzyon yapılanlarda %90, yapılmayanlarda %82 (p=0,02), beş yılın sonunda renal allogreft sağkalımı transfüzyon yapılanlarda %79, yapılmayanlarda %70 (p=0,025) olarak bulunmuştur.(7)

1981 yılında Gantt, renal allogreft alıcılarındaki TRIM etkisinden yola çıkarak farklı bir soru ortaya atmıştır: malignites nedeniyle supere edilen hastalarda kanser nüksünün artış ile TRIM etkisi arasında bir ilişki olabilir mi?(8) Gantt’ın hipotezine göre eğer allojeneik kan transfüzyonu konak immün sistemini baskılayabiliyorsa, malign hücreleri de hedef alabilecek ve böylece TRIM etkisi ile alıcıda tümör büyümesini artırabilecektir. Bu hipotezin doğal bir sonucu olarak, eğer allojeneik kan transfüzyonu ile konak immün sistemi baskılanırsa o zaman konak, çeşitli enfeksiyonlar, özellikle de postoperatif bakteriyel enfeksiyonlar için artmış riske sahip olmalıdır.

1980 yılından beri perioperatif allojeneik kan transfüzyon ile kanser nüksü ve/veya postoperatif enfeksiyon riski artışını arasındaki ilişkiyi araştıran 150’den fazla çalışma yapılmıştır. Bu çalışmaların çoğu gözleme dayalı kohort çalışmalardır. Çok az sayıda randomize kontrollü çalışma bulunmaktadır. Yapılan gözlemsel çalışmalararda, genellikle karşılaştırılan gruplar arasında altta yatan hastalığın şiddeti ve postoperatif enfeksiyonlar için risk oluşturabilecek diğer faktörler açısından eşleştirme yapılamadığından elde edilen veriler hep tartışmalı olmuştur. Bu risk faktörlerine göre istatistiksel düzeltmelerin yapıldığı, allojeneik transfüzyon yapılan ve yapılmayan iki grubun karşılaştırıldığı, üç tane gözlemsel çalışma bulunmaktadır. Bunlardan birincisi Carson ve ark.larının 1983-1993 yılları arasında, 20 ayrı merkezde, kalça kırığı operasyonu yapılan, 9598 hastanın bulunduğu retrospektif kohort çalışmasıdır. Bu çalışmada allojeneik transfüzyon yapılan hastalarda rölatif ciddi postoperatif enfeksiyon (bakteriyemi, pnömoni, derin yara yeri enfeksiyonu, septik artrit/osteoiti) riski 1,43 (%95 CI, 1.16-1.78; p=0.001) olarak bulunmuştur.(9) Chang ve ark.larının yaptığı, onbir merkezden 1349 elektif kolorektal cerrahi hastasının alındığı çalışmada da postoperatif yara yeri enfeksiyonu gelişimi açısından allojeneik kan transfüzyonu önemli birtpsiz değişken olarak bulunmuştur (OR:1.18; %95, 1.05-1.33; p=0.007).(10) Son olarak, Vamvakas ve Carven’in geriye dönüş kohort çalışmasına
416 kalp cerrahisi yapılan hasta alınmış, postoperatif enfeksiyon veya pnömoni riski her bir ünite eritrosit veya trombosit süsponsiyonu için %6 (p=0,0284) olarak bulunmuştur.¹¹ TRIM ile ilgili bugüne kadar yapılmış, randomize kontrollü çalışmalar tablo 2.1’de gösterilmiştir.¹²

<table>
<thead>
<tr>
<th>Çalışmanın adı</th>
<th>Çalışma grubu</th>
<th>Hasta sayısı</th>
<th>Otolog/lökofiltre kan ürünü kolu</th>
<th>Allojeneik kan ürün kolu</th>
<th>Sonuçlar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busch ve ark. lari</td>
<td>Kolorektal kanser rezeksiyonu</td>
<td>470</td>
<td>O-ES</td>
<td>BCLA-ES</td>
<td>Kanser rekürensi ve postoperatif enfeksiyon riski açısından fark yok</td>
</tr>
<tr>
<td>Heiss ve ark. lari</td>
<td>Kolorektal kanser rezeksiyonu</td>
<td>120</td>
<td>O-ES</td>
<td>BCLA-ES</td>
<td>Postoperatif enfeksiyon için yüksek risk saptaanırken kanser rekürensinde fark yok</td>
</tr>
<tr>
<td>Pertila ve ark. lari</td>
<td>Kardiyak cerrahi</td>
<td>24</td>
<td>O-ES</td>
<td>BCLA-ES</td>
<td>Postoperatif enfeksiyon riski açısından fark yok</td>
</tr>
<tr>
<td>Newman ve ark. lari</td>
<td>Diz protez cerrahisi</td>
<td>70</td>
<td>O-ES</td>
<td>BCLA-ES</td>
<td>Postoperatif enfeksiyon riski açısından fark yok</td>
</tr>
<tr>
<td>Farrer ve ark. lari</td>
<td>Abdominal aort anevrizması tamiri</td>
<td>50</td>
<td>O-ES</td>
<td>BCLA-ES</td>
<td>Postoperatif enfeksiyon riski açısından fark yok</td>
</tr>
<tr>
<td>Thomas ve ark. lari</td>
<td>Diz protez cerrahisi</td>
<td>231</td>
<td>O-ES</td>
<td>BCLA-ES</td>
<td>Postoperatif enfeksiyon riski açısından fark yok</td>
</tr>
<tr>
<td>Wong ve ark. lari</td>
<td>İnfrarenal aortik cerrahi</td>
<td>145</td>
<td>O-ES</td>
<td>BCLA-ES</td>
<td>Postoperatif enfeksiyon riski açısından fark yok</td>
</tr>
<tr>
<td>Jensen ve ark. lari</td>
<td>Kolorektal cerrahi</td>
<td>197</td>
<td>SSLAA-ES</td>
<td>Allojeneik tam kan</td>
<td>Postoperatif enfeksiyon için 2. kolda yüksek risk</td>
</tr>
<tr>
<td>Jensen ve ark. lari</td>
<td>Kolorektal cerrahi</td>
<td>589</td>
<td>SSLAA-ES</td>
<td>BCLA-ES</td>
<td>Postoperatif enfeksiyon için 2. kolda yüksek risk</td>
</tr>
<tr>
<td>Tartter ve ark. lari</td>
<td>Gastrointestinal cerrahi</td>
<td>221</td>
<td>SÖLAA-ES</td>
<td>A-ES</td>
<td>Postoperatif enfeksiyon için 2.kolda yüksek risk</td>
</tr>
<tr>
<td>Houbiers ve ark. lari</td>
<td>Kolorektal kanser rezeksiyonu</td>
<td>697</td>
<td>SÖLAA-ES</td>
<td>BCLA-ES</td>
<td>Kanserrekürensi ve postoperatif enfeksiyon riski açısından fark yok</td>
</tr>
<tr>
<td>Çalışmanın adı</td>
<td>Çalışma grubu</td>
<td>Hasta sayısı</td>
<td>Otolog/lökofiltre kan ürünü kolu</td>
<td>Allojeneik kan ürünü kolu</td>
<td>Sonuçlar</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>--------------</td>
<td>-----------------------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Nielsen ve ark.ları</td>
<td>Yanık travma hastaları</td>
<td>24</td>
<td>SÖLAA-ES</td>
<td>BCLA-ES</td>
<td>Hastanede mortalite oranlarında fark yok</td>
</tr>
<tr>
<td>Van de Watering ve ark.ları</td>
<td>Kardiyak cerrahi</td>
<td>914</td>
<td>SÖLAA-ES</td>
<td>BCLA-ES</td>
<td>Postoperatif enfeksiyon riski açısından fark yok, 60 gün sonundaki mortalite için 2.kol daha yüksek riskli</td>
</tr>
<tr>
<td>Titlestad ve ark.ları</td>
<td>Kolorektal cerrahi</td>
<td>279</td>
<td>SÖLAA-ES</td>
<td>BCLA-ES</td>
<td>Postoperatif enfeksiyon riski açısından fark yok, 2.kolda yüksek risk</td>
</tr>
<tr>
<td>Bilgin ve ark.ları</td>
<td>Kardiyak cerrahi</td>
<td>474</td>
<td>SÖLAA-ES</td>
<td>BCLA-ES</td>
<td>Postoperatif enfeksiyon için 2.kolda yüksek risk</td>
</tr>
<tr>
<td>Dzik ve ark.ları</td>
<td>hospitalize hastalar</td>
<td>2780</td>
<td>SÖLAA-ES</td>
<td>A-ES</td>
<td>Hastane mortalitesi açısından fark yok</td>
</tr>
<tr>
<td>Wallis ve ark.ları</td>
<td>Kardiyak cerrahi</td>
<td>597</td>
<td>SÖLAA-ES</td>
<td>BCLA-ES</td>
<td>Postoperatif enfeksiyon riski açısından fark yok, plazma azaltılmış A-ES (198)</td>
</tr>
<tr>
<td>Bracey ve ark.ları</td>
<td>Kardiyak cerrahi</td>
<td>443</td>
<td>SÖLAA-ES</td>
<td>A-ES</td>
<td>Postoperatif enfeksiyon riski ve mortalite açısından fark yok</td>
</tr>
<tr>
<td>Boshkov ve ark.ları</td>
<td>Kardiyak cerrahi</td>
<td>562</td>
<td>SÖLAA-ES</td>
<td>A-ES</td>
<td>Postoperatif enfeksiyon riski açısından fark yok, 60 gün sonundaki mortalite için 2.kol daha yüksek riskli</td>
</tr>
<tr>
<td>Nathens ve ark.ları</td>
<td>Travma hastaları</td>
<td>268</td>
<td>SÖLAA-ES</td>
<td>A-ES</td>
<td>Postoperatif enfeksiyon riski ve 28 günlük mortalite açısından fark yok</td>
</tr>
</tbody>
</table>

Van de Watering ve arkadaşlarının allojeneik kan transfüzyonu ve postoperatif enfeksiyon riski arasındaki ilişkiyi gösterebilmek amacıyla yaptıkları çalışmada, primer hedef olmamasına rağmen lökosit içeren allojeneik kan transfüzyonu yapılanlarda mortalite oranları daha yüksek bulunmuştur. Çalışmada 60 gün sonunda, buffy coat allojeneik eritrosit süspansiyonu verilen 306 hastanın 24’ünde (%7,8) ölüm olurken, stok öncesi lökofiltrasyon yapılmış eritrosit süspansiyonu alan 305 hastanın 11’inde (%3,6) ve stok sonrası lökofiltrasyon yapılmış eritrosit süspansiyonu verilen 303 hastanın 10’unda (%3,3) ölüm görülmüştür (p=0,001). Bu araştırmacılar, stok öncesi lökofiltrasyon ile lökosit azaltımı sonucu postoperatif mortalite ve çoklu organ yetmezliği azalmaktadır hipoteziyle yeni bir randomize kontrollü çalışma planlamıştır. 1999-2001 yılları arasında, kompleks kardiyak cerrahi uygulanan, 496 hastanın alındığı çalışmada, bir gruba buffy coat eritrosit süspansiyonu, diğer gruba stok öncesi lökofiltrasyon yapılmış eritrosit süspansiyonu verilmiştir. Çalışmanın birincil sonuç noktası 90 günlük mortalite, ikincil sonuçları ise hastane mortalite oranı, çoklu organ yetmezliği ve enfeksiyon ile hastanede kalış süresidir. Çalışma sonunda 90 günlük mortalitede istatistiksel anlamlı fark bulunamamıştır, ancak 60 günlük mortalite buffy coat eritrosit süspansiyonu alanlarda iki kat yüksek saptanmıştır (%10,1 ve %5,5) (p=0,05). Boshkov ve arkadaşlarının yaptığı çift kör randomize kontrollü çalışmada, Amerika’da üç merkezden, elektif kardiyak cerrahi uygulanan 562 hastanın 304’üne stok öncesi lökofiltre eritrosit süspansiyonu, 258’ine standart eritrosit süspansiyonu verilmiş. 60 gün sonunda ilk grupta mortalite oranları daha düşük saptanmıştır (srasıyla %4,9 ve %9,7) (p=0,029). Kardiyak cerrahi uygulanan hastalarda yapılmış olan, istatistiksel ve klinik çalışma açısından homojen, beş randomize kontrollü çalışmaya bakıldığında postoperatif kısa dönem mortalite ve lökosit azaltılmamış eritrosit süspansiyonu transfüzyonu arasında bir ilişki görülmektedir (şekil 2.1).
Şekil 2.1 Kardiyak cerrahide, tüm nedenlere bağlı kısa dönem mortalite (postoperatif 3 ay içinde) ve lökosit içeren allojeneik kan transfüzyonu arasındaki ilişkinin gösteren randomize kontrollü çalışmalarda elde edilen odds ratio (OR) sonuçları.

1990’ların sonunda Kanada ve birkaç batı Avrupa ülkesi tüm sellüler kan ürünlerine stok öncesi lökofiltrasyon yapılarak evrensel lökofiltrasyon kavramı gündeme getirilmiştir. Yalnız bu dönemde tasarlanmış randomize kontrollü çalışma bulunmamaktadır. Gözlemsel sonuçlar da önce/sonra çalışmalar adı altında yayınlanmıştır. İki önemli önce/sonra çalışması vardır. Bunlardan birincisinde 14786 erişkin hasta alınmıştır. Kardiyak cerrahi uygulanan, kalça kırığı cerrahisi yapılan ve herhangi bir cerrahi işlem sonrası yoğun bakım ihtiyacı olan hastalar çalışmaya dahil edilmiştir. 7804 hastanın olduğu lökosit azaltılmış eritrosit süspansiyonu alan grupta mortalite oranı %6,19, 6982 hastanın bulunduğu lökosit azaltılmamış eritrosit süspansiyonu alan grupta mortalite oranı %7,03 bulunmuştur (p=0,04). Her iki grup arasında postoperatif enfeksiyon görülme sıklığında bir fark saptanmamıştır. Yayımlanan ikinci çalışmaya düşük
doğum ağırlıklı, prematüre, 515 yenidoğan dahil edilmiştir. Lökositi azaltılmış kan ürünü alan grupta bakteriyemi daha az görülmekle birlikte istatistiksel anlam göstermemiştir (OR=0,59, %95CI:0,34-1,01).\(^{(17)}\) Bu çalışmadan elde edilen bir diğer gözleme lökositi azaltılmış kan ürünü alan prematürelerde bronkopulmoner displazi, retinopati ve nekrotizan enterokolit gibi ciddi organ yetmezliklerine bağlı sekonder morbidityde azalma saptanmasıdır. Yazalar bu durumun, allojeneik lökositlerin veya bu lökositlerin ürünlerinin oluşturduğu mikrovasküler proinflamatuvar etki ile ilişkili olabileceği öne sürülmüştür.

2.2.1.TRIM Etkisinin Fizyopatolojisi

TRIM etkisini açıklamak için pek çok hipotez öne sürülmüştür. Bu hipotezlerde suçlanan başlıca üç etkeni şöyle sıralayabiliriz, 1) allojeneik mononükleer hücreler, 2) depo halinde bekleyen kan ürünlerindeki lökositlerden zaman bağlı olarak salınan solubl maddeler, 3) allojeneik plazmadaki HLA class I peptidler. Teorik olarak bunların ilk ikisini otolog veya lökositi azaltılmış kan ürünü kullanarak ortadan kaldırmak mümkün olabilir, ancak üçüncüşü için mutlaka stok öncesi lökofiltrasyon uygulanmalıdır. Bu görüşlerin hiçbirleri için şu ana kadar yeterli kanıt elde edilememiştir. Yapılan gözlemSEL çalışmaların çoğunda transfüzyon yapılanlar ve yapılmayanlar olarak iki grup oluşturulmuştur. Transfüzyon yapılmayanlar yukarıda bahsedilen üç etkene de maruz kalmadığı için bunlardan hangisinin TRIM etkisinden sorumlu olduğunu söylemek mümkün değildir. TRIM’in muhtemel mekanizması ile ilgili sorulara lökositi azaltılmış kan ürünü alıcıları ile otolog veya lökositi azaltılmış kan ürünü alıcılarından oluşan iki grubu karşılaştıran randomize kontrollü çalışmaları cevap verebilir.

TRIM etkisi için lökositlere ihtiyaç olduğu bilinmektedir. Yapılan hayvan çalışmalar, TRIM etkisinde en önemli rolün lökositlere ait olduğunu göstermektedir. Kao, yaptığı çalışmada farelere verdiği donör lökositleri ile farelerde immünsüpresyonu indüklemiştir.\(^{(18)}\) Yine bir başka hayvan modelinde, meydana gelen barsak enfeksiyonu için lökositler sorumlu kan içeriği olarak tanımlanmıştır.\(^{(19)}\) Mincheff ve ark.ları, donör dendritik antijen sunan hücrelerinin alıcıda anerjiyi indükleyebileceğini fikrini ortaya atılmışlardır.\(^{(20)}\) Farelerde tümör
büyümesenin artırılması modelindeki veriler baz alınarak CD200 ekspresse eden, donör dendritik antijen sunan hücrelerin TRIM etkisi için gerekli olduğu düşünülmüştür. CD200 ve reseptörü arasındaki ilişki, makrofaj fonksiyonunun süpresyonu, allogreff ömrünün uzatılması, sitokin aracılı abortus için hayvan modellerinde, fetal kayın önlenmesi durumlarda gösterilmiştir.\(^{(21)}\)

Bir başka görüşe göre donör ve alıcı arasındaki HLA uyumu, allojeneik donör lökositlerinin alıcıda kalkışılığına sonuçlanabilir (mikrokimerizm). Oluşan mikrokimerizm TRIM etkisinden sorumlu olabilir, alıcı immün sistemini baskılayabilir.\(^{(22)}\) Utter ve ark.ları, Nathens ve ark.larının\(^{(23)}\) daha önce yapmış olduğu randomize kontrollü çalışmada kaydedilen travma hastalarının bir subgrubunda mikrokimerizm çalışmıştır. Lökosit azaltılmamış kan ürünü alanlarda mikrokimerizm %28 (32 hastanın dokuzunda pozitif), stok öncesi lökosit azaltımı yapılanlarda ise %37 (35 hastanın on üçünde pozitif) olarak saptanmış ve aralarında anlamlılık görülmemiştir (p=0,43).\(^{(24)}\)

Allojeneik mononükleer hücrelerin TRIM etkisyle ilişkisini konu alan sadece bir randomize kontrollü çalışma tasarlanmıştır. HIV seropozitif hastaların alındığı çalışmada, bir gruba stok öncesi lökofiltre edilmiş eritrosit süspansiyonu verilirken diğer gruba iki haftadan daha kısa süreli depolanmış filtrelenmemiş eritrosit süspansiyonu verilmiştir. Yazarlar, ikinci gruptaki ürünlerin iki haftadan daha kısa depolanma ömrüne sahip olmaları nedeniyle, üründeki hasarlanmış lökositlerin miktarının oldukça az olduğunu ve çalışmada her iki grubun, sellüler kan ürünlerindeki solubl faktörler açısından bir ölçüde eşitlendiğini belirtmişlerdir. Böylece çalışmada ortaya çıkabilecek TRIM etkisi için solubl faktörlerin suçlanmadığı ve allojeneik mononükleer hücrelere dayanan fizyopatolojik teorinin desteklenebileceğini savunmuşlardır. Ancak çalışma sonunda, her iki grup arasında HIV ve CMV viral yük açısından ya da yaşam süresi açısından bir fark bulunamamıştır.\(^{(25)}\)

Kan ürünlerinde biriken biyolojik cevabı etkileyen solubl maddeler, TRIM patogenezine dahil edilmektedir. Bu mediyatörler lökositlerdeki çeşitli granüllerde bulunurlar ve lökositler hasarlandıkça zaman bağlı olarak açığa çıkarlar. Nielsen ve ark.ları 0-35. günler arasındaki depo halindeki eritrosit süspansiyonlarını değerlendirmişler ve 35.gende histamin-eozinofil katyonik

Solubl HLA proteinleri ve immünreaktif HLA peptidleri TRIM etkisinin mediatörlüğine adaydı. Solubl HLA antijenleri alıcının timik sirkülasyonuna girerek donor allojeneik antijenlerine karşı yönlendirilmiş alıcı T hücrelerinde klonal delesyon oluşturuluyor olabilir varsayımı ileri sürülmektedir.(29) TRIM etkisi ve solubl HLA molekülünün ilişkisini gözeten bir randomize kontrollü çalışma bulunmaktadır. Wallis ve ark.ların 597 kardiak cerrahi hastasında yaptığı çalışma sonucunda postoperatif enfeksiyon riski açısından üç kola randomize edilmiştir. Plazması azaltılmış, buffy coat ve lökositi azaltılmış eritrosit süspansiyonu alanlar şeklinde ayrılan kollardan ilk ikisinde lökosit içeriği benzerdir. Çalışma sonunda postoperatif enfeksiyon riski açısından üç kol arasında istatistiksel fark bulunamamıştır. Sırasıyla oranlar %17,1, %10,8, %11,3’tür (p=0,20). Bu çalışmaya göre allojeneik plazma, TRIM için bir mediatör değil gibi görünebilmektedir.
Bugüne kadar yapılan çalışmalarla, öne sürülen mekanizmalar kanıtlanamamış, lökofiltrasyon işlemi daha yaygın kullanılmamasına karşın TRIM etkisindeki rolü halen aydınlatılamamıştır.

2.3. Lökositi Azaltılmış Eritrosit Süspansiyonu

13

Lökofiltrasyon işlemi oldukça pahalı bir teknoloji gerektirmektedir. Bu nedenle lökosit azaltılmış eritrosit süspansiyonu kullanım endikasyonları özenle seçilmelidir. Şu ana kadar kesin kanıtlanmış üç endikasyonu bulunmaktadır: 1) tekrarlayan febril nonhemolitik transfüzyon reaksiyonları, 2) HLA alloimmünizasyon riskinin azaltılması, 3) CMV antikoru pozitif vericiden CMV bulaş riskini azaltmak.(34) Çalışmalar göstermiştir ki, HLA antijenlerine alloimmünizasyon gelişmesinden lökositler sorumludur.(35) Tekrarlayan febril transfüzyon reaksiyonlarına lökosit antijenlere karşı gelişen antikorlar neden olmaktadır.(36) Sadece bir kez nonhemolitik transfüzyon reaksiyonu geçiren hastaların çoğu alloimmünize olmamıştır ve böyle bir reaksiyon tekrar geçirmezler.(37) Siddetli ve sık febril nonhemolitik transfüzyon reaksiyonu geçiren hastalarda ise lökosit azaltılmış kan ürünleri kullanılamalıdı. Alloimmünize olma riski yüksek olan hastaların da (kronik kan transfüzyonu ihtiyacı olanlar ve transplant adayları) lökofiltre edilmiş kan ürünü kullanması gereklidir. İmmünsüpresif hastalar ile CMV seronegatif hastalar, transfüzyon ile bulaşan CMV enfeksiyonu için risk altında olduklarını göstermiştir.(38) Bu hastalarda yapılan çalışmalarla göre, CMV enfeksiyonu geçişini engellemekte lökosit azaltılmış kan ürünü kullanmayı, CMV seronegatif donörlerden alınan kanın kullanımına göre daha etkilidir.(39-40)

Bazı yayınlarda yukarıdaki üç endikasyon dışında lökofiltre edilmiş eritrosit süspansiyonu kullanımının önerildiği ek durumlar vardır, ancak bunların hiçbirinin mutlak kanızı bulunmamaktadır.(41) Bu durumları sıralayacak olursak:
1) viral reaktivasyonun önlenmesi (HIV pozitif hastalar)
2) prion geçişinin önlenmesi
3) tümör rekürrensi riskini azaltmak
4) postoperatif enfeksiyon riskinin azaltılması
5) bakteriyel enfeksiyonlar ve sepsisin önlenmesi
6) kardiyak bypas cerrahisinde sistemik inflamatuvar yanının azaltılması
7) transfüzyonla ilişkili akut akciğer hasarının azaltılması
8) transfüzyonla ilişkili graft versus host hastalığının azaltılması.

Lökosit filtrelerinin bu amaçlar için kullanımı tartışma yaratmaktadır. Lökositı azaltmış kan ürünü kullanmdaki karar terapötik amaç, kan merkezinin deneyimi ve hastanın daha önce lökofiltre kan ürünü verdiği yanıt gibi birçok fakitore dayanmaktadır.
3. HASTALAR VE YÖNTEM

3.1. Çalışma Tasarımı

pulmoner komplikasyonların sıklığı ve yoğun bakımda kalış süreleri karşılaştırılmıştır.

3.2. Hastalar

Çalışmaya alınma kriterleri:
1. 18 yaşın üstündeki hastalar,
2. Primer koroner arter bypass greft (KABG) cerrahisi,
3. İzole kalp kapak cerrahisi,
4. Kombine KABG ve kapak cerrahisi uygulanan hastalardır.

Çalışmadan dışlanma kriterleri:
1. 18 yaşın altındaaki hastalar,
2. Son üç ay içinde transfüzyon öyküsü olanlar,
3. Lökofiltrasyon yapılması zorunlu hastalığı olanlar,
4. Reoperasyon,
5. Konjenital kalp cerrahisi,
6. Aort cerrahisi,
7. Sol ventrikül anevrizma rezeksiyonu,
8. MI sonrası VSD operasyonu,
9. Porselen aorta
10. Pulmoner tromboendarterektomi operasyonu,
11. Kalp ve akciğer transplantasyonu,
12. Sol veya sağ ventriküler destek cihazı kullanımı,
13. Enfektif endokardit hikayesi,
14. Künt toraks travması hikayesi,
15. HBV ve HCV enfeksiyonu,
16. Otoimmün hastalık öyküsü olan hastalar ve
17. Dinsel nedenlerle kan transfüzyonunu kabul etmeyen hastalar olarak belirlenmiştir.
3.3. Kan Ürünleri

Tüm hastaların gereksinimi olan kan ürünleri, Ankara Üniversitesi Tıp Fakültesi Serpil Akdağ Kan Merkezi’nden temin edilmştir. Tüm eritrosit süspansiyonları Avrupa standartlarına uygun olarak hazırlanmış ve depolanmıştır. Çalışma grubundaki hastaların aldığı eritrosit süspansiyonları depolama sonrası filtre edilmiştir ve yine aldıkları tüm random trombositler de havuzlanmış ve filtre edilmiştir. Ürünlerin hiçbirine ışınlama uygulanmamıştır. Filtreleme işleminde eritrosit süspansiyonları için Pall Medical RBC (USA) filtreleri ve trombosit süspansiyonları için Pall Medical LRP-6 (USA) filtreleri kullanılmıştır. Eritrosit süspansiyonlarının depo ömrü, kan merkezinin kan kullanım hızının yüksek olması nedeniyle 20 günün altında dür.

3.4. İstatistiksel Değerlendirme

Hastaların demografik, ekokardiyografik, cerrahi patoloji ve cerrahi teknikler ve takiple ilgili tüm verileri (570 parametre), Bilkent Üniversitesi ile birlikte ortak olarak oluşturulan internet tabanlı Turkoscore veri tabanında toplandı (http://turkoscore.cs.bilkent.edu.tr/TurkoSCORE/Login.aspx). Bulguların istatistiksel incelemesi SPSS 16.0 for Windows programı (Chicago, Illinois) kullanılarak yapıldı. Verilerin değerlendirilmesinde değerlerin dağılımlarına göre parametrik t-testi veya nonparametrik Mann-Whitney U-testi kullanıldı. Tanımlayıcı istatistiksel veriler ortalama ± standart sapma olarak verildi; tüm sonuçlar %95 güven aralığında, anlamlılık ise p<0.05 düzeyinde değerlendirildi.
4. BULGULAR

Çalışmaya alınan hastaların demografik özellikleri tablo 4.1.de, yapılan operasyonları ile ilgili özellikleri tablo 4.2. ve şekil 4.1.de belirtilmiştir.

Tablo 4.1. Olguların demografik özellikleri ve ameliyat öncesi klinik bulgularının gruplara göre dağılımı (n = 200). Grup 1: Lökofiltre edilmiş eritrosit transfüzyon grubu, Grup 2: Lökofiltre edilmemiş eritrosit transfüzyon grubu.

<table>
<thead>
<tr>
<th>Özellik</th>
<th>Grup 1 (lökofiltrasyon yapılmış) (n=100)</th>
<th>Grup 2 (lökofiltrasyon yapılmamış) (n=100)</th>
<th>P-değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yaş (yıl), ortalama ± SD</td>
<td>60,2 ± 9,1</td>
<td>62,2 ± 12,4</td>
<td>0,215</td>
</tr>
<tr>
<td>Cinsiyet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erkek</td>
<td>60</td>
<td>61</td>
<td>0,687</td>
</tr>
<tr>
<td>Kadın</td>
<td>40</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Vücut yüzey alanı (m²)</td>
<td>1,88 ± 0,21</td>
<td>1,84 ± 0,15</td>
<td>0,141</td>
</tr>
<tr>
<td>Vücut kitle indeksi (kg/m²)</td>
<td>27,4 ± 4,5</td>
<td>26,5 ± 3,5</td>
<td>0,197</td>
</tr>
<tr>
<td>Ortalama NYHA fonksiyonel sınıflama</td>
<td>2,51 ± 0,75</td>
<td>2,67 ± 0,75</td>
<td>0,136</td>
</tr>
<tr>
<td>Ortalama CCS anjına klasifikasyon</td>
<td>1,90 ± 1,30</td>
<td>2,07 ± 1,22</td>
<td>0,344</td>
</tr>
<tr>
<td>Konjestif kalp yetmezliği (%)</td>
<td>9</td>
<td>11</td>
<td>0,814</td>
</tr>
<tr>
<td>Hipertansiyon öyküsü (%)</td>
<td>44</td>
<td>50</td>
<td>0,479</td>
</tr>
<tr>
<td>Diabetes mellitus (%)</td>
<td>36</td>
<td>40</td>
<td>0,662</td>
</tr>
<tr>
<td>KOAH</td>
<td>17</td>
<td>23</td>
<td>0,377</td>
</tr>
<tr>
<td>Hiperlipidemi (%)</td>
<td>74</td>
<td>66</td>
<td>0,280</td>
</tr>
<tr>
<td>Ailede koroner arter hastalı (%)</td>
<td>58</td>
<td>57</td>
<td>1,000</td>
</tr>
<tr>
<td>Periferik arter hastalığı (%)</td>
<td>27</td>
<td>24</td>
<td>0,746</td>
</tr>
<tr>
<td>Preoperatif kreatinin düzeyi (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1.20</td>
<td>70</td>
<td>65</td>
<td>0,751</td>
</tr>
<tr>
<td>1.21-1.50</td>
<td>20</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>1.51-2.26</td>
<td>10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>>2.26</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SVEF (ekokardiyografi, %)</td>
<td>45,9 ± 11,9</td>
<td>43,6 ± 14,4</td>
<td>0,360</td>
</tr>
<tr>
<td>Elektrokardiyografi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal sinüs ritmi</td>
<td>85</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Atrial fibrilasyon/flutter</td>
<td>13</td>
<td>9</td>
<td>0,664</td>
</tr>
<tr>
<td>2-3. Derece Kalp bloğu</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sistolik kan basıncı (mmHg)</td>
<td>117,9 ± 17,4</td>
<td>122,4 ± 17,8</td>
<td>0,337</td>
</tr>
<tr>
<td>Diastolik kan basıncı (mmHg)</td>
<td>70,9 ± 10,6</td>
<td>73,3 ± 12,6</td>
<td>0,926</td>
</tr>
<tr>
<td>Ortalama kan basıncı (mmHg)</td>
<td>81,8 ± 10,5</td>
<td>79,3 ± 13,5</td>
<td>0,400</td>
</tr>
<tr>
<td>Sistolik pulmoner arter basıncı (mmHg)</td>
<td>39,6 ± 14,9</td>
<td>43,1 ± 10,8</td>
<td>0,191</td>
</tr>
<tr>
<td>EuroSCORE</td>
<td>4,2 ± 3,2</td>
<td>5,4 ± 4,3</td>
<td>0,031</td>
</tr>
<tr>
<td>Logistik EuroSCORE</td>
<td>6,2 ± 11,1</td>
<td>9,3 ± 14,9</td>
<td>0,520</td>
</tr>
</tbody>
</table>

NYHA- New York Kalp Cemiyeti, SVEF-sol ventrikül ejeksiyon fraksiyonu.
Tablo 4.2. Operasyon bilgileri

<table>
<thead>
<tr>
<th>Bulgular</th>
<th>Grup 1 (lökofiltrasyon yapılmış) (n=100)</th>
<th>Grup 2 (lökofiltrasyon yapılmamış) (n=100)</th>
<th>P-değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koroner arter bypass cerrahisi</td>
<td>73</td>
<td>64</td>
<td>0,223</td>
</tr>
<tr>
<td>Kapak cerrahisi</td>
<td>31</td>
<td>40</td>
<td>0,237</td>
</tr>
<tr>
<td>Kros-klemp süresi (dk)</td>
<td>68,2 ± 31,9</td>
<td>61,3 ± 33,9</td>
<td>0,219</td>
</tr>
<tr>
<td>Kardiyopulmoner bypass süresi (dk)</td>
<td>108,3 ± 41,2</td>
<td>96,5 ± 57,0</td>
<td>0,149</td>
</tr>
<tr>
<td>KBP sürecinde en düşük pH</td>
<td>7,35 ± 0,52</td>
<td>7,24 ± 0,94</td>
<td>0,416</td>
</tr>
<tr>
<td>KBP sürecinde en düşük Hb (g/dL)</td>
<td>7,31 ± 1,11</td>
<td>7,82 ± 1,14</td>
<td>0,078</td>
</tr>
<tr>
<td>Operasyon süresi (dk)</td>
<td>198,8 ± 86,7</td>
<td>182,7 ± 61,2</td>
<td>0,247</td>
</tr>
<tr>
<td>İntra-operatif eritrosit transfüzyon γ ortalama ± SD</td>
<td>1,37±0,63</td>
<td>1,46 ± 0,86</td>
<td>0,684</td>
</tr>
</tbody>
</table>

γ Ortalama ve SD hesapları yalnızca tranfüzyon alan hastalar arasında yapılmıştır. KPB= kardiyopulmoner bypass; Hb= hemoglobin.

(Urgent: aynı hastanede yatışında operasyon gereksinimi)

Şekil 4.1. Operasyon önceliğine göre gruplarda dağılım (p= 0,567).
Operasyon sırasında ilk grupta hastalardan sadece 27’sine, ikinci grupta 30’una eritrosit süspansyonu transfüzyonu yapılmıştır. Postoperatif transfüzyon durumuna bakıldığında ilk grupta 85, ikinci grupta 82 hastanın eritrosit süspansyonu aldığı görülmektedir. Hastanede yatışları süresince lökofiltrasyon yapılan grupta 11, yapılmayan grupta 13 hastaya hiç transfüzyon yapılmamıştır.

4.1. Renal komplikasyonlar

Operasyon öncesi her iki grupta hastaların kreatinin düzeylerine göre dağılımı şekil 4.2.de gösterilmiştir. Lökofiltrasyon yapılan grup ile yapılmayan grup arasında kreatinin düzeylerine bakıldığında preoperatif fark bulunmazken, postoperatif dönemde lökofiltrasyon yapılan grupta yeni gelişen renal yetmezlik sadece bir hastada, lökofiltrasyon yapılmayan grupta ise dört hastada görülmüştür. Ancak iki grup arasında istatistiksel fark bulunmamıştır (p=0,369)

Şekil 4.2. Preoperatif kreatinin düzeylerine göre gruplarda dağılım, p= 0,751.
4.2. Pulmoner komplikasyonlar

Grupların KOAH GOLD sınıflamasına göre dağılımı şekil 4.3.te belirtilmiştir. Postoperatif dönemde yoğun bakımda entübe haldeki ventilasyon süreleri arasında iki grup arasında fark bulunmuştur. Lökositi azaltılmış eritrosit alan grupta iki hastada pnömoni gelişırken, standart eritrosit süspansiyonu alan grupta dört hastada pnömoni gelişmiştir (p=0,683). İlk grupta iki hastaya trakeostomi açılması gerekmış, ikinci grupta bir ise hastaya trakeostomi açılmıştır.

Şekil 4.3. Preoperatif KOAH GOLD sınıflamasına göre gruplarda dağılım, p=0,377.

4.3. Kardiyak komplikasyonlar

Her iki gruptaki hastaların preoperatif dönemde ritm durumları şekil 4.4.te gösterilmiştir. Operasyondan sonra ilk grupta yedi hastada, ikinci grupta onbir hastada yeni gelişen atriyal fibrilasyon gözlenmiştir (p=0,459) ve her iki gruptan da...
ikişer hasta yana medikal tedavi yeterli olduğu için elektriksel kardiyoversyon uygulanması gerekmiştir. Yine operasyondan sonra ilk grupta ikisini, ikinci grupta bir hastada kalp bloğu gelişmiş, bu hastaların hepsine kalıcı pil takılmıştır. Postoperatif önemli mortalite nedenlerinden düşük kalp debisi sendromu lökofiltre eritrosit süspansiyonu alan hastalardan dördünde, standart eritrosit süspansiyonu alanlardan beşinde görülüştür.

Şekil 4.4. Preoperatif Ritm Statusuna Göre Grupların Dağılımı, p= 0,664.

4.4. Postoperatif enfeksiyonlar

Her iki grupta da pnömoni ve cerrahi alan enfeksiyonu dışında enfeksiyon görülmedi. Bu iki enfeksiyon için iki grup karşılaştırıldığında ilk grupta enfeksiyon sayıları daha düşük olmasına rağmen aralarında istatistiksel anlam yoktur (sirasiyla p=0,683 ve p=0,537). Toplam enfeksiyon sayısı karşılaştırıldığında ilk grupta 6, ikinci grupta 11 enfeksiyon görülmüştür (p=0,311). MODS görülme oranlarına bakıldığında ise iki grup arasında fark saptanmamıştır.
4.5. Mortalite ve yoğun bakımda kalış süreleri

Hastaların yoğun bakımda kalış süreleri arasında istatistiksel anlam olmamasına rağmen lökofiltrasyon yapılan hastalarda süre daha kısa bulunmuştur (p=0,450). Hastanedeki mortalite oranlarına bakıldığında da fark görülmemiştir. Lökofiltrasyon yapılan gruptaki hastaların mortalite nedenleri MODS (2 hasta), kardiyak yetmezlik (2 hasta), standart eritrosit alan gruptaki mortalite nedenleri ise MODS (1 hasta), akut börek yetmezliği (1 hasta), kardiyak yetmezlik (2 hasta), akut mezerterik iskemi (1 hasta) olarak kaydedildi.

Tablo 4.3. Sonuçlar

<table>
<thead>
<tr>
<th>Bulgular</th>
<th>Grup 1 (lökofiltrasyon yapılmış) (n=100)</th>
<th>Grup 2 (lökofiltrasyon yapılmamış) (n=100)</th>
<th>P-değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hastane mortalitesi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>İlk 30 gün</td>
<td>3</td>
<td>5</td>
<td>0,360</td>
</tr>
<tr>
<td>Hastaneye yatış süresince</td>
<td>4</td>
<td>5</td>
<td>0,500</td>
</tr>
<tr>
<td>Yoğun Bakım bilgiler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoğun bakımda kalış süresi (ort ± SEM)</td>
<td>38,9 ± 3,7</td>
<td>42,5 ± 2,9</td>
<td>0,450</td>
</tr>
<tr>
<td>Ventilasyon süresi, saat</td>
<td>13,9 ± 9,4</td>
<td>14,1 ± 14,6</td>
<td>0,900</td>
</tr>
<tr>
<td>Postoperatif ilk 8 saatte drenaj (mL)</td>
<td>330 ± 215</td>
<td>338 ± 191</td>
<td>0,864</td>
</tr>
<tr>
<td>Postoperatif ilk 24 saatte drenaj (mL)</td>
<td>489 ± 232</td>
<td>516 ± 279</td>
<td>0,659</td>
</tr>
<tr>
<td>Post-operatif eritrosit süşpansiyonu alan hasta sayısı</td>
<td>85</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Post-operatif eritrosit transfüzyonu*</td>
<td>5,59 ± 2,46</td>
<td>5,57 ± 2,70</td>
<td>0,948</td>
</tr>
<tr>
<td>Hastane morbitesi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>İnme*</td>
<td>0</td>
<td>2</td>
<td>0,497</td>
</tr>
<tr>
<td>Kardiyak komplikasyonlar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diğer kalp debisi sendromu</td>
<td>4</td>
<td>5</td>
<td>1,000</td>
</tr>
<tr>
<td>Yeni gelişen atriyel fibrilasyon</td>
<td>7</td>
<td>11</td>
<td>0,459</td>
</tr>
<tr>
<td>Kardiyoversiyon gerekşinimi</td>
<td>2</td>
<td>2</td>
<td>1,000</td>
</tr>
<tr>
<td>Kalp bloğu</td>
<td>2</td>
<td>1</td>
<td>1,000</td>
</tr>
<tr>
<td>Kalıcı pil gerekşinimi</td>
<td>2</td>
<td>1</td>
<td>1,000</td>
</tr>
<tr>
<td>Pulmoner komplikasyonlar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pnömoni</td>
<td>2</td>
<td>4</td>
<td>0,683</td>
</tr>
<tr>
<td>Trakeostomi gerekşinimi</td>
<td>2</td>
<td>1</td>
<td>1,000</td>
</tr>
<tr>
<td>Renal yetmezlik</td>
<td>1</td>
<td>4</td>
<td>0,369</td>
</tr>
<tr>
<td>MODS</td>
<td>4</td>
<td>3</td>
<td>1,000</td>
</tr>
<tr>
<td>Cerrahi alan enfeksiyonu</td>
<td>4</td>
<td>7</td>
<td>0,537</td>
</tr>
</tbody>
</table>

Inme, kalıcı veya geçici yeni fokal nörolojik defisit olarak tanımlanırdı. * Ortalama ve SD hesapları yalnızca tranfüzyon alan hastalar arasında yapılmıştır. SEM = Std error mean
Çalışmamız; toplam 200 hastayı içeren, tek merkezli (iki farklı cerrahi ekip) bir çalışma olup, ülkemizde bu konuda yapılmış ilk çalışmamızdır. Tüm hastalar toplam bir yıl içinde opere edilmişlerdir. Gerek çok merkezilik gerekse operasyon zamanının çeşitliliği postoperatif komplikasyonları etkileyebilen faktörlerdir.

Çalışmamızda karşılaştırma yapabilmek için kalp ameliyatlarını seçtik, çünkü kalp cerrahisinde hastaların %80’inden fazlasında kan transfüzyonu ihtiyaç taşmaktadır. İntraoperatif kan transfüzyonu miktarı gelişmiş ülkelerde hasta başına 2 üniteye kadar inmiştir, bizim çalışmamızda ilk grubun intraoperatif eritrosit süspansiyonu transfüzyon miktarı 1,37 ± 0,63, ikinci grubunki ise 1,46 ± 0,86 ünite olmuştur.

Lökofiltre eritrosit süspansiyonu alan grupta %6, standart eritrosit süspansiyonu alan grupta %11 oranında postoperatif enfeksiyon saptadık. Aradaki fark istatistiksel olarak anlamlı olmasa da (p=0,311), ikinci gruba enfeksiyon görülmeye sıklık ilk grubun yaklaşık iki katıdır. Van de Watering ve ark.larının yaptığı randomize çalışma standart eritrosit süspansiyonu alan grupta postoperatif enfeksiyon oranı %23 ve stok sonrası lökofiltrasyon yapılmış eritrosit süspansiyonu alan grupta %17,9 olarak bulunmuş (p=0,130). Bilgin ve ark.larının yaptığı çalışmadı ise bu oranlar sırasıyla %31,6 ve % 22,6’dır (p=0,020). Kardiyak cerrahi hastalarında yapılan randomize çalışma sonucunda istatistiksel anlamlı bir fark saptanmamıştır. Kolektoral cerrahi hastalarında yapılan randomize çalışmalardan dördünde, lökofiltrasyon yapılan kolda postoperatif enfeksiyon sıklığı anlamılı oranda düşük saptanmıştır.

Çalışmamızda MODS görülme oranlarına baktığımızda ise her iki grup arasında fark saptanmadık. MODS’u değerlendirilen tek prospektif çalışma olan Bilgin ve ark.larının çalışmasında da aynı sonuç elde edilmişdir (%20,4 ve %20,7). Aslında bu sonuç çalışmada tasarlanırken Bilgin ve ark.ları allojeneik kan transfüzyonunun MODS’a neden olabileceği hipotezinden yola çıkmışlardır.
Ancak şu ana kadar bunu gösterebilmiş bir prospektif çalışma bulunmamaktadır. MODS ve allojeneik kan transfüzyonu arasındaki ilişki hakkındaki bilgiler, sadece preklinik ve klinik gözlemSEL çalışmalara dayanmaktadır.

Çalışmamızda, tüm hastalarda görülen toplam %4,5’lik mortalite oranı, kalp cerrahisinde görülen genel mortalite oranları ile uyumlu dur. Her iki grup arasında postoperatif 30 günlük mortalite ve hastanede mortalite oranları arasında fark saptanmadık. Van de Watering ve ark.larının randomize çalışmasında, allojeneik kan transfüzyonu ve postoperatif enfeksiyon riski arasındaki ilişkinin gösterebilmesi amaçlanmışken lükosit içeren allojeneik kan transfüzyonu yapılanlardadaha %4,5’lik mortalite oranı daha yüksek bulunmuştur. Buffy coat allojeneik eritrosit süspansiyonu verilen grupta %7,8, stok öncesi lükofiltrasyon yapılmış eritrosit süspansiyonu alan grupta %3,6 ve stok sonrası lükofiltrasyon yapılmış eritrosit süspansiyonu alan grupta %3,3 ölüm görülmüştür (p=0,001). Bundan yola çıkılarak yapılan, kompleks kardiyak cerrahi uygulanan, 496 hastanın alındığı çalışmanın sonunda, 90 günlük mortalitede istatistiksel anlamlı fark bulunamamıştır, ancak 60 günlük mortalite buffy coat eritrosit süspansiyonu alan grupta %10,1 ve %5,5 (p=0,05). Boshkov ve ark.ların yaptığı çift kör randomize kontrollü çalışmada, 60 gün sonunda lükofiltrasyon yapılan grupta, mortalite daha düşük saptanmıştır (%4,9 ve %9,7) (p=0,029). Kardiyak cerrahi uygulanan hastalarda yapılmış olan diğer randomize çalışmalarında mortalite için istatistiksel anlamlılık saptanmamıştır, ancak bu çalışmalar birlikte değerlendirildiğinde lükofiltrasyon yapılan grupta mortalitenin daha düşük olduğu görülmektedir (şekil 2.1.). Çalışmamızda mortalite nedenlerine bakıldığında, lükofiltrasyon yapılan grupta 4 mortalitenin 2’sinin nedeni MODS iken, lükofiltrasyon yapılmayan grupta 5 mortalitenin 1’inde neden MODS’tur.

Çalışmamızın en önemli kısıtlılığı çift kör bir çalışma olmamasıdır. Daha sağlıklı veri elde edilebilmesi için gözlemsel yanlışın ve hasta seçimindeki yanlışın tamamen ortadan kaldırılması gerekmektedir. Gözlemsel yanlışın en önemli nedenlerinden biri de hastane enfeksiyonlarının tanıının objektif olmamasıdır. Biz çalışmamızda mevcut enfeksiyonları tanımlamak için CDC11 kriterlerini kullandık.

Şu ana kadarki randomize çalışmalarında elde edilen farklı sonuçların muhtemel bir nedeninin postoperatif enfeksiyonlar için TRIM etkisinin çok küçük bir rol oynuyor olması olduğu düşünülmektedir (örneğin %10’un altında). Böyle bir durumda bu küçük rolü saptayabilme için hem çalışma büyüklüğünün geniş tutulması hem de detaylı bir çalışma tasarımı gerekmektedir. Örneğin her iki kolda 10.000’er hasta gereksinimi olabilir.45 Ancak bugün, şu ana kadar yapılan tüm randomize çalışmalarındaki hasta sayısıının toplamı 10.000’i bulamamaktadır ve bu da TRIM etkisini gösterebilmek için yeterli değildir. Bu durumda bizim çalışmamızdaki hasta sayısı da, diğer randomize çalışmalarında olduğu gibi, çok yetersiz kalmaktadır.
6. SONUÇ

Bu çalışmadada, kalp cerrahisinde lökofiltre eritrosit süspansiyonu alan hasta grubunda postoperatif komplikasyonların ve hastanede mortalite oranlarının, standart eritrosit süspansiyonu alan gruptan daha düşük olup olmadığını değerlendirildi.

1. Postoperatif enfeksiyonlar, lökofiltrasyon yapılan grupta daha düşük oranda görüldü, aradaki fark istatistiksel olarak anlamılı değildi (p=0,311).
2. İki grup arasında MODS görülme oranlarında fark saptanmadı.
3. Yoğun bakımda yatış süresi, lökofiltrasyon yapılmış eritrosit süspansiyonu alan hastalarda daha kısa bulundu, aradaki fark istatistiksel olarak anlamlı değildi (p=0,450).
4. İki grup arasında hastanede mortalite ve postoperatif ilk 30 günlük mortalite oranlarında fark saptanmadı.

Nonrandomize bir çalışma olması ve hasta sayısının toplam 200’de kalmış olması çalışmanın en önemli kısıtlıksıdır. Çalışmanın sonunda, istatistiksel anlam görülme de, lökofiltrasyon yapılan grubun lehine bulgular elde edilmiştir.
7. ÖZET

KALP CERRAHİSİNDE KULLANILAN ERİTROSİT SÜSPANSİYONLARININ FİLTRE EDİLİR EDİLMEMESİNİN AMELİYAT SONRASI KOMPLİKASYONLARA ETKİSİ

Anahtar sözcükler: transfüzyon; lökofiltrasyon; kalp cerrahisi; enfeksiyon; mortalite
8. SUMMARY

THE ROLE OF LEUKOFILTRATION OF BLOOD COMPONENTS DURING CARDIAC SURGERY

Ceydilek, B., Ankara University Faculty of Medicine, Thesis in Internal Medicine, Ankara, 2008. It’s reported that blood transfusion has a major impact on postoperative mortality and morbidity via immunomodulation. In this study we retrospectively compared leukocyte depleted and nondepleted packed red blood cells (pRBC) in cardiac surgery on postoperative infection, multiorgan failure, hospital in days and mortality rates. Hundreded patients who received leukofilrerd blood components were compared with another group who received regular blood components which their data were retrieved from TurkoScore. Preoperative risk assessment was performed by using EuroSCORE. Preoperative variables were comparable between the two groups. All the blood components were prepared according to the European Guidelines. The number of pre and postoperative transfusion of pRBCs were not different between the two groups. Although it was not significant, postoperative infection rates and internal care unit hospitalisation days were found to be shorter in leukofilrerd group (p=0.311, p=0.450). There were no differences neither in the incidence of MODS nor in hospital mortality rates (p=1.000 ve 0.500). In this study, we were not able to demonstrate any benefit of leukofilration of blood components in cardiac surgery. We definitely need future double blinded randomizedand prospective studies with larger number of patients.

Key words: transfusion; leukoreduction; cardiac surgery; infection; mortality
9. KAYNAKLAR

