ANTERIOR COMMUNICAN ARTER ANATOMİSİ VE VARYASYONLARI

UZMANLIK TEZİ

Dr Emel AVCI

Sorumlu Öğretim Üyesi:
Prof Dr Ahmet ERDOĞAN

Ankara - 1999
İÇİNDEKİLER

ÖNSÖZ

GENEL BİLGİLER

MATERIAL VE METOD

SONUÇLAR

TARTIŞMA

ÖZET

REFERANSLAR
ÖNSÖZ

Bu araştırma Nöroşirürjî Anabilim Dalı ve Anatomî Anabilim Dalı ile birlikte ortak sürdürülmuştur. Bu araştırmanın tüm saflarında yardımcıları esirgemeyen Sayın Prof. Dr. Nihat Egemen’e, Anatomî Anabilim Dalı öğretim üyesi Sayın Doç. Dr. İbrahim Tekdemir’e, Uzman Dr. Aysun Uz’a, bu çalışmanın tamamlanmasında önerileri ve fikirleri ile her zaman destek olan tez hocam Sayın Prof. Dr. Ahmet Erdoğan’a, eğitimim ve öğrenimimde emeği olan tüm hocalarına, aileme ve çalışma arkadaşlarına teşekkür ediyorum.

Dr. Emel AVCI
GENEL BİLGİLER

Embriyolojik olarak birinci aortik arkus embriyo 2mm (X. safha) iken gelişirken ikinci aortik arkus ise embriyo 4,5 mm (XI. safha) olduğunda gelişmeye başlar. Bu iki safha sırasında ilkel internal karotid arter ve trigeminal arterler birinci aortik arkın dalları olarak bulunurlar. Bunların dorsalinde andiferansiyeye endotelle dönüle geniş bir plexus bulunur (Resim 1).

Resim 1: 4 mm. Boyutunda embriyoda arterlerin görünümü (Kaynak No: 4'den alınmıştır)
Embriyo 3-5 mm olduğunda (XIII. safha) internal karotid arterlerin dorsalinde bulunan endotelyal kanallar pleksusu baziler arterin öncüsü olan bir çift longitudinal nöral arter ayrımlaşır. XIII. safhada embriyonun boyutu 4-6mm olduğunda ilkел internal karotid arterler üçüncü aortik arıkın uzantıları olarak belirmeye başlar. Her bir internal karotid arter primitif olfaktor arter olarak dorsalde yer alan longitudinal nöral arterle birleşecek olan kaudal dala ayrılır. Longitudinal nöral arterler segmental olarak kranialde başta primitif trigeminal arter olmak üzere otik ve hipoglossal arterler ile internal karotid arterlerden, kaudalde ise dorsal aortadan kaynaklanan birinci servikal segmental arterlerce beslenirler. XIV. safhada embriyonun boyutu 5-7 mm olduğunda internal karotid arter artık üçüncü aortik arıkın uzantısı olarak iyice belirginleşmiştir ve ilkel maksiller ve dorsal oftalmik dalları vardır. Üçüncü aortik arıkın internal karotid arterin medialinde olan bir diğer uzantısı ileride eksternal karotid arter olarak olan ventral faringeal arterdir. Bu safhada daha önceden bir çift olarak her iki yanda bulunan longitudinal nöral arterler ilkel baziler arteri oluşturmak üzere orta hatta birleşmeye başlarlar. XIII. safhada gelişmiş olan primitif segmental arterler gerilemeye başlarlar ve baziler sistemle olan ana bağlantlı artık posterior kommunikan arter vasıtası ile olur.
XV. ve XVI. saftada embriyo 7-11mm boyutundadır ve bu safhada üç farklı sistem ayırd edilebilir. Birincisi, internal karotid arter ve bunun dalları olan maksiller arter, ilkel dorsal oftalmik arter, anterior koroidal arter, ilkel orta serebral arteri temsil eden birkaç dalcık ve ilkel olfaktor arterin kökünden kaynaklanan ilerideki anterior serebral arterlerdir. İkincisi, ileride eksternal karotid arter olarak bilinen ventral faringeal arter olup üçüncüsü ise, rostralde posterior serebral
arterin, kaudalde vertebral arterin belirginleşmeye başladığı baziler-vertebral sistemdir. XVII. sahıda embriyo yaklaşık 11-14mm boyundadır ve internal karotid arter ilk dalı anterior koroidal arter, ikinci dalı orta serebral arter olmak üzere ayrılmışmasına devam etmektedir (5). Anterior serebral arter iyice belirginleşmiş olup karşı taraftaki eşdeğerleri ile birleşmek üzere orta hattı geçer ve embriyo 21-24mm boyutunda olduğunda 44. günde ACoA anterior pleksustan gelişir (4). Bu gelişimi nedeni ile doğumdan sonra bir çok varyasyonları gözlenir (Padget 1944) (19). Klasik olarak bu arter her iki anterior cerebral arterin lamina terminalis içinde birleşmesi ile oluşur (19) (Resim 3).

Resim 3: 24 mm Boyutunda emriyoda arterlerin görünümü
Kaynak No: 4'den alınmıştır.)
Yaşargil'e göre ACoA' in uzunluğu ortalama 0,1 - 3 mm dir (19). Normal genişliği 1,0 - 3,0 mm olup, hipoplazik olgularda (0,5 - 1,0 mm), belirgin hipoplazik olgularda ise (0,1 - 0,5 mm) arasındadır. Hiperplazik olgularda ise (>3mm) üzerindedir. Normal ACoA eşit çapta iki anterior cerebral arterin birleşmesi ile oluşur. Wilson ve arkadaşları (1954), ACoA olguların % 85’inde bir taraf A1 segmentinde hipoplazi bulmuşlardır (19). Bununla birlikte % 75 olguda ACoA tek bir basit kanal olarak bulunmuştur (Ven Mittervalner 1955), (19). Busse (1921), 400 kadavra üzerinde yaptığı çalışmada 227 olguda çeşitlilik saptamıştır (19). Bunlar dublikasyon, triplikasyon, fenestrasyon, retiküler patern, loop ve bridgeler olarak tanımlanmıştır (Resim 4).

Bunlar (Resim 6):

1) %65 olguda tek bir dal halinde ACoA'den çıkarlar ve bu ana trunktan 2-3 mm sonra bir çok dal daha çıkar. %35 oranında ise direkt ACoA'den 3-10 arasında değişen dallar şeklinde çıkarlar.

2) Bazı olgularda küçük veya belirgin geniş 3 adet A2 nin inferior duvarından veya bunun 5-10 mm distalinden çıkarlar.
3) Bazı olgularında tek A2 segmenti mevcut olup bu dallar A2 nin orijininden ve 5-10 mm distalinden çıkar.

4) Bir kadavradı ise bu dallar normal ACoA'den değil de normal A2 segmentinde ve ACoA'in 12 mm distalinden çıktığı görülmuştur.

5) Bazı olgularında bu perforan arterler hipoplazik olan ACoA'den çıkar.

6) Bu perforanlar 1., 2., 3. ACoA'den veya bunların hepsinden çıkabilirler (19).

Resim 6: AcoA'den çıkan perforan arterler, çıkış yerleri ve sayıları: (Kaynak No: 18)
Resim 7: AcoA Varyasyonları
A: Aplazi
B: Azigos A₂
C: 3 A₂ (Korpus kallosumun median arter) (Kaynak No: 18)

Dr. Perlmutter ve A.L. Rhonton 1976 yılında 50 kadavra beyni üzerinde çalışmışlar ve A1 segmentinin uzunluğunu 7,2 - 18 mm arasında, (ortalama 12,7 mm) olarak bulmuşlardır (11). ACoA'ın uzunluğu ise 2-3 mm arasında olup alt ve üst sınırları 0,3-7 mm'dir. Daha uzun olan olgularda tortuos (kivrım), kink (büküntü) ve curve (kavis) yaptığı görülmuştur. A1 segmentinin çapı 0,9- 4 mm (ortalama 2,6 mm), ACoA çapı ise 0,2 - 3,4 mm (ortalama 1,5 mm) arasında değişmektedir (11).

ACoA %60 olguda bulunmuş, %30 olguda çift, %10 olguda ise 3 adet olduğu görülmüştür. 2. veya 3. ACoA'ın olduğu olgularda bu arterler ya aynı genişliktedirler yada çapları birbirlerinden belirgin olarak farklıdır. Diğer ilginç bir anomali ise 3. bir anterior serebral arter veya median anterior serebral arter olup 50 kadavra olgusundan 1 tanesinde rastlanmıştır. Bu arter Wilder'in termatic arteri olarak da bilinir ve %1,5-%10 olguda rastlanır (11). ACoA'ın genişliği ile sağ ve sol A1 arasındaki genişlik farkı arasında doğrudan bağlanı olduğu gösterilmiştir. Bu fark artar ise ACoA in çapının arttığı belirtilmiştir. Geniş ACoA olgularında sağ ve sol A1 arasındaki çap farkınında belirgin farklı olduğu görülmüştür. Rhoton'un çalışmasında her iki A1 arasındaki fark, % 50 olguda 0,5 mm veya daha fazla bulunmuş iken % 12 olguda 1 mm veya daha fazla bulunmuştur (11) . ACoA çapının ortalama 1,2 mm olduğu olgularda sağ ve sol A1 arasındaki fark 0,5 mm veya daha az bulunmuştur. ACoA çapının 1,5 mm olduğu olgularda ise sağ ve sol A1 arasındaki çap farkının 0,5 mm den fazla olduğu
saptanmıştır. Sağ ve sol A1 % 74 olguda eşit genişlikte, % 14 olguda sağ taraf daha geniş, % 12 olguda ise sol taraf daha geniş olarak bulunmuştur (11).

Resim 8: ACoA'den çıkan perforanların beslediği alanlar (Midsagittal kesit)

1. Corpus calosumun genisidi 2. Corpus calosumun rostrumu.
6. Parolfactor gyrus 7. Septum pellucidum (Kaynak no 14'den alınmıştır)

Resim 9: AcoA ve perforanlarının anterior interhemisferik görünümü (Kaynak no: 14'den alınmıştır.)
ACoA'dan çıkan büyük dallardan biri olan korpus kallosumun median arteri hemisferin medial yüzeyinin büyük bir bölümünü sular. Diğer büyük dal olan subkallosal arter ise seyri boyunca proksimal ve distal kollateral dalar verir. Proksimal kollateral dalar lamina terminalis, hipotalamusun preoptik alanı, anterior komüssür, septal bölge ve bazen de subkallosal ve paraterminal girisa yayılırlar. Distal dalar ise korpus kallosumun rostrumunu ve genusunu sularlar.

Serizawa ve arkadaşlarının yaptığı çalışmada ACoA varyasyonları daha önce yapılan çalışmalarından fazla bulunmuştur (14). Bu çalışmada 30 kadavra beyni kullanılmış ve yalnızca % 40'ında tek lümen halinde ACoA bulunmuştur. % 60 olguda ACoA'nın anomalisine rastlanmıştır. Bu çalışmada perforan dalar üç gruba ayrılmış olup bunlar subkallosal dal, kiazmatik dal, hipotalamik dallardır. Bu perforan dallara bir tek korpus kallosumun median arterinin bulunduğu olguda ve azigos arterin bulunduğu olguda rastlanmamıştır. Bu olgularda perforan dallarin direkt bu arterlerden çıktığı ve subkallosal alanı beslediği gözlenmiştir.

Perforan arterler interhemisferik yaklaşımda çok zor görülebilirler. Bununla birlikte şu üç nokta unutulmamalıdır. (14)

1) Hipotalamik dallar ACoA'in bir tarafından kaynaklanırlarken karşı anterior hipotalamusta sonlanabilirler.
2) Subkallosal dallar hipotalamik bölgeni besleyebilirler, bazen bilateral olarak beslerler.

3) ACoA'in anomalilerinde perforanlar arterin çapına bakılmaksızın herhangi bir segmentten çıkabilirler.

ACoA anevrizmalarında perforanların ayrılmazı ve korunması esastır (18,19). Subkallosal dal tek ve en geniş dal olup bilateral subkallosal ve hipotalamik bölgede sonlanırlar.

MATERYAL VE METOD

Beyin dokusuna zarar verilmeden frontal lob yukarı doğru kaldırdıktan sonra, önde (üstte) kiazma optikus, infindibulum ve a. karotis internanın supraklinoid bölümü ile arkada (aşağıda) medulla oblongata kesilerek beyin dokusu kafatasından çıkarıldı.

Çıkarılan beyinler yıkandıktan sonra her iki a. karotis interna ile a. basilarise bu arterlerin çaplarına uygun birer kateter yerleştirildi. Bu kateterler aracılığı ile 20 cc lik enjektör kullanılarak arteriyel sistemdeki pihtılar temizleninceye kadar serum fizyolojik ile yıkandı. Yıkama işlemi tamamlandıktan sonra arter sistemindeki hava aspiratörle emildi ve kateterlerden beyinlerin bir kısmına çini
mürekkebi ile renklendirilmiş lateks, bir kısına ise kırmızı silikon enjekte edildi. Enjeksiyonun sonunda kateterler çıkarıldı ve arterler bağlandı. Beyin dokusunu biraz sertleştirebilmek için en az 3 hafta % 10 luk formaldehid solüsyonunda bekletildi.

Tespit işlemi tamamlandıktan sonra beyinler, A.Ü. Tıp Fakültesi İbn-i Sina Hastanesi Nöroşirürji Kliniği Mikrocerrahi laboratuvarında Zeiss West Germany Op Mi (80104) mikroskop altında ACoA ve varyasyonları analiz edilip, ölçümleri yapıldı. Milimetrik ölçümlerde ise dijital kumpas kullanıldı.
SONUÇLAR

Toplam 25 taze kadavra beyini üzerinde yapılan bu çalışmada her iki A1 segmentinin boyu ve çapı, ACoA'in boyu, çapı, arterden çıkan perforan arterlerin çapları, lokalizasyonları ve ACoA'in malformasyonları incelenmiştir. Elde edilen bulgular şu başlıklar altında toplanmıştır.

1) Sağ ve sol A1 segmentinin boyu, çapı.

2) ACoA'in boyu, çapı ve varyasyonları.

3) ACoA'den çıkan perforan arterlerin sayısı, çapı, arterden çıkış lokalizasyonları ve beslediği alanlar.

1) SAĞ VE SOL A1 SEGMETİNİN BOYU VE ÇAPI

Marinkovic ve arkadaşlarının yaptığı çalışmada proksimal Anterior serebral arterin çapı ortalama 2,06 mm bulunmuştur (6,7,8). Yaşargil'e göre anterio serebral arterin çapı 1.0 mm - 3.00 mm arasında değişirken, hipoplasik olgularda (< 1,00 mm) ve belirgin hipoplasik olgularda ise (< 0,5 mm) olarak bulunmuştur (19).
İncelediğimiz 25 kadavra beyinde A1 segmentinin en geniş çapı 3,29 mm, en dar çapı ise 1,28 mm olarak bulunmuştur. Ortalama çap 2 mm dir. Sol A1'in çapı ortalama 2,1 mm iken sağ A1'in çapı 1,9 mm'dir. Bu çalışmada A1 segmentinde hipoplaziye rastlanılmamış olup tüm beyinlerde A1 segmentinin çapı 1 mm'nin üzerindedir (Resim 10).

Resim 10: Normal AcoA ve perforanları
<table>
<thead>
<tr>
<th></th>
<th>Sol A1 Çap</th>
<th>Sağ A1 Çap</th>
<th>Sol A1 Boy</th>
<th>Sağ A1 Boy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,44 mm</td>
<td>1,89 mm</td>
<td>12,99 mm</td>
<td>8,73 mm</td>
</tr>
<tr>
<td>2</td>
<td>1,94 mm</td>
<td>1,52 mm</td>
<td>9,15 mm</td>
<td>11,29 mm</td>
</tr>
<tr>
<td>3</td>
<td>1,28 mm</td>
<td>1,46 mm</td>
<td>10,77 mm</td>
<td>11,86 mm</td>
</tr>
<tr>
<td>4</td>
<td>1,78 mm</td>
<td>2,21 mm</td>
<td>12,98 mm</td>
<td>12,15 mm</td>
</tr>
<tr>
<td>5</td>
<td>2,39 mm</td>
<td>2,79 mm</td>
<td>13,4 mm</td>
<td>11,29 mm</td>
</tr>
<tr>
<td>6</td>
<td>1,79 mm</td>
<td>2,64 mm</td>
<td>15,5 mm</td>
<td>15,03 mm</td>
</tr>
<tr>
<td>7</td>
<td>2,15 mm</td>
<td>1,74 mm</td>
<td>11,1 mm</td>
<td>13,85 mm</td>
</tr>
<tr>
<td>8</td>
<td>2,06 mm</td>
<td>1,63 mm</td>
<td>10,2 mm</td>
<td>11,38 mm</td>
</tr>
<tr>
<td>9</td>
<td>1,48 mm</td>
<td>1,6 mm</td>
<td>12,5 mm</td>
<td>12,98 mm</td>
</tr>
<tr>
<td>10</td>
<td>2,02 mm</td>
<td>1,32 mm</td>
<td>13,07 mm</td>
<td>10,89 mm</td>
</tr>
<tr>
<td>11</td>
<td>2,28 mm</td>
<td>1,92 mm</td>
<td>9,7 mm</td>
<td>10,94 mm</td>
</tr>
<tr>
<td>12</td>
<td>2,11 mm</td>
<td>1,79 mm</td>
<td>12,99 mm</td>
<td>11,2 mm</td>
</tr>
<tr>
<td>13</td>
<td>2,34 mm</td>
<td>1,76 mm</td>
<td>11,8 mm</td>
<td>11,01 mm</td>
</tr>
<tr>
<td>14</td>
<td>3,29 mm</td>
<td>2,19 mm</td>
<td>8,88 mm</td>
<td>10,27 mm</td>
</tr>
<tr>
<td>15</td>
<td>2,24 mm</td>
<td>1,48 mm</td>
<td>13,33 mm</td>
<td>12,71 mm</td>
</tr>
<tr>
<td>16</td>
<td>1,45 mm</td>
<td>1,41 mm</td>
<td>7,01 mm</td>
<td>8,35 mm</td>
</tr>
<tr>
<td>17</td>
<td>1,83 mm</td>
<td>1,28 mm</td>
<td>12,4 mm</td>
<td>10,6 mm</td>
</tr>
<tr>
<td>18</td>
<td>2,38 mm</td>
<td>2,48 mm</td>
<td>12,67 mm</td>
<td>13,95 mm</td>
</tr>
<tr>
<td>19</td>
<td>2,16 mm</td>
<td>2,4 mm</td>
<td>13,86 mm</td>
<td>11,96 mm</td>
</tr>
<tr>
<td>20</td>
<td>1,84 mm</td>
<td>2,02 mm</td>
<td>11,9 mm</td>
<td>12,57 mm</td>
</tr>
<tr>
<td>21</td>
<td>1,65 mm</td>
<td>1,87 mm</td>
<td>8,54 mm</td>
<td>10,5 mm</td>
</tr>
<tr>
<td>22</td>
<td>2,29 mm</td>
<td>2,21 mm</td>
<td>8,51 mm</td>
<td>12,29 mm</td>
</tr>
<tr>
<td>23</td>
<td>2,59 mm</td>
<td>2,07 mm</td>
<td>13,25 mm</td>
<td>14,30 mm</td>
</tr>
<tr>
<td>24</td>
<td>1,65 mm</td>
<td>1,71 mm</td>
<td>10,61 mm</td>
<td>11,2 mm</td>
</tr>
<tr>
<td>25</td>
<td>2,36</td>
<td>1,96 mm</td>
<td>10,52 mm</td>
<td>9,06 mm</td>
</tr>
</tbody>
</table>
Resim 11: Normal ACoA ve perforanları

Sağ ve sol A1 arasındaki çap farkı vakaların 8 (% 32) inde 0,5mm'nin üzerinde olup sadece 1 oğuda bu farkı 1 mm'nin üzerinde % 4). Bu 8 olgununda 5 taneline ACoA'ın çapı da 1,5 mm'nin üzerinde bulunmuştur. Her iki A1 arasındaki çap farkının 0,5 mm ve üzerinde olan olgularda ACoA'ın ortalama çapı 1,3 mm olarak bulundu. İncelenen 25 beyinin 15 (%60) tanesinde sol A1'ın çapı daha geniş olup, 10 (%40) olguda ise sağ A1 daha geniş olarak bulunmuştur (Tablo 2).
<table>
<thead>
<tr>
<th>ACoA Çapı</th>
<th>Sağ ve sol A1 Arasındaki Çap Farkı</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,95</td>
</tr>
<tr>
<td>2</td>
<td>1,23</td>
</tr>
<tr>
<td>3</td>
<td>1,73</td>
</tr>
<tr>
<td>4</td>
<td>0,59</td>
</tr>
<tr>
<td>5</td>
<td>2,31</td>
</tr>
<tr>
<td>6</td>
<td>2,25</td>
</tr>
<tr>
<td>7</td>
<td>1,81</td>
</tr>
<tr>
<td>8</td>
<td>1,23</td>
</tr>
<tr>
<td>9</td>
<td>1,23</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1,24</td>
</tr>
<tr>
<td>12</td>
<td>1,7</td>
</tr>
<tr>
<td>13</td>
<td>1,38</td>
</tr>
<tr>
<td>14</td>
<td>2,01</td>
</tr>
<tr>
<td>15</td>
<td>0,85</td>
</tr>
<tr>
<td>16</td>
<td>1,17</td>
</tr>
<tr>
<td>17</td>
<td>1,94</td>
</tr>
<tr>
<td>18</td>
<td>1,06</td>
</tr>
<tr>
<td>19</td>
<td>1,08</td>
</tr>
<tr>
<td>20</td>
<td>0,94</td>
</tr>
<tr>
<td>21</td>
<td>1,9</td>
</tr>
<tr>
<td>22</td>
<td>1,16</td>
</tr>
<tr>
<td>23</td>
<td>1,58</td>
</tr>
<tr>
<td>24</td>
<td>1,66</td>
</tr>
<tr>
<td>25</td>
<td>1,29</td>
</tr>
</tbody>
</table>
2) ANTERIOR KOMMUNİKAN ARTERİN BOYU, ÇAPı VE VARYASYONLARI

Bu çalışmada ACoA incelenen tüm beyinlerde gözlemdi. ACoA'in çapı 0,59 mm - 2,31 mm arasında değişken olup ortalama çap 1,45 mm olarak bulundu, boyu ise 0,8 mm - 2,95 mm arasında (ortalama 1,7 mm) olarak tespit edildi.

Resim 12: AcoA tortuositeli ve trabeküler indentasyonu

13 (%52) Beyinde ACoA normal olarak bulundu. İncelenen beyinlerde en sık karşılaşılan varyasyon ACoA'in dublikasyonudur. Toplam 9 (%36) beyinde rastlanmıştır.

Resim 13: ACoA tortuositesi ve trabeküler indentasyonu

T.C. YÜKSEKÖĞRETİM KURULU
DOKUMANASYON MERKEZİ
<table>
<thead>
<tr>
<th>ACoA Çap.</th>
<th>ACoA Boyu</th>
<th>Varyasyon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Proksimal :0,37 Distal :1,95</td>
<td>Proksimal :2,12 Distal :1,1 Dublikasyon</td>
</tr>
<tr>
<td>2</td>
<td>Proksimal :0,26 Distal :1,23</td>
<td>Proksimal :3,52 Distal :2,95 Dublikasyon</td>
</tr>
<tr>
<td>3</td>
<td>Proksimal :0,3 Distal :1,73</td>
<td>Proksimal :3,3 Distal :2,2 Dublikasyon</td>
</tr>
<tr>
<td>4</td>
<td>0,59</td>
<td>1,54 Normal ACoA</td>
</tr>
<tr>
<td>5</td>
<td>2,31</td>
<td>1,24 Normal ACoA</td>
</tr>
<tr>
<td>6</td>
<td>2,25</td>
<td>1,4 Normal ACoA</td>
</tr>
<tr>
<td>7</td>
<td>1,81</td>
<td>1,47 Normal ACoA</td>
</tr>
<tr>
<td>8</td>
<td>Proksimal :0,2 Distal :1,23</td>
<td>Proksimal :1,2 Distal :0,8 Dublikasyon +Azigos A2 Trabeküler İndentasyon</td>
</tr>
<tr>
<td>9</td>
<td>Proksimal :0,2 Distal :1,23</td>
<td>Proksimal :1,3 Distal :0,83 Dublikasyon + Trabekülsasyon</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1,69 Normal ACoA</td>
</tr>
<tr>
<td>11</td>
<td>1,24</td>
<td>1,66 Normal ACoA</td>
</tr>
<tr>
<td>12</td>
<td>1,7</td>
<td>0,95 Normal ACoA</td>
</tr>
<tr>
<td>13</td>
<td>Proksimal :0,12 Distal :1,38</td>
<td>Proksimal :3,86 Distal :1,73 Dublikasyon</td>
</tr>
<tr>
<td>14</td>
<td>2,01</td>
<td>2,57 Tortuos ACoA Trabekülsasyon</td>
</tr>
<tr>
<td>15</td>
<td>0,85</td>
<td>1,51 Normal ACoA</td>
</tr>
<tr>
<td>16</td>
<td>Proksimal :1,15 Distal :1,02</td>
<td>Proksimal :4,72 Distal :2,55 Dublikasyon</td>
</tr>
<tr>
<td>17</td>
<td>1,94</td>
<td>1,33 Normal ACoA</td>
</tr>
<tr>
<td>18</td>
<td>Proksimal :0,19 Distal :1,06</td>
<td>Proksimal :7,13 Distal :1,37 Dublikasyon</td>
</tr>
<tr>
<td>19</td>
<td>Proksimal :0,37 Orta :1,02 Distal :1,08</td>
<td>Proksimal :4,64 Orta :1,47 Distal :1,51 Fenestrasyon + Triplikasyon</td>
</tr>
<tr>
<td>20</td>
<td>0,94</td>
<td>1,69 Normal ACoA</td>
</tr>
<tr>
<td>21</td>
<td>1,9</td>
<td>2,02 Normal ACoA</td>
</tr>
<tr>
<td>22</td>
<td>Proksimal :0,4 Orta :0,71 Distal :1,16</td>
<td>Proksimal :4,58 Orta :3,46 Distal :2,16 Triplikasyon + Fenestrasyon</td>
</tr>
<tr>
<td>23</td>
<td>1,58</td>
<td>1,35 Normal ACoA</td>
</tr>
<tr>
<td>24</td>
<td>1,66</td>
<td>1,84 Normal ACoA</td>
</tr>
<tr>
<td>25</td>
<td>Proksimal :0,77 Distal :1,29</td>
<td>Proksimal :2,58 Distal :0,9 Dublikasyon</td>
</tr>
</tbody>
</table>
TABLO 4: ACoA VARYASYONLARI

<table>
<thead>
<tr>
<th>NORMAL</th>
<th>DUBLIKASYON</th>
<th>TRABEKÜLASYON TORTUOS ACoA</th>
<th>TREPLIKASYON FENESTRASYON</th>
<th>TOPLAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 (% 52)</td>
<td>Sadece Dublikasyon 6 (% 28) Dublikasyon+ Trabekülayan 2 (% 8)</td>
<td>1 (% 4)</td>
<td>2 (% 8)</td>
<td>25</td>
</tr>
</tbody>
</table>

Dublikasyonlu ve triplikasyonlu ACoA olgularında proksimal kanalin distal kanaldan her zaman daha ince olduğu gözlandi.

Resim 14: AcoA'de füzyon + sağ A1-A2 birleşim yerinde füziform dilatasyon
3. ANTERIOR KOMMUNİKAN ARTERDEN ÇIKAN PERFORAN ARTERLERİN SAYISI, ÇIKIŞ YERLERİ VE SONLANMALARI

ACoA'den çıkan perforanların sayısı 1-6 arasında değişiyordu. Ortalama 2,6 adet olup, çapları ise 0,16 mm - 0,46 mm arasında (ortalama 0,23 mm) bulundu. Subkallosal alana giden perforanların çapları daha geniş olup 0,33 mm ile 0,4 mm arasında (ortalama 0,35 mm) dir. ACoA'den çıkan perforanların birbirleri ile de anastomozları mevcut olup eğer subkallosal alana giden bir perforan varsa bu perforan ana trunk halinde olup, bundan birkaç mm sonra hipotalamus'a giden multipl perforan arterlerin çıktıği ve bunların birbiri ile anastomoz yaptığı görüldü.

Resim 15: AcoA’ın Triplikasyonu
Subkallosal alana giden perforan arterin en kalın perforan olduğu ve genelde 1/3 medialden çıktığı görüldü. Suprakianzmatik alana ve kiazmaya giden perforan arterlerin direkt ACoA'den çıktığı görüldü. Dublikasyonlu ve triplikasyonlu olgularda perforan arterlerin proksimal kanal incede olsa % 75 oranında bu arterden çıktığı görüldü. Perforan arterlerin çoğunun ACoA'in 1/3 medialinden çıktığı görülmüştür. Suprakianzmatik alan ve lamina terminalise giden perforanların çoğunun ACoA'den direkt çıktığı görüldü, hipotalamus ve subkallosal alana giden peforanların ise birbirleri ile genelde anastomoz yaptıkları ve bir ana trunktan çıktıp bu trunktan bir kaç mm sonra multipl kanallar şeklinde dağıldıkları tespit edildi.

Resim 16: ACoA'den Çıkan Perforanlar
<table>
<thead>
<tr>
<th>Perforanların Sayısı</th>
<th>Perforanların Çıkış</th>
<th>Sonlanmaları</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5</td>
<td>Proksimaldeki kanaldan 5Adet</td>
<td>Kiazma, lamina terminalis, Anterior hipotalamus</td>
</tr>
<tr>
<td>2 3</td>
<td>Proksimalden 1 adet Distal kanaldan 2 adet</td>
<td>Lamina terminalis, subkallosal alan, hipotalamus</td>
</tr>
<tr>
<td>3 3</td>
<td>Distal kanaldan</td>
<td>Hipotalamus</td>
</tr>
<tr>
<td>4 4</td>
<td>Basit kanalın medial ve 1/3 sağ lateral</td>
<td>Lamina terminalis</td>
</tr>
<tr>
<td>5 3</td>
<td>1/3 medial</td>
<td>Subkallosal alan</td>
</tr>
<tr>
<td>6 2</td>
<td>Basit kanalın 1/3 sağ lateral, ortada</td>
<td>Lamina terminalis, subkallosal alan</td>
</tr>
<tr>
<td>7 2</td>
<td>1/3 medial</td>
<td>Lamina terminalis, Subkallosal alan</td>
</tr>
<tr>
<td>8 1</td>
<td>Proksimal kanaldan</td>
<td>Lamina terminalis</td>
</tr>
<tr>
<td>9 1</td>
<td>1/3 sağ lateral</td>
<td>Lamina terminalis</td>
</tr>
<tr>
<td>10 2</td>
<td>1/3 sol lateral</td>
<td>Subkallosal alan, Anterior hipotalamus, lamina terminalis</td>
</tr>
<tr>
<td>11 2</td>
<td>1/3 medial</td>
<td>Anterior hipotalamus</td>
</tr>
<tr>
<td>12 4</td>
<td>Distalden 3 adet</td>
<td>Anterior hipotalamus</td>
</tr>
<tr>
<td>13 4</td>
<td>Proksimal1 adet, Distal 3 adet</td>
<td>Anterior hipotalamus, Lamina terminalis</td>
</tr>
<tr>
<td>14 3</td>
<td>1/3 medial</td>
<td>Lamina terminalis, hipotalamus</td>
</tr>
<tr>
<td>15 2</td>
<td>1/3 medial</td>
<td>Lamina terminalis</td>
</tr>
<tr>
<td>16 4</td>
<td>1/3 medial</td>
<td>Kiazma, subkallosal alan, hipotalamus</td>
</tr>
<tr>
<td>17 1</td>
<td>1/3 medial</td>
<td>Lamina terminalis</td>
</tr>
<tr>
<td>18 3</td>
<td>1/3 sol lateral</td>
<td>Subkallosal alan, hipotalamus, suprakiazmatik alan</td>
</tr>
<tr>
<td>19 6</td>
<td>Proksimalden 3 adet en distaldekinden 3 adet</td>
<td>Lamina terminalis, hipotalamus, suprakiazmatik alan</td>
</tr>
<tr>
<td>20 2</td>
<td>1/3 sağ lateral 1/3 sol lateral</td>
<td>Lamina terminalis</td>
</tr>
<tr>
<td>21 3</td>
<td>1/3 medial</td>
<td>Suprakiazmatik alan, lamina terminalis, subkallosal alan</td>
</tr>
<tr>
<td>22 2</td>
<td>1/3 medial</td>
<td>Suprakiazmatik alan, lamina terminalis</td>
</tr>
<tr>
<td>23 1</td>
<td>1/3 sol lateral</td>
<td>Subkallosal bölge, lamina terminalis</td>
</tr>
<tr>
<td>24 1</td>
<td>1/3 medial</td>
<td>Subkallosal alan</td>
</tr>
<tr>
<td>25 Büy. toplam 3 dal çıkarıyor</td>
<td>Proksimaldeki kanaldan çıkarıyor</td>
<td>Suprakiazmatik alan, hipotalamus</td>
</tr>
</tbody>
</table>
Biz çalışmamızda ACoA'den çıkan perforanları büyük ve küçük dallar olarak sınıflandırduk. Küçük dallar suprakiazmatik alanda, kiazma ve lamina terminaliste sonlanıyordu. Büyük olan perforan arter ise subkallosoal arter olup diğer büyük dal olan korpus kallosumun median arterine 1 (%4) olguda rastlanmıştır. Azigos A2 ve korpus kallosumun median arterinin olduğu olgularda da 1' er adet ince perforan arter bulundu.

Resim 17: AcoA dimple
TARTIŞMA

ACoA; bu bölge anevrizmaları ve parasellar yerleşimli tümörlerin cerrahisinde mevcut perforanları ve varyasyonları ile postop görülebilecek komplikasyonlar açısından önemlidir.

Resim 18: AcoA’de Triplikasyon ve fenestrasyon

Bu çalışmada bulunan varyasyonların çeşitli yazarların bulguları ile karşılaştırılması

<table>
<thead>
<tr>
<th></th>
<th>Perlmutter/Rhoton</th>
<th>Yaşargil</th>
<th>Serizawa ve Arkadaşları</th>
<th>Bizim Çalışmamız</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tek ACoA</td>
<td>% 60</td>
<td>% 57</td>
<td>% 40</td>
<td>% 52</td>
</tr>
<tr>
<td>Dublikasyon</td>
<td>% 30</td>
<td>% 20,5</td>
<td>% 18</td>
<td>% 36</td>
</tr>
<tr>
<td>Triplikasyon</td>
<td>% 10</td>
<td>% 18,5</td>
<td>----</td>
<td>% 8</td>
</tr>
</tbody>
</table>
ACoA'den çıkan perforan arterler daha önce birçok yazar tarafından yayınlanmış olup, 1970 yılında Yaşargil ve arkadaşlarına göre bu perforan arterlere hipotalamik arterler adını vermişlerdir (19). Bunlar infundibulum, optik kiazma, subkallosal bölge ve hipotalamusun preoptik alanını besleyen arterlerdir.

Marinković bu perforan arterleri iki gruba ayırmış bunlar büyük ve küçük dallardır. Ayrıca bu büyük dallar iki gruba ayrılmış olup bunlar subkallosal arter ve korpus kallosum median arteridir (8). Vincentelli ve arkadaşlarına göre bunlar besledikleri alana göre gruplandırılmış ve dört gruba ayrılmışlardır (17). Serizawa ve arkadaşlarına göre de bu perforanlar besledikleri alana göre 3 gruba ayrılmış olup bunlar subkallosal, hipotalamik ve kiazmatik dallardır (14).

çalışmamızda bu perforanların sayısı 1-6 arasında değişmektedir. Literatürde bu perforanların sayısının 2-13 arasında değiştiği gösterilmiştir (1,15,19) . Literatürde anomali olan olgularda bu perforan arterlerin ACoA'in herhangi bir kanalından çıkabileceği belirtilirken bizim çalışmamızda, % 75 olguda bu perforan arterler ince olan proksimal kanaldan çıktığı gösterilmiştir (14,19) .

Marinković ve arkadaşlarının yaptığı çalışmada ACoA'in çapı 0,71-2,4 mm arasında , Rhoton ve arkadaşlarının çalışmasında ise 0,2-3,4 mm arasında bulunmuştur (8,11) . Yaşargil'in çalışmasında ise ACoA'in normal genişliği 1,0-3,0 mm arasındadır (19) . Bizim çalışmamızda, ACoA'in çapı 0,59-2,31 mm arasındadır ve ortalama çap 1,45 mm olarak bulunmuştur. Yine Rhoton'a göre ACoA'in uzunluğu 7,2 - 1,80 mm (ortalama 1,27 mm) iken Marinković ve arkadaşlarının yaptığı çalışmada 0,8-4,6 mm (ortalama 2,9 mm) dir (11,8,19) .Bizim çalışmamızda ise boy 0,8 -2,95 mm arasında olup ortalama boy 1,7 mm oldur. Literatür ile karşılaştırıldığında belirgin bir fark gözlenmemiştir.
Resim 19: Azigos A2+AcoA’de dublikasyon

Resim 20: 3 adet A2
ÖZET

Beyindeki vasküler yapılar içinde en önemlilerinden birisi olan ACoA’ın perforanlarını, varyasyonlarını ve boyutlarını tanımlamak amacı ile bu çalışma yapılmıştır. Bu amaçla 25 taze kadavra beyininde ACoA’ın mikroskopik anatomisi incelenmiştir.

İncelenen tüm beyinlerde ACoA gözlenmiş olup çapı 0,59-2,31 mm arasında (ortalama 1,45 mm) olarak belirlenmiştir. Boyu ise 0,8-2,95 mm (ortalama 1,7 mm) dir.

ACoA anterior sirküslasyon anevrizmalarının en sık görüldüğü yer olup, buradan çıkan perforan arterlerin korunması önemlidir. İncelediğimiz tüm beyinlerde perforan arterler görülmüştür. Literatürdeki diğer çalışmalarından farklı olarak varyasyon gösteren olguların % 75’inde bu perforanların büyük bir kısımının proksimaldeki ince ACoA’den çıktığı gözlenmiştir. Bu nedenle ACoA anevrizması ameliyatta ortaya çıkarılırken perforan arterlerin distaldeki kalın ACoA kanalından değil de proksimaldeki ince kanaldan da çıkabileceğini unutulmamalıdır. Yine varyasyon gösteren

35
olgularda proksimaldeki ACoA kanalı her zaman distaldeki kanaldan daha incedir.

Bu bölge anevrizmalarında ve parasellar yerleşimli tümörlerde ACoA'den çıkan perforanlar önemli olup cerrahi esnasında bu arterin basit bir kanal olmadığı unutulmamalıdır.

14) Serizawa T, M.D., Saeki N, M.D., Yamawa A, M.D.
Microsurgical Anatomy and Clinical Significance of the
Anterior Communicating Artery and Its Perforating Branches:

15) Tulleken CAF. A study of the anatomy of the anterior
communicating artery with the aid of the operating

16) Vander Ark GD, Kempe LC; Classification of anterior
communicating aneurysms as a basis for surgical approach.

Gouaze A: Extracerebral course of the perforating branches of
the anterior communicating artery: Microsurgical anatomical

18) Yaşargil MG, Smith RD: Management of aneurysms of the
anterior circulation by intracranial procedures. in Youmans JR
(ed). Neurological surgery: Philadelphia WB Saunders

19) Yaşargil MG, Smith YD, Young PH, Teddy PJ: Anterior
cerebral cartery complex . Microneurosurgery II. Stuttgart,