REVİZYON KALÇA PROTEZİ UYGULAMALARIMIZ VE DEĞERLENDİRİLMESİ

Dr. H. Ersin ADIGÜZEL

ORTOPEDİ VE TRAVMATOLOJİ ANABİLİM DALI
TIPTA UZMANLIK TEZİ

TEZ DANIŞMANI
Prof. Dr. Bahaddin GÜZEL

ANKARA
2010
Ankara Üniversitesi Tıp Fakültesi
Ortopedi ve Travmatoloji Anabilim/Bilim Dalı

Tıpta Uzmanlık eğitimi çerçevesinde yürütülmüş olan,

"Revizyon Kalça Protezi Uygulamalarımız ve Değerlendirilmesi" başlıklı, Dr. H. Ersin ADIGÜZEL’e ait bu çalışma aşağıdaki jüri tarafından Tıpta Uzmanlık Tezi olarak kabul edilmiştir.

Tez Savunma Tarihi: 11.05.2010

Prof. Dr. Derya DİNÇER

Ankara Üniversitesi Tıp Fakültesi
Ortopedi ve Travmatoloji Anabilim/Bilim Dalı Başkanı
Jüri Başkanı

Prof. Dr. Bahaddin CÜZEL
Ankara Üniversitesi Tıp Fakültesi
Ortopedi ve Travmatoloji Anabilim Dalı
Tez Danışmanı

Doç. Dr. S. Sinan BİLGİN
Ankara Üniversitesi Tıp Fakültesi
Ortopedi ve Travmatoloji Anabilim Dalı
Üye
TEŞEKKÜR

Bu tez çalışmasında, deneyimini, bilgilerini ve anlayısını esirgemeyen değerli hocam Prof. Dr. Bahaddin GÜZEL’e teşekkür ederim. Birçok alanda olduğu gibi artroplasti cerrahisi alanında da öncü olan Ankara Üniversitesi Tıp Fakültesi Ortopedi ve Travmatoloji Kliniğinde asistanlık eğitimini almış olmanın onurunu taşımaktayım. Asistanlık eğitimimi alanlarında alma şansına sahip olduğum ve bu süreçte yetişmemde büyük emeği geçen değerli hocalarım Prof. Dr. Ertan MERGEN, Prof. Dr. Derya DİNÇER, Prof. Dr. Yener SAĞLIK, Prof. Dr. Tarık YAZAR, Prof. Dr. Mehmet BİNNET, Prof. Dr. Bahaddin GÜZEL, Prof. Dr. Sinan ADİYAMAN, Prof. Dr. Mehmet DEMİRTAŞ, Prof. Dr. Ali Kemal US, Prof. Dr. Bülent ERDEMLİ, Prof. Dr. Yusuf YILDIZ, Prof. Dr. Hakan KINIK, Doç. Dr. Sinan BİLGİN’e ve asistanlığım boyunca eğitimime katkıda bulunan bütün uzman ağabeylerime; birlikte çalışma fırsatı bulduğum tüm asistan arkadaşlarına; tüm klinik personeli ve ameliyathane çalışanlarına, hayatım her aşamasında olduğu gibi eğitimim sırasında da hiç bir fedakarlıktan kazaınmayan kıymetli aileme; her zaman her konuda yanında olan ve olacağına inandığım sevgili eşime ve tez çalışmasında onlardan kullandığım zamanlar için özür diledüğim biricik oğullarım Kerem ve Efeme çok teşekkür ederim.

Dr. H. Ersin ADİGÜZEL
İÇİNDEKİLER

ONAY SAYFASI .. iii
TEŞEKKÜR .. iv
İÇİNDEKİLER .. v
KISALTMALAR .. viii
TABLOLAR DİZİNİ ... x
ŞEKİLLER DİZİNİ ... xi
RESİMLER DİZİNİ .. xii
1 . GİRİŞ ... 1
1.1. REVİZYON KALÇA ARTROPLASTİSİ ... 1
2 . GENEL BİLGİLER .. 3
2.1. KLİNİK DEĞERLENDİRME .. 3
 2.1.1 Fizik Muayene ... 5
 2.1.2 Laboratuar Testleri ... 6
 2.1.2.1 Aspirasyon .. 7
 2.1.3 Radyolojik Değerlendirme ... 8
 2.1.3.1 Artrografi .. 9
 2.1.3.2 Nükleer Değerlendirme .. 9
2.2. KEMİK KAYBI SINİFLANDIRILMASI .. 10
2.3. GREFT KULLANIMI .. 13
2.4. REVİZYON ENDİKASYONLARI ... 14
 2.4.1 ASEPTİK GEVŞEME ... 14
 2.4.2 Enfeksiyon .. 19
 2.4.2.1 Akut enfeksiyon .. 20
2.4.2.2 Subakut enfeksiyon ...20
2.4.2.3. Geç enfeksiyon ...20
2.4.3. Periprostetik Kırık ...23
2.4.3.1. Ameliyat sırasında oluşan kırıklar ..24
2.4.3.2. Ameliyat sonrası oluşan kırıklar ...25
2.4.4. Ağrı ..28
2.4.5. Dislokasyon ..30
2.4.5.1. Dislokasyon Nedenleri...31
2.4.5.2. Tedavi ..34.
2.5. REVİZYON CERRAHİSİNDE KULLANILAN MATERYALLER35
2.5.1. Asetabulum ...35
2.5.1.1. Asetabuler Komponent Fiksasyon Yöntemleri35
2.5.2. Femur ..38
2.5.2.1. Çimentosuz Stem ..38
2.5.2.2. Çimentolu stem: ..39
2.6. CERRAHİ YAKLAŞIM ...40
2.7. REVİZYON CERRAHİSİNDE TEKNİK ..42
2.8. REVİZYON CERRAHİSİNDE PROBLEMLER
2.8.1. Nörolojik Komplikasyonlar ..46
2.8.2. Vasküler Komplikasyonlar ..47
2.8.3. Heterotrofik ossifikasyon (Ektopik Kemik Oluşumu)48
2.8.4. Trokanterik Osteotomi Komplikasyonları.....................................50
3. HASTALAR VE YÖNTEM ..52
4. BULGULAR ..55
4.1. VAKA ÖRNEKLERİ ..75
5. TARTIŞMA ...79
KISALTMALAR

<table>
<thead>
<tr>
<th>AAOS</th>
<th>: American Academy of Ortopaedic Surgeons</th>
</tr>
</thead>
<tbody>
<tr>
<td>ark.</td>
<td>: Arkadaşları</td>
</tr>
<tr>
<td>CRP</td>
<td>: C-reaktif protein</td>
</tr>
<tr>
<td>ESR</td>
<td>: Eritrosit sedimentasyon hızı</td>
</tr>
<tr>
<td>H.E</td>
<td>: Heterotropik ossifikasyon</td>
</tr>
<tr>
<td>PKP</td>
<td>: Parsiyel kalça protezi</td>
</tr>
<tr>
<td>TKP</td>
<td>: Total kalça protezi</td>
</tr>
<tr>
<td>UTO</td>
<td>: Uzatılmış trokanterik osteotomi</td>
</tr>
</tbody>
</table>
TABLOLAR DİZİNİ

Tablo 2.1. Shih ve arkadaşları ...7
Tablo 2.2. AAOS asetabular kemik kaybı sınıflaması ..10
Tablo 2.3. Asetabular kemik kayıplarının Paprosky’e göre sınıflandırılması.....11
Tablo 2.4. AAOS göre femurdaki kemik kayıplarının sınıflaması11
Tablo 2.5. Femurdaki kemik kayıplarının Paprosky’e göre sınıflandırılması12
Tablo 2.6. Ameliyatta olan protez çevresi kırıklarda Vancouver sınıflaması...24
Tablo 2.7. Ameliyat sonrası olan protez çevresi kırıklarda Vancouver sınıflaması ..27
Tablo 4.1. Primer artroplasti tipleri ve oranları ...55
Tablo 4.2. Primer artroplasti nedenleri ..56
Tablo 4.3. Rezisyon cerrahisi nedenleri ...56
Tablo 4.4. Karşı kalça değerlendirmesi ...57
Tablo 4.5. Rezisyon tipli ve oranları ...57
Tablo 4.6. TKP tipleri ve oranları ..58
Tablo 4.7. Asetabulum seçenekleri ..58
Tablo 4.8. Femur seçenekleri ..59
Tablo 4.9. Rezisyon Yılı ...59
Tablo 4.10. Gevşeme zonlarına göre dağılım ...61
Tablo 4.11. Aseptik gevşemelerin dağılımı ...61
Tablo 4.11. Enfeksiyona bağlı gevşemelerin dağılımı ...62
Tablo 4.12. Aseptik gevşemesi ve kırığı olan hastalardaki dağılımı62
Tablo 4.13. Asetabular gevşemelerin zonelara göre dağılımı63
Tablo 4.14. Stem pozisyonları ...63
Tablo 4.15. Stem pozisyonu ve Aseptik gevşeme ilişkisi64
Tablo 4.16. Stem çökmesi ve aseptik gevşeme ilişkisi ...65
Tablo 4.17. Stem çökmesi ve stem pozisyonu arasındaki ilişki66
Tablo 4.18. Preop ölçüm ortalamaları ..67
Tablo 4.19. Postop ölçüm oranları ..67
Tablo 4.20. Ameliyat sonrası protez çevresi kırıklar için Vancouver sınıflaması ...68
Tablo 4.21. Asetabular kemik kayıplarını sınıflaması (AAOS) ve hasta sayıları ...69
Tablo 4.22. Femoral kemik kayıpları sınıflaması: (AAOS) ..70
Tablo 4.23. Kan Ünitesi ve Anestezi Tipi arasındaki ilişki71
Tablo 4.24. Klinik değerlendirme ...72
Tablo 4.25. Radyolojik değerlendirme ..73
ŞEKİLLER DİZİNİ

Şekil 2.1. Radyolojik takipte kullanılan parametreler .. 9
Şekil 2.2. Paprosky femoral defekt sınıflamasının şematize edilmesi 12
Şekil 2.3. Femoral komponenteki gevşeme takibi için kullanılan Gruen zonları ... 17
Şekil 2.4. Asetabular komponenteki gevşeme takibi için kullanılan DeLee ve Charnley zonları ... 18
Şekil 2.5. Postoperatif kırıklarda Vancouver sınıflamasının şematize edilmesi ... 26
Şekil 2.6. Kalça eklemi komşulukları ... 29
Şekil 2.7. Femoral antevrsiyon 33
Şekil 2.8. Direk laretal yaklaşım metodları gösterilmiştir .. 40
Şekil 2.9. Uzatılmış trokanterik osteotomi ... 42
Şekil 4.1. Revizyon yılları dağılımı ... 60
RESİMLER DİZİNİ

<table>
<thead>
<tr>
<th>Resim No.</th>
<th>Açıklama</th>
<th>Sayfa No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resim 2.1</td>
<td>..</td>
<td>17</td>
</tr>
<tr>
<td>Resim 2.2</td>
<td>..</td>
<td>17</td>
</tr>
<tr>
<td>Resim 2.3</td>
<td>..</td>
<td>17</td>
</tr>
<tr>
<td>Resim 2.4</td>
<td>..</td>
<td>18</td>
</tr>
<tr>
<td>Resim 2.5</td>
<td>..</td>
<td>18</td>
</tr>
<tr>
<td>Resim 2.6</td>
<td>..</td>
<td>28</td>
</tr>
<tr>
<td>Resim 2.7</td>
<td>..</td>
<td>33</td>
</tr>
<tr>
<td>Resim 2.8</td>
<td>TKP uygulanmasını takiben gelişen Evre 3 heterotropik ossifikasyon</td>
<td>50</td>
</tr>
</tbody>
</table>
1. Giriş

1.1. Revizyon Kalça Artroplastisi

Revizyon kalça artroplastisi başarısız olan bir artroplasti sonrasında gerçekleştirilen operasyondur. Bu operasyon primer artroplastije oranla daha fazla zorluklar taşıdığı gibi, teknik olarak da güç ve hasta açısından da riskli bir cerrahidir.

Ağrılı bir kalça artroplastisi ortopedist için en zor preoperatif planlama gerektiren teshislerden biri olduğu kadar, aynı zamanda revizyona karar vermek ve altında yatan bir enfeksiyonu ekarte etmek açısından da güçlükler içerir. Tekrar operasyona karar vermeden önce altında yatan bir enfeksiyonu atlamamak için her türlü teshis yöntemlerinden faydalanmak gereklidir (1,2,3).

Enfeksiyon dışındaki başarsızlık nedenleri komponent fikşasyonundaki kayıplar gibi mekanik bir yetersizlik olabilir. Bu; son yıllarda genç ve aktif bireylerde giderek artan primer artroplasti uygulamalarını takibinden ortaya çıkan, kullanılan tekniklere bağlı olarak gerek erken, gerekse geç dönemde sıkça rastlanan bir problem olarak karşıma çıkmaktadır. Bu nedenle çimentolu ve çimentosuz protezlerin fikşasyon teknikleri, dizaynı, hasta seçimi ve kalcanın biyomekanik esasları ortopedinin en önemli tartışma konularından biridir.

Sebebin belirlenebilmesi önemlidir. Çünkü düşük dereceli bir enfeksiyonun teshisi kolay olmadığı halde, klinik ve radyolojik olarak mekanik bir yetmezliğin teshisi genellikle kolaydır. Uzun süreli bir mekanik yetersizlik enfeksiyon şüphesi uyardırabilir. Preoperatif, intraoperatif ve postoperatif tıpkı ve gözlemlerle aksi kanıtlanmadığı sürece enfeksiyon şüphesi daima vardır. Hasta değerlendirilmesi; kaliteli röntgen, laboratuar testleri, aspirasyon ve sintigrafi gibi tetkiklerle yapılmahıdır (4,5,6).
Önceden ağırsız bir kalçada ortaya çıkan ani ağrı şikayetçi çimentolu bir protezde gevşemeye işaret edebilir. Ağrının şiddeti de önemlidir. Nitelikte çimentosuz bir protezde aktivite ile artan ağrı, çimentolu bir proteze oranla daha az şiddetli hissedilebilir. Ağrının şiddeti kadar lokalizasyonu da hangi komponente ait bir gevşeme olduğuna işaret edebilir. Femurdağlı bir gevşemenin yarattığı ağrı ayakta dururken ve yürürken uylukta hissedilirken, asetabulmdaki gevşeme yük verildiğinde ve kalça rotasyona zorlandığında keskin ve kasıkta hissedilir tarzdadır (7,8).

Ağırlar, primer artroplasti hastalarının takiplerde en sık başvurma nedenlerinden biridir. Aynı zamanda revizyon endikasyonlarının başında gelir. Ancak ağrının esas sebebi çoğun zaman aseptik gevşemedir, Cerrahı, ağrının şiddetli olmadığı ancak gevşemenin takip grafilerinde protez komponentlerinden birinin veya her iki ninin progresif migrasyonu ile sabit olduğu durumlar için de gerekli olabilir. Cerrahının her hastayı kendi koşulları içerisinde değerlendirmesi önem taşır. Bu nedenle takiplerde gevşemenin şiddeti kadar, hastanın yaşığı ve sağlık koşulları da önem taşımaktadır.

2. GENEL BİLGİLER

Revizyon cerrahisinde başarının en önemli anahtarı ameliyat öncesinde revizyona götüren neden veya nedenleri ortaya koyup iyi bir cerrahi plan hazırlamaktır. Çoğu kere düşük dereceli bir enfeksiyonu klinik ve radyolojik olarak uzun süreli bir mekanik yetmezlikten ayırt etmek güçtür (9,10,11).

Bu sebeple ameliyat öncesi kaliteli radyolojik değerlendirme, gerekirse sintigrafik tarama yapılması, antibiyotik kullanımından önce eklem aspirasyonu, ameliyat esnasında şüphede edilen yerlerden farklı doku örnekleri alınması uygun olacaktır (12).

Her ne kadar revizyon endikasyonu olsa da hastanın genel durumunun ve beklenen yaşam süresinin de mutlaka çok iyi değerlendirilip yarar zarar dengesi zarar lehine bozulmamalıdır. Tek başına ağrısız hareket kısıtlığı veya ekstremite uzunluk farkı nedeniyle revizyon endikasyonu yoktur. Femur korteksinin protezin ucu tarafından penetrayonu stemin stabilitesini bozmonary ve çevre dokulara ağrılı irritasyon yapmuyorsa genellikle revizyon endikasyonu oluşur. Kemik stoğun çok yetersiz olduğu veya hastanın genel durumunun uzun bir revizyon cerrahisini kaldırmaya uygun olmadığı durumlarda, birkaç başarısız revizyon girişimi yerine Girdlestone arthroplastisi’nin daha iyi sonuçlar verebileceği de unutulmamalıdır.

2.1. KLINİK DEĞERLENDİRME:

Hastalarda en sık izlenen şikayet ağrıdır. Çimentolu bir total kalça artroplastisinde enfeksiyona bağlı olmayan gevesemenin ilk klinik belirtisi önceden ağrısız bir kalçada başlayan ani ağrıdır. (13) Çimentolu bir protezde gevesmeye bağlı ağrı çoğu zaman çimentosuz bir protezdeki orana daha fazladır. Cerrahi sonrası çimentosuz protezlerde gevesme yetersiz tesbit sebebi ile erken dönemde aktiviteye bağlı olarak gözlenebilir. Femoral stemdeki gevesemenin ileri gelen ağrı ayakta durma veya yürüme esnasında uylukta hissedilirken, asetabuler kap gevesmesinin yarattığı ağrı kalçada rotasyon ile kasık çevresinde hissedilir.
Ağrılı total kalça protezli olan bir hastada ağrı yaratan sebepleri iki ana başlık altında toplayabiliriz.

İNTRİNSİK NEDENLER:

- Enfeksiyon
- Periprostetik kırık
- Nonunion
- Osteoliz
- Instabilite
- İnflamatuar bursit
- Tendinit (trokanterik, iliopsoas)
- Stres kırığı
- Mekanik gevşeme (çimentolu, çimentosuz)
- Steme bağlı ağrı

EKSTRİNSİK NEDENLER:

- Lomber vertebra hastalıkları (stenoz, disk herniasyonu, spondilolizis, spondilolistesiz)
- Periferik vasküler hastalıklar
- Sinir yaralanmaları veya irritasyonu (siatik, femoral, meralgia paresthetica)
- Metabolik hastalıklar (ostomalazi, page hastalığı)
- Malin tümör metastazları
- Herni (femoral, inguinal, obturator)
- Yansıyan ağrı
- Kozalji, bölgesel kompleks ağrı sendromu

Ağrılı bir total kalça protezli hastada ilk öğrenilmesi gereken ağının karakteri olup, yeri, yayılımı, süresi, şiddeti, ameliyattan ne kadar sonra ortaya çıktığı, enfeksiyon bulgularının varlığı, travma öyküsü ve ek hastalıkların varlığının sorgulanması gerekr.
Hastada primer artroplasti sonrası ağrısız bir dönemde sonra başlayan ve ani ortaya çıkan ağrı sebebi olarak mekanik gevşeme, stem kırılması ve enfeksiyon en sık nedenleri arasındaydı. Eğer ki hastada primer artroplasti sonrasında ağrısız bir dönemin olmaması, ilk olarak ekstrensek kökenli patolojilerden kaynaklanan bir ağrı olduğunu düşündürüyor. Aktiviteyle veya yük verince artış gösteren, dinlenmekle azalan ağrı genellikle aseptik gevşemeye bağlıdır.

Artroplasti döneminde ait sorunlar da önemlidir. Daha önce kalçada enfeksiyon varsa, ilk ameliyattan sonra uzun süre yaradan akıntı seyredilmişse veya 72 saat geçten sonra ateş olmuşsa, bu enfeksiyonun tekrarladığını gösterir (16). Hasta antibiyotik profilaksisi yapılmadan herhangi bir cerrahi girişim sırasında antibiyoterapinin başlaması, bağışıklık sistemini ve kemik remodelasyonunu bozacak herhangi bir hastalık geçirmiş yada tedavi görmüşse, bunların artroplasti olumsuz etkileri olabileceği dikkate alınmalıdır.

2.1.1 Fizik Muayene

Hastanın genel durumu ve kalça ile alt ekstremitenin muayenesi yapılmalı kalça harekete genliği muayenesi edilmelidir. Hastalarda antaljik yürüme paterni olabilir. Ayrıca hastanın diğer kalça, aynı taraf diz muayeneside yapılmalıdır. Daha önceden geçirilmiş operasyonlara sekonder gelişen insizyon skarları dikkatle, flep dolaşımı açısından incelenmelidir. Trokanterik nonunion, kötü abductör tamiri, süperior gluteal sinir hasarına bağlı olarak hastalarda trendelenburg yürümesi olabilir. Abdüktör gerginlikte yetersizlik, hastada ağrılık merkezini rotasyon merkezine yaklaştırırmak için o tarafa doğru eğilerek yürümesine neden olur; diğer el...

2.1.2. Laboratuar Testleri

Açıklanamayan ağrılı total kalça protezinde laboratuuar testleri olarak tam kan, ESR, CRP ve aspirasyon bilgi sağlanmaktadır. Lokosit sayısının yüksek olması çok anlamlı değildir. Cannerin çalışmasına göre 52 enfekte total kalça protezli hastaların %65 inde lökositoz saptanmış (18), Spangelh’in çalışmasında 178 enfekte total kalça protezli hastada lokosit yüksekliğinin %20 sensivite, %96 spesivite oranı bulunmuştur (19).

Bazı araştırmacılar total kalça protezi sonrası ESR ve CRP’nin enfeksiyonun değerlendirmesindeki önemi çalışmışlardır. (20,21,22) Forster ve Crawford (22) iki senelik üç grubta hastaları izlemişler ve hiçbir sorunu olmayan birinci grup total kalça protezli hastalarda ilk 6 ayda ESR 20 mm/h altına inmiş; aseptik gevşeme izlenen ve enfeksiyon saptanmayan ikinci grup hastada, 2/3 oranında ise ilk 6 ayda ESR 20 mm/h altına inmiş, protez enfesiyonu izlenen üçüncü grubta ise ESR 60
mm/h üstüne çıkmış ve uygun tedavi sonrası bu grup hastada da ESR 20 mm/h altına düşmüştür.

Aalto ve arkadaşları (20) bir yıl boyunca takip ettikleri komplike olmayan, çimentosuz kırk total kalça protezlili hastada ESR değerinin preoperatif yüksek olduğu, postop altıncı ayda düşmeye başladığı bir yıl sonunda ise bir miktar yüksek olarak kaldığını saptamışlar. CRP düzeylerinin ise preoperatif normal postop ikinci günde maksimum yükseklikte olduğunu, postop üç haftada ise normal değerlere indiğini saptamışlardır.

Shih ve arkadaşlarının (21) elli hasta ile yaptığı çalışmada da 28 hastada primer arthroplasti sonrası ağrı saptamışlar ve bunu sonucunda ESR düzeylerinde septik ve aseptik gevşeme saptanan hastalar arasında anlamlı bir fark saptamamışlardır, CRP düzeylerinin ise total kalça protezi sonrası saptanan hastalarda enfeksiyondan eradike edilmesi sonrası normal düzeylere indiğini saptamışlardır.

Tablo 2.1. Shih ve arkadaşları (21)

<table>
<thead>
<tr>
<th>Test</th>
<th>Preop</th>
<th>Komplike olmayan TKP</th>
<th>Septik gevşeme</th>
<th>Aseptik gevşeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESR</td>
<td>Hafif yüksek</td>
<td>Değişebilir, 1. yılda hafif</td>
<td>değişebilir</td>
<td>Değişebilir</td>
</tr>
<tr>
<td>CRP</td>
<td>normal</td>
<td>3. haftada normal</td>
<td>yüksek</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>değerlerine iner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1.2.1. Aspirasyon

Birçok araştırmacı, preop klinik şüphe varlığında, ESR, CRP veya her ikisi birden yüksekse ve nükleer incelemede uptake artışı varsa aspirasyon yapılmasını önermektedir (23,24,25). Ağrılı total kalça protezinde klinik ve radyolojik enfeksiyon şüphesi olan hastalarda standart olarak aspirasyon yapılmasını önermişlerdir. Roberts ve arkadaşlarının (26), 78 hasta üzerinde yaptıkları, revizyon öncesi aspirasyon neticesinde %87 sensivite, %95 spesivite oranı saptamışlardır.
Barrack ve Harris (23), 270 hasta üzerinde yaptıkları çalışmada revizyon öncesi yapılan aspirasyon kültürlerinde %13 oranında yanlış pozitif saptamışlar, ancak klinik ve radyolojik olarak enfeksiyon düşünülen tüm hastalarda aspirasyon kültür sonuçlarını pozitif bulmuşlardı.

2.1.3. Radyolojik Değerlendirme

Şekil 2.1. Radyolojik takipte kullanılan parametreler

2.1.3.1. Artrografi

Direk radyolojik grafilerde femoral stemdeki gevşemenin yaklaşık %90 saptanmakta, kontrastlı artrografilerde özellikle asetabular komponentin değerlendirilmesi açısından daha avantajlıdır (24,28,29). Bu teknik zor olduğundan standart olarak yapılamamaktadır.

2.1.3.2. Nükleer Değerlendirme

2.2. KEMİK KAYBI SINIFLANDIRILMASI

Revizyon cerrahisinde kemik kayıpları cerrahi tekniği güçleştiren bir problemdir. Bu kayıplar aşınma ve yıpranma, enfeksiyon veya geveşme sonucu ortaya çıkan osteolizin doğal neticesidir. Bazen; primer artroplastı esnasında aşırı kemik rezeksiyonu, geçirilmiş önceki revizyon ameliyatları, çimentonun uzaklaştırılması esnasında kemigin destrüksiyonu, displazi ve kırık gibi durumlara bağlı olarak zaten az olan kemik stoğunda primer artroplastinin etkileri de sebep olabilir.

AAOS (Amerikan ortopedi cerrahları akademisinin) sınıflamasında (34,35) kemik kayıpları segmenter ve kaviter olarak ayırt edilmiştir. Asetabulum için; segmental defektlerde destekleyici hemisfer ve medial duvara kayıp söz konusudur. Kaviter defektlerde ise asetabular kavitede veya medial duvarda volümetrik kayıp söz konusudur, rim intakt.
Tablo 2.3. Asetabular kemik kayıplarının Paprosky’e göre sınıflandırılması (42)

<table>
<thead>
<tr>
<th>Tip</th>
<th>Superiora Migrasyon</th>
<th>Iskiumda Lizis</th>
<th>Teardrop Lizis</th>
<th>Kohler çizgisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Intakt</td>
</tr>
<tr>
<td>2A</td>
<td>Superomedial<2cm</td>
<td>Minimal</td>
<td>Minimal</td>
<td>Intakt</td>
</tr>
<tr>
<td>2B</td>
<td>Superolateral<2cm</td>
<td>Minimal</td>
<td>Minimal</td>
<td>Intakt</td>
</tr>
<tr>
<td>2C</td>
<td>Superior<2cm</td>
<td>Minimal</td>
<td>Ileri Derecede</td>
<td>Intakt</td>
</tr>
<tr>
<td>3A</td>
<td>>2cm</td>
<td>Ileri Derecede</td>
<td>Ileri Derecede</td>
<td>Intakt</td>
</tr>
<tr>
<td>3B</td>
<td>>2cm</td>
<td>Ileri Derecede</td>
<td>Ileri Derecede</td>
<td>Bozulmuş</td>
</tr>
</tbody>
</table>

Femoral taraftada yine kayıp segmenter veya kaviter olabilir. Kaviter defektlerde dış korteks intaktır ve kemik endosteal olarak kazınmıştır. Segmental defektlerde ise parsiyel veya interkalaryel olabilir (çevresel kemik kaybı ile beraber kemiğin altı ve üstü intakt olabilir).

Tablo 2.4. AAOS göre femurdaki kemik kayıplarının sınıflaması

<table>
<thead>
<tr>
<th>Tip I: Segmenter yetmezlik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proksimal</td>
</tr>
<tr>
<td>Parsiyel</td>
</tr>
<tr>
<td>Tam</td>
</tr>
<tr>
<td>İnterkalar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tip II: Kaviter yetmezlik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansellöz</td>
</tr>
<tr>
<td>Kortikal</td>
</tr>
<tr>
<td>Ektazi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tip III: Kombine yetmezlik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip IV: Malalignment</td>
</tr>
<tr>
<td>Rotasyonel</td>
</tr>
<tr>
<td>Açısısal</td>
</tr>
<tr>
<td>Tip V: Femoral steno</td>
</tr>
<tr>
<td>Tip VI: Femoral devamsızlık</td>
</tr>
</tbody>
</table>
Tablo 2.5. Femurdaki kemik kayıplarının Paprosky'e göre sınıflandırılması (42)

<table>
<thead>
<tr>
<th>Tip</th>
<th>Metafiz</th>
<th>Diafiz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medial</td>
<td>Lateral</td>
</tr>
<tr>
<td>1</td>
<td>Minimal hasar</td>
<td>Intakt</td>
</tr>
<tr>
<td>2A</td>
<td>Trok. min.</td>
<td>intakt</td>
</tr>
<tr>
<td>2B</td>
<td>Trok. min.</td>
<td>Hasarlı</td>
</tr>
<tr>
<td>2C</td>
<td>Subtrokanterik</td>
<td>intakt</td>
</tr>
<tr>
<td>3</td>
<td>ileri Derecede Hasarlı</td>
<td>Ileri Derecede Hasarlı</td>
</tr>
</tbody>
</table>

Şekil-2.2. Paprosky femoral defekt sınıflamasının şematize edilmesi

2.3. GREFT KULLANIMI

Rekonstrüktif kalça cerrahisinde kemik greftleri osteogenez için iyi bir kaynak oluştururlar. Aynı zamanda osteolize veya geçirilmiş önceki ameliyatlarla bağlı kaybedilmiş kemik kayıplarının karşılanabilmesi ve mekanik destek oluşturmak amacı ile kullanılabilirler. Otojen greftler biyolojik olarak en uygun greftler olsalar da otojen kemik greftlerinin yetersiz kalabildiği ihtiyaç durumlarında allogreftler iyi bir seçenektir.

2.4. REVİZYON ENDİKASYONLARI:

1. ASEPTİK GEVSİME
2. ENFEKSİYON
3. PERİPROSTETİK KIRIK
4. Ağrı
5. DISLOKASYON
6. İMPLENT KIRİĞİ
7. FONKSİYONEL KISITLILIK
8. Diğer NEDENLER

2.4.1. ASEPTİK GEVSİME

Total kalça artroplastisi uygulamasının mekanik komplikasyonlarındandır. Implant ile kemik arasındaki mekanik ve biyolojik etkileşim, kemik ara yüzey ve protez üzerindeki yüklenmenin miktarını belirler ve aseptik gevsemeye yol açan faktörlere zemin hazırlar.

Çimentolu kalça protezlerinde, implant fiksasyonu ve protezden kemigi yük transferi çimento aracılığı ile olurken, çimentosuz protezlerde aynı olaylar implant-kemik ara yüzeyi aracılığı ile olmaktadır. İmplantın başarısı için, ilk tespitin iyi yapılması ve böylece mikrohareketlerin azaltılması gerekliği kabul edilen bir gerçektir. Aseptik
gevşeme multifaktöryel bir olay olup, ağrı fiziksel aktivite, şişmanlık, kötü protez dizaynı ve pozisyonu, gevşemeye katkıda bulunurlar. Medullar kanalın oyulması sırasında oluşan kemik devaskülerizasyonu ve implant materyaline karşı oluşabilen doku reaksiyonu gibi biyolojik faktörler gevşemede rol oynayabilirler.

Çimentolu yada çimentosuz protezlerin stabilitesini değerlendirmek için klinik değerlendirmeye, tek başına yetersiz kalmaktadır. Stabil olmayan komponentler klinik yakınlamalara yol açmayabilirken, stabil komponentlerde klinik yakınlma olabilir. Çimentolu bir protez uzun ömürli olabilmesi için çimentoğunun femur içinde bir tür gibi korunabilmesi, çimentolama esnasında basınçlı yapılabileceği ve çimento polimerizasyonu sırasında da kanama basıncına karşı konulabilmesi gerekli. Böylelikle fibröz membran oluşumu ve radyolojik olarak belirlenebilen demarkasyon hattı engellenmiş olur.

Çimentosuz bir protez poroz yüzeyinde kemik gelişimine izin vermelidir. Bu nedenle:

- Por genişliği 50 ila 500um kadar olmalıdır.
- Kemikle direk teması sağlamak amacıyla yeterli kemik gelişimi olana dek immobilizasyon uygundur.
- Por çapından fazla gerçekleşen mikrohareket kemik gelişimini olumsuz etkiler.
- Kemik oluşumu implantasyondan sonraki 3 ila 8 hafta içinde gerçekleşir.
- Yüzeyde kemik iyileşme başlarken sonra osteoindüktif süreç hızlanarak devam eder.
- Kemikle implant arası 2 mm'den fazla mesafe süreci olumsuz etkiler.
- Kemik ile implant arasına transfer edilen stres formasyonu ve absorbsiyonla sonuçlanarak, devamlı remodelasyon sağlar.

Özellikle seri radyografiler ile stem pozisyonu ve radyolusen çizgiler takipte faydalıdır. Çimentolu bir protezde gevşemenin ilk bulgusu genellikle metal-sement ayrılımasıdır. (24,47)

Çimentolu Femoral Stemlerde Gevşemenin Radyografik tanımları (24)

O’neill-Harris Sınıflaması:

- Kesin Gevşeme Bulguları:
 - Femoral komponenteki çökme
 - Stem kırığı
 - Çimento kırığı

- Gevşeme Olasılığı Yüksek Bulgular:
 - Kemik-çimento arasında radyolusen çizginin devamlılık göstermesi veya 2mm dengenis olması

- Gevşeme Olasılığı Düşük Bulgular:
 - Çimento kemik arasındaki radyolusen çizginin tüm kemik çimento çizgisinin %50-%100 üne yaklaşıması
Şekil 2.3. Femoral komponenteki gevşeme takibi için kullanılan Gruen zonları (44)

*Resim 1 ve 2 aynı hastaya ait olup özellikle çimentolu yapılmış bir TKP de zone 1 de belirgin osteoliz görülmektedir. Resim 3 te ise çimentosuz bir TKP de zone 5-6-7 deki osteoliz görülmektedir.
Şekil 2.4. Asetabular komponenteki gevşeme takibi için kullanılan DeLee ve Charnley zonları (45)

*Resim 1 de çimentosuz asetabular komponente tüm zonlarda belirgin gevşeme, Resim- 2 de ise çimentolu asetabular komponenteki gevşeme görülmektedir.

Radyografik olarak gevşemenin belirlenmesi asetabul komponent için % 63-69 arasında bulunmuşken, bu oran femoral komponent için % 84-92 arasında bir doğruluk oranına sahip bulunmuştur (24,50). Çoğu cerrah eğer komponentlerde migrasyon varsa, kemik-çimento arayüzünün bütününde 2 mm’den fazla ilerleyici radyolusensi varsa ya da çimento kitesinde kırmızı sözkonusuya, kesin gevşeme olduğu konusunda fikir birliği içerisindeir. Kemik-çimento arayüzinde 2 mm.’den az genişlikte, devamlılık ve ilerlemeye gösterebilen radyolusensi klinik olarak anlamlı değildir (51).

2.4.2. Enfeksiyon

Enfeksiyon ajanı olarak %65 olguda gram pozitif mikroorganizmalar (stafilokokkus epidermidis ve aureus), %35 olguda gram negatif mikroorganizmalar sorumludur. (49). S.aeruus tipik olarak erken enfeksiyona neden olurken, S.epidermidis ve diğer epidermal flora geç enfeksiyon ajanı olarak karşımıza çıkmaktadır.

Postoperatif gelişen yara enfeksiyonları yüzeyel ve derin olarak ikiye ayrılır. Yüzeyel enfeksiyonlar; minör, majör, gergin yara, gergin ve yara kenarlarının defekif olduğu kombinasyonlar ve yüzeyel seröz drenajın eşlik ettiği İltilhapi durumlar olarak farklı şekillerde incelenebilir.

Protez uygulaması sonrası görülen derin enfeksiyon, belirtilerinin başlama zamanı ve klinik gidişe göre üç gruba ayrılır (49).
2.4.2.1. Akut enfeksiyon

2.4.2.2 Subakut enfeksiyon

Perioperatif kontaminasyon sonucu oluşur. Düşük virülanslı mikroorganizmalar tarafından lokal veya sistemik direncin düşmesi sonrası klinik bulgu verecek şekilde gelişen, 6-8 aya kadar olan enfeksiyon şeklidir.

2.4.2.3. Geç enfeksiyon

1. yılda sonra gelir. Hematojen veya lenfojen yolla vücudun başka yerinden gelmiş yeni enfeksiyondur.

Enfeksiyon oluşumunu önlemede en önemli faktör korunmadır.

Korunma yöntemleri başlıca 4 ana başlık altında toplanabiliriz.

2. Ameliyat sırasında çevresel etmenler: İnsizyon bölgesinin temizliği, boyanma ve drape kullanımı, cerrahi ekibin sterilazasyon şartlarına uyması, hızlı sterilizasyonun gerekmedikçe çok kullanılması.
3. Ameliyat tekniği: preop antibiyotik profilaksişi, çakma seti ve ameliyat setlerinin açılma zamanı, uygun amaliyat süresi (52,53).
4. Postoperatif yaklaşım: Drenin çekilme zamanının kısa tutulması, nekroze yara dudağı varsa gerekli önlemlerin alınması, uygun süre profilaktik antibiyoterpinin yapılması, mobilizasyonun arttırılması.

Enfeksiyonun geç dönem bir enfeksiyon olabildiği için cerrahi sonrası 3 ay geçmişi olması gerekmektedir. Geç dönem enfeksiyonlar da akut, subakut ve kronik olarak

Enfeksiyonun teşhisinde aspirasyon sık başvurulan bir yöntemdir. Aspirasyon sonucu revizyona gidecek olan kalça belirlenemez, ancak duyarlılık ve özgünlüğü tartışmalıdır. Aseptik koşullara azami özen gösterilmesi kontaminasyon ile yalancı pozitif sonuçlar alınması açısından önemlidir (24). İntraoperatif kültürler; preoperatif antibiyotikler verilmediği, cilt insizyonunda kullanılan cerrahi enstrümanlarla manipülasyon yapılmadığı, koterize edilen bölgeden uzak bir lokalizasyonda ve revizyon cerrahilerinde psödokapsül açıktıktan hemen sonra proteze yakın bir yerden tercihen inflamasyonun bulunduğu yerden kültür alındığını durumlarda güvenilir olacaktır (54). Kültürler 3 ayrı örnek şeklinde gönderilir ve subkültürler geç üreme açısından beklenmelidir. Ayrıca polimeraz zincir reaksiyonuna göre belli bakterilerin DNA ve RNA yapıları moleküler teknoloji ile tayin edilebilmektedir.

Radyoizotop çalışmaları mekanik gevşeme, stres kırığı, enfeksiyon ve ektopik kemik oluşumu hakkında fikir vericidir. Teknesyum veya stronţiyum 95 kemik sintigrafisi galium veya índium ile kombine edilmesi ve mekanik yetmezliği enfeksiyondan ayırdetmede yardımcıdır. Çekilen direk grafiler mekanik bir yetersizliği enfeksiyondan ayırılabileceğini yetersiz kalabilir. Bu durumda ikinci basamak sintigrafik tetkiktir. Ameliyati sonrası 6 ay içerisinde artmış osteoblastik aktivite normal kabul edilir. (55) 6 aydan fazla devam eden aktivite artışı patolojik kabul edilir. Mekanik gevşeme fokal bir artışla karakterize iken, enfeksiyonda her iki komponenti de ilgilendiren diffüz bir artış söz konusudur. Índüml işaretli beyaz küre sayısı duyarlılık ve özgünlüğü yüksek bir testtir.

Revizyon planlanan TKP'li bir hastada tedavi seçeneklerinin ve cerrahi planlamının yönlendirilmesinde en önemli faktör enfeksiyon şüphesinin ekarte edilebilmesidir.
Bu amaçla anlatılan tüm klinik, radyolojik ve laboratuar tetkikleri cerrahın ameliyat esnasındaki yorumu ile beraber değerlendirilmelidir. Enfekte bir total kalça protezinin cerrahi tedavisinde alternatifler: protezin yerinde bırakılarak debridman; tek seansta arthroplastinin değiştirilmesi; en son çare olarak iki veya üç basamaklı bir cerrahi tedavinin ilk basamağı olarak rezeksizyon arthroplastisidir. İlk ve ikinci seans arasında geçici bir protez kullanımı da savunulmuştur.

Antibiyotikler cerrahi tedaviye ek olarak sistemik veya lokal olarak kullanılabilirler. Lokal kullanım çimento gibi bir taşıyıcı sayesinde gerçekleştirilir. Antibiyotikler enfeksiyonu eradike etme, makstrofik ve kronik periprostetik bir enfeksiyonu baskılama amaç ile kullanılabilirler. Kalça arthroplastisi yerinde ortaya çıkan bir enfeksiyon, özellikle iki seanslı bir tedaviyi kaldırırayacak yaşlı ve düşük hastalarda, protez yerinde bırakılarak debridman ve baskılayıcı olarak uzun süreli antibiyotik ile tedavi edilebilir.

Esas tedaviyi belirleyen; enfeksiyonun akut veya kronik oluşu, enfeksiyon ajanı ve antibiyotiklere duyarlılığı, glikokaliks oluşturabilme özelliği, hastanın genel durumu, kemik stoğunun yeterliliği ve revizyonu gerçekleştirecek cerrahın yaklaşım biçimidir.

Cerrahide dikkat edilmesi gerekenler ise; eski arthroplasti insizyonlarının kullanılmasına özen göstermek, kapsül, sinovyal doku ve şüpheli çevre dokudan kültür için örnek almak, tüm yabancı madde ve necroze dokuları potansiyel bir enfeksiyon odağından kaçınmak için ortamdan uzaklaştırılmak ve irrigasyon uygulamaktır.
Sonuç olarak tedavi protokolleri: cerrahi uygulamaksizin antibiyotik uygulanması, protezi yerinde bırakarak debridman, Girdlestone artroplastisi, tek Seansta artroplastiyi değiştirme, iki Seansta artroplastiyi değiştirme, Prostalac sistemini kullanarak antibiyotikli çimento uygulaması ve artrodezdir.

2.4.3. Periprostetik Kırık

Kalça artroplastisi sonrası femur kırığı tedavisi komplike ciddi bir komplikasyondur. Önceleri az rastlanılan bu komplikasyon giderek daha çok merkezde ve daha çok sayıda yapılan primer kalça ve periprostetik kırığa zemin hazırlayan proksimal femoral kemik kayıplarının bulunduğu revizyon artroplastileri nedeni ile daha sık karşıımıza çıkmaktadır.

İntraoperatif ve postoperatif olarak bu kırıkları ikiye ayırabiliriz. Revizyon cerrahisi gibi özellikle çimentosuz stemleri tercih ettiği ve kemik kayıplarının fazla olduğu olgularda, profilaktik serklaj uygulanması ile femoral kanalın stem için hazırlanması ve yerleştirilmesi esnasında kortikal duvarda oluşabilecek çatlamaların önüne geçilebileceği bildirilmiştir (56).

Birincil TKP’de ameliyatta olan protez çevresi kırıklar çimentolularda yaklaşık %1, çimentosuzlarda % 3-20 arasında bildirilmektedir (57,58,59). Ameliyat sonrası olan kırıklar birincil TKP’de % 1’den az olduğu tahmin edilmektedir (60). Revizyon TKP de ameliyat sırasında oluşan periprostetik kırıklar çimentol protezlerde % 6,3 (61), çimentosuz protezlerde % 17,6 (62) olarak bildirilmiştir. Allogreft uygulanan revizyon ameliyatlarında sonra protez çevresi femur kırıkları %5-24 arasında bildirilmektedir (63,64).

Protez çevresi kırıkların oluş mekanizmasından sıkıla düşünme ve günlük yaşam aktivitesi gibi düşük enerjili travmalar sorumludur. Bu patolojik kırıklara yol açan tüm risk faktörlerinin genel özelliği normal fizyolojik güçlere karşı bu bölgenin kemik kalitesi ve mekanik direnciyle ilişkilidir (65,66,67,68).
2.4.3.1. Ameliyat sırasında oluşan kırıklar:

Sistemik hastalıklardan en sık neden romatoid artrit ve ileri derecede osteoporozdur (69,70). Ayrıca osteomalazi, paget hastalığı, osteopetrozis, osteogenesis imperfekta, thalassemia ve poliomyelit, Parkinson gibi noromüsküler hastalıklarda kırıklara neden olabilir (71).

Lokal risk faktörlerinden; pres-fit çimentosuz femoral komponent, femurun kompleks deformiteleri ve revizyon cerrahisidir.

Ameliyatta olan kırılarda en önemli belirleyici faktör düşük korteks kanal oranının olmasıdır (72). Revizyon cerrahisinde daha uzun ve daha geniş protezlere gereksinim duyulması nedeni ile ve bunlarda yüksek oranda olan orantısız ve merkezi olmayan oymalara bağlı olarak femurda delinmelere ve kırıklara neden olmaktadır (73,82).

Tablo 2.6. Ameliyatta olan protez çevresi kırıklarda Vancouver sınıflaması

<table>
<thead>
<tr>
<th>TIP</th>
<th>FEMURDAKİ YERI</th>
<th>ALT TIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Proksimal metafiz, diafiz, uzanmayan</td>
<td>A1 (korteks delinmesi)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2 (ayrılmamış çizgi şeklinde çatlak)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A3 (ayrılmış ve stabil olmayan kırık)</td>
</tr>
<tr>
<td>B</td>
<td>Diafizde, uzun saplı revizyon protezi ile geçilebilir.</td>
<td>B1 (korteks delinmesi)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2 (ayrilmamış çizgi şeklinde çatlak)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B3 (ayrılmış ve stabil olmayan kırık)</td>
</tr>
<tr>
<td>C</td>
<td>Alt diafizde-metafizde, en uzun saplı revizyon protezi ile geçilemez.</td>
<td>C1 (korteks delinmesi)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2 (ayrilmamış çizgi şeklinde çatlak)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3 (ayrılmış ve stabil olmayan kırık)</td>
</tr>
</tbody>
</table>
Tip A1 kırıklar da protezin tesbiti zor ve ameliyat sonrasında kırık riski fazladır. Bu kırıklarda otolog greftleme ve yeniden şekillendirmeyi sağlamak için bu deliğe sıkıştırma yapılabilir.

Tip A2 kırıklarda protezin tesbitini nadiren etkilemekte ve bu kırıklarda protezin sapı çıkılmadan kırık distale ilerlemesini önlemek amacıyla bir adet serklaj teli ile tesbit edilmelidir.

2.4.3.2. Ameliyat sonrası oluşan kırıklar

Ameliyatta olan kırıklara yol açan sistemik faktörler ameliyat sonrası oluşan kırıklar içinde risk faktörüdür. Lokal risk faktörlerinden protezin aşınmasına bağlı döküntüler ve bunu yol açtığı osteoliz kırık sebebi olarak daha sık karşımıza çıkmaktadır. Ayrıca protezin femoral parçasının gevşemesi diğer önemli lokal risk faktörüdür. Kortikal gerimi arttıran nedenler ameliyat sonrası oluşan kırıklarda önemli bir risk faktörüdür. Örnek olarak fokal kemik kayıpları, önceden tesbit edilmiş vakalardaki eski vida delikleri, plakların sonlandığı alanlar ve kortikal delinmeler verilebilir (74).

Kalça protezi sırasında fark edilmeyen kortikal delinmeler ameliyat sonrası kırık oluşumunda önemli bir faktördür. (74,75,76) Bu delinmeler kanal oyulması ve revizyonda çimento çıkarılması aşamasında oluşabilmektedir.
Şekil 2.5. Postoperatif kırıklarda Vancouver sınıflamasının şematize edilmesi
Tablo 2.7. Ameliyat sonrası olan protez çevresi kırıklarda Vancouver sınıflaması

<table>
<thead>
<tr>
<th>TİP FEMURDAKİ YERİ ALT TİPİ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Trokanterik bölge A_G (trokanter major)</td>
</tr>
<tr>
<td>A_L (trokanter minör)</td>
</tr>
<tr>
<td>B Protez çevresi yada hemen altı B1 (protez stabil)</td>
</tr>
<tr>
<td>B2 (protez stabil değil)</td>
</tr>
<tr>
<td>B3 (yetersiz kemik stoğu)</td>
</tr>
<tr>
<td>C Kırık protezin distalinde</td>
</tr>
</tbody>
</table>

Tip A_G kırıklar genellikle ayrılanının az olan yer değişirmemiş olan kırıklardır. 2 cm den az ayrılan var ise konservatif tedavi yapılabilir (77). 6-12 hafta yük vermeden ve aktif abduksiyonu kaçırınma ile tedavi edilebilirler. 2,5 cm'den fazla ayrılan trokanterik kaynamamalarda ve ağrılı abduksiyon yaratan durumlarda serklaj veya klips ile kaynama sağlanabilir. Tip A_L kırıklar ise semptomatik tedaviden fayda görürler.

Tip B1 kırıklar daima kortikal destek greftli veya greftsiz internal tesbit edilmelidir. Tip B2 kırıklar ise kırık hattını etkin bir şekilde geçen uzun bir revizyon stemle mümkünür. Tip B3 kırık tiplerinde ise hastanın yaşını önemlidir. Çünkü bu tip kırıklarla yetersiz bir proksimal kemik stok olduğundan hem kırık fiksasyonunu hemde protez stabilitesini sağlamak gerektirir. Genç hastalarda kortikal destek greftleme ile uzun saplı revizyon protezleri tercih edilmekte, yaşlı hastalarda ise...
tümör protezi bir seçenek olabilmektedir. Tip C kırıklarda ise distal femur kırığı gibi düşünüp tedaviyi ona göre belirlemek gerekmektedir.

Eğer eş zamanlı protezdede gevşeme var ise önce kırık kaynaması sağlanmalı, sonra protez revizyonu düşünülmelidir.

![Resim 2.6.](image)

* Resimde TKP yapılmış bir hastada postoperatif oluşmuş Vancouver Tip Ajured kırık izlenmektedir.

2.4.4. Ağrı

Ağrı TKP yapılmış olan hastalarda sıklıkla görülen bir şikayettir. Önemli olan bu ağrı sebebinin intrinsikmi yoksa ekstrinsikmi olduğuna karar verilmesidir. İntrinsik nedenlerden kaynaklanan ağrılarda en sık sebep olarak aseptik gevşeme ve enfeksiyon vardır (78). Diğer nedenler arasında protez malpozisyonu, polietilenle bağlı sinovit, sublukse olmuş bir TKP, impingement, gizli bir kırık ve uylukta oluşan
gevşemesiz femoral steme bağlı ağrıdır. Ekstrinsik nedenler arasında ise en sık olarak lomber omurga patolojileri karşımıza çıkmaktadır (14).

Şekil 2.6. Kalça eklemi komşulukları

Ağrıının şiddeti ve karekteride önemli bulgulardır. Gevşemeye sekonder ortaya çıkan ağrı her zaman şiddetlidir ama dinlenmeye azalır. Sürekli oluşan ağrı enfeksiyon yada nörolojik kökenli olabilir. Lomber omurga patolojileri primer TKP ameliyatı sonrasında semptomatik hale gelmiş olabilir. Özellikle spinal stenoz mevcut ise bu
durum ağrılı TKP’dede düşünülmlesi gereken ve gözden kaçırılmaması gereken bir patolojidir.

Ağrılı bir TKP de iyi bir hikaye ve klinik muayene sonrası laboratuvar ve görüntüleme çalısmaları uygun endikasyonla yapılmalıdır. Cerrahi sadece sepsis ve gevsemenin açık kanıtı mevcutsa yapılmalıdır. Gevseme kanıtı olmayan aseptik vakalarda gözlem akıcı ve zararsızdır. Erken ve gizli gevseme veya enfeksiyon takiplerde ortaya çıkacaktır.

2.4.5. Dislokasyon

Dislokasyonların en sık nedeni cerrahi teknik hatalardır. Bu sebeple dislokasyona neden olabilecek faktörlerin bilinmesi ve gerekli tedbirlerin önceden alınması önemlidir. Total kalça protezi uygulamalarından sonra görülen dislokasyonlar çıkık yönüne göre anterior posterior,superior ve inferior olarak tanımlanırlar. Çıkık en sık posteriora doğru olmakta ancak teşhis anına kadar yönü değişebilir.

Postop ilk iki haftada ortaya çıkan dislokasyonlara çok erken dönem, iki hafta ile oniki ay arasında oluşanlara erken dönem, bir ile beş yıl arasında olanlara geç dönem, beş yıldan sonra ortaya çıkan dislokasyonlara ise çok geç dönem dislokasyon adı verilmektedir.

Dislokasyon için kabul edilen ortalama insidans % 2,7 dir (79). Dislokasyonların son dekada önceki yıllarda göre arttığı görülmüştür. Değişik boyun uzunlukları, daha büyük başlar, uzun posterior duvarlar, azaltılmış boyun çapları gibi seçeneklerin ortaya çıkmasına rağmen görülen bu artış daha fazla cerrahın total kalça protezi yapmalarına ve daha agresif postoperatif rehabilitasyona bağlı olabilir. Revizyon uygulamalarından sonra dislokasyon görülme sıklığı azalmak ve transtrokanterik yaklaşım sonrası trokanter majör avülsiyonu olan vakalarda postoperatif dönemde dislokasyon olma olasılığında da artış görülmektedir.

2.4.5.1. Dislokasyon Nedenleri

1. Hasta uyumu
2. Travma
3. Yaş, cinsiyet, ek hastalık
4. Geçirilmiş operasyonlar
5. Nöromusküler hastalıklar
6. Enfeksiyon
7. Biyomekanik sorunlar
8. Aşınma ve gevşeme
9. Anatomik faktörler
10. Trokanterik yerdeğiştirme ve non-union
11. Cerrahi yaklaşım
12. Kap ve femoral stem orientasyonu
13. Kap pozisyonu
14. Femur ve pelvis arası açıklık

Hasta uyumundaki problem dislokasyon riskinde artışa neden olmaktadır. Yaşlı hastalardaki kooperasyon eksikliği, genç hastalardaki aşırı hareketlilik riski arttırılmaktadır. Ameliyat soması ayılma döneminde ve daha sonra görülebilen postoperatif psikozlarla hastanın oturma çabaları kalça aşırı adduksiyon ve fleksiyon yaparak dislokasyona neden olmaktadır. Erken dönemde yapılan yoğun bir rehabilitasyon da yumuşak doku iyileşmesini ve dolayısıyla psödokapsül
oluşumunu engellemektedir. (80) Travma genelde düşmeler sonunda oluşmakta ve genelde kapali redüksiyon ile tedavi edilebilmektedir.

İleri yaşlarda görülebilen musküler atrofi veya spastisite ve mental durum bozuklukları total kalça protezi sonrası dislokasyon görülme sıklığını arttırmaktadır (81). Daha önce geçirilmiş haranglı bir kalça ameliyatı dislokasyon riskini arttırmaktadır. Paralitik durumlar total kalça protezi için kontraendikasyon oluşturduklar. Parsiyel paralitik durumlarında ise protez uygulanabilmektedir ancak dislokasyon riski çok fazladır.

Protezin stabiłiteye etki eden özellikleri; baş-boyun çap oranı, baş-stem off-set, başın asetabuluma penetrasyon derinliği (klirens), kap dizaynı, asetabular kap ekstra duvarları, prostetik femur başına büyüklüğüdür. Kalça stabilitesinde tensor fascia lata, gluteus medius ve minimus, eklem kapsül ve ligamentlerinin yeri önemlidir.

Yumuşak dokuların elastikyet kaybına uğradığı paralitik durumlar, kaslıarda skar dokuları, kalsifikasyonlar ve heterotopik kemik oluşumu gibi durumlar ve pelvis ile femur arasındaki mesafeyi düşürerek yumuşak doku gerginliğini azaltan femoral komponent boyun kısalığı, femurun açağı kesimi ve üstüste binek femur kırıkları postoperatif dönemde instabiliyete neden olabilmektedirler. Miyofasyal gerginlik kalça stabilitesini sağlayan en önemli faktörlerin başında gelmektedir.

Asetabular kap aksial plandan 40-45° abduksiyonda ve 15-20° anteversiyonda yerleştirilmelidir. 40±10° abduksiyon ve 15±10°anteversiyon kap orientasyonu için güvenli sınırlardır. Fazla anteversiyon, ekstansiyon ve eksternal rotasyonda anterior, fazla retroversiyon ise fleksiyon ve internal rotasyonda posterior dislokasyona
neden olmaktadır. Femoral stem içinde retrovert pozisyon ve aşırı anteverşyon dislokasyon riskinde artışa neden olmaktadır.

![Şekil 2.7. Femoral anteverşyon](image)

Şekil 2.7. Femoral anteverşyon

Kap pozisyonunda önemli olarak; süperiora yerleştirilen asetabular kap normal tri-radiat kıkırdak seviyesine yerleştirilen kap’lara göre dislokasyon riskinde artma tesbit edilmiştir.

![Resim 2.7.](image)

Resimde TKP yapılmış olan hastada femoral stem malagentine bağlı gelişen çıkak görülmektedir.
2.4.5.2. Tedavi

Total kalça protezi uygulanması sonrası gelişen dislokasyonlarda redüksiyonun hemen denenmesi hastanın rahatsızlığını gidereceği gibi daha sonra redüksiyonu imkansız hale getirebilecek kas spazmı, ödem ve skar dokusu oluşumunu da engelleyecektir. Hastaların hikayesinde daha önceki çıkıkların, spontan subluksasyon ve redüksiyonun ve travma varlığının öğrenilmesi tedaviyi yönlendirmek için gereklidir. Fizik muayenede kas kuvveti, nörolojik durum, ekstremiteler uzunlukları ve enfeksiyon bulgularına dikkat edilmeli ve yalnızca enfeksiyonu ekarte etmek için aspirasyon yapılmalıdır. Ön-arka kalça grafisi yanında Lowenstein lateral grafisi de kap anteverzionu hakkında vereceği fikir yönünden değerlidir. Subluksasyonlarda ise tanı ancak floroskopik inceleme ile konulabilirdir.

2.4.5.2.1. İlk Dislokasyon

İlk defa disloke olan kalçalarda intravenöz analjezi ile denenen kapalı redüksiyonlar %90 oranında başarılı olmaktadır. Ancak yine de bazı vakalar genel anestezi gerektirmektedir. %10'dan daha az bir grupta ise açık redüksiyon gerekir. Redüksiyon sonrası yırtılan periartiküler yumuşak dokuların skar dokusu ile iyileşebilmeleri için 6-12hafta pelvipedal alçı veya abduksiyon ateli uygulanır. Bu hastaların %30’una yakın bir kısmı ileride revizyon ameliyatına ihtiyaç duyacaktır.

2.4.5.2.2. Redüktede Edilemeyen Dislokasyonlar

Eğer genel anestezi altında da redüksiyon başarılamsa açık redüksiyon yapılır. Kapalı redüksiyonun başarısız olmasıın nedenleri:

1. Yumuşak doku interpozisyonu,
2. Kemik veya çimento parçası interpozisyonu,
3. Kapsül superiorunda düğme ilgişi şeklinde yırtık,
4. Asetabular kap kenar aşınması,
5. Komponentlerin birinde veya ikisinde gevşemeye bağlı malorientasyon olabilir.

Dislokasyonun nedeninin belirlenmesi tekrar çıkıkların engellenebilmesi için çok önemlidir. Birden fazla neden bulunmasının nadir olmadığınından, nedenlerden sadece biri düzeltildiği takdirde dislokasyonun tekrarlama ihtimali yüksektir. Eğer hiçbir neden bulunamazsa redüksiyon yapılp 6 hafta alçı veya atelle korunur (79).

2.4.5.2.3. Rekürren Dislokasyon

2.5. REVİZYON CERRAHİSİNDE KULLANILAN MATERYALLER

2.5.1. Asetabulum

2.5.1.1. Asetabuler Komponent Fiksasyon Yöntemleri

1. Akrilik çimento ile tesbit edilen kaplar
2. Tek vida ile tesbit edilen kaplar
3. Press-fit yöntemi ile tesbit edilenler
4. Yivli kaplar
5. Yüzeyi poroz kaplı kemik büyümesine izin veren kaplar
6. Yivli ve kemik büyümesine izin veren kaplar

Klinik olarak gevşeme çimentolu kaplarda çimento ile kemik arasında gerçekleştiğinden, arthroplastide amaç çimento ile tesbitin ameliyat esnasında en iyi
şekilde yapılmıştır. Tesbit sahasındaki kemik kalitesinin de iyi olmasına çalışılmalıdır.

Özellikle asetabulum periferinde sürünme kuvvetlerine karşı büyük bir direnç çimentolu kaplarda çimento ile kemik arasında gerçekleştiğinden, artroplastide amacıç çimento ile tesbitin ameliyat esnasında en iyi şekilde yapılmalıdır. Tesbit sahasındaki kemik kalitesinin de iyi olmasına çalışılmalıdır. Özellikle asetabulum periferinde sürünme kuvvetlerine karşı büyük bir direnç olduğundan, bu bölgelerde kemik devamlılığı ve kalitesi iyi olmalıdır. Normal bir asetabuluma etkiyen kuvvetler karakteristik olarak:

1. Yüklenme durumlarında superior ve medialdedir.
2. Pelvisin diğer bölümlerine oranla asetabulumda stres konsantrasyonu daha fazladır.
3. Stres spongioz bölgeden çok kortikal kısımdadır.

2.5.1.1.1. Metal Arkalıklı Komponentler

Kap metal kalınlığı HDP komponentin kalınlığını azaltması, çimento veya subkondral kemik hacmini küçültmesi, artmış sertlik sebebi ile stres kalkanı oluşturması açısından tartışmalıdır.

2.5.1.1.2. Akrilik Çimento ile Tesbit Edilen Kaplar

Bu teknikle tesbit, günümüz teknolojisi ölçülerinde ve geçmiş dönemde karşılaşılan asetabulumun fazla derinleştirilmesi esnasında oluşan subkondral kemik kayıpları, basınçlı çimentolama tekniğindeki başarısızlıklar açısından tartışmalıdır.

2.5.1.1.3. Çimentosuz Kaplar:

Tesbit yöntemleri 4 ayrı tasarım esasına dayanır;

2.5.1.1.4. Metal arkalıksız HDP soketleri

Bu soketler mekanik esaslar açısından teorik olarak avantajlı gözükse, de masif osteoliz sebebi ile terkedilmişlerdir.

2.5.1.1.5. Yivli asetabuler kaplar (HDP insert)

Cerrahi sonrası hemen mekanik fiksasyon sağlamaları, revizyon gerektiği aşınma durumlarında insert değiştirilmesine ve defektli asetabulumlarda revizyon cerrahisinde kullanım kolaylığı sağladığından üstündürler. Dezavantajları: implant rijiditesinde ve asetabuler kemikte stres artışına neden olmaları, trabeküler kemikte stres kalkanı yaratmaları, kortikal yük transferine neden olmaları, ilk ve son yiv arasında yük dağılımı farklılıklarına neden olarak stres konsantrasyon eşitsizlikleri
oluşturlmaları, subkondral kemikte çok yüksek stres yaratabilmeleri ve medial duvarda operasyon esnasında aşırı gerime sebep olabilmeleridir.

2.5.1.1.6. Yüzeyi poroz kaplı (press-fit) kemik büyümesine izin veren kaplar

1. Yivli
2. Yivsiz

Yüzeyi poroz kaplı yivsiz press-fit kaplar rotasyonel kuvvetlere karşı gelebilmek için, biyolojik kemik oluşumu sağlanana dek geçici fiksasyon amaçlı yüzeyi kama veya sivri çıkıntılar içeren tasarlarda üretilmişlerdi. Yivli kaplarda buna ihtiyaç yoktur.

2.5.1.1.7. Yüzeyi poroz kaplı (press-fit) vidalanabilen kaplar

Vidalanabilen kaplarda uzun dönemde vida ile ilgili olarak gelişebilen radyolusensi ve osteoliz gevşemeye neden olabilmektedir.

Fiksasyon Kaybı: Mekanik fiksasyonun yetersiz olduğu durumlarda soketin akut dislokasyonu veya astabulum içine protrüzyonu gözlenebilir. Radyolojik olarak Teardrop (göz yaş daşması) esas alındığında mediale ve superiore migrasyon teknik bir yetersizliktir

2.5.2. Femur

2.5.2.1. Çimentosuz Stem

Yük dağılmını lateral proksimal femura dağıtarak kansellöz kemikteki stres azaltmak suretiyle normal fizyolojik stres oluşturma esasına dayanır.
Plak ve vida ile tesbit, biyomatriyaller arasında stres konsantrasyon dağılım farklılıklarını yaratması ve tesbit alanında elastisite modulüsü farklı 2 ayrı ortam yaratması açısından tartışmalıdır. Tesbit sahasındaki "koparma kuvveti" ile plak ve kemik arası sürtünme direnci ortadan kalkınca vidadan binek stres yükü artar. Pratikte tekrarlayan yüklenmeler ile vidada oluşan stres tesbit yetersizliği ve absorbsiyon artışı ile gevşeme neden olur.

Tesbitin kuvvetini artırmak amacı ile uzun stem kullanılır. Ancak medullayı tam doldurmayan stemlerde boyunluk biyomekanik olarak tam yükü taşıyan yer olduğundan uzunluğun arttırılması bir avantaj yaratmamaktadır. Ayrıca sürünme amplitüdü bu tür stemlerin distalinde artmıştır.

2.5.2.2. Çimentolu stem:

Gevşemeye neden olan mekanizmalar şöyledir:

1. Çimento içinde veya kemik içinde çimento mantosile beraber kompresif yük altında meydana gelen piston hareketi ile gevşemeye neden olur
2. Femoral stem kompleksi çimento mantosu içerisinde yada çimento stem kompleksi femoral kanal içerisinde döner
3. Akrilik çimentoda oluşabilen bir kırık femoral stemde gevşemeye neden olur.
Çimentoda kırık genç aktif hastada stemin maruz kaldığı yüklenmeye bağlı olarak erken yorulması, aktivite sonrası gerilme kuvvetlerinin sıklığı ve yorgunluğun artması ile en güçsüz noktada ortaya çıkar.

2.6. CERRAHİ YAKLAŞIM

![Diagram](image)

Şekil 2.8. Direk laretal yaklaşım metodları gösterilmiştir (95).

Önceki operasyonlara ait skar dokusu var ise iyi değerlendirilmesi gerekir. Asetabulum revizyonu için anterolateral veya gluteal kaslar arasında direk lateral yaklaşım tercih edilebilir. Ancak, kemik kayıplarının ileri derecede olduğu ve grefitlemenin gerekliliğini gösteren posterior kolon yetersizliklerinde anterior yaklaşım yetersiz kalabilir. Ekstensil yaklaşılarda lateral kesin asetabulum superior kenarından 4 ila 6 cm proksimale uzandığı durumlarda superior gluteal sinirin yaralanma riski vardır. Posterolateral yaklaşımla vastus lateralisin kaldırılması ile posterior asetabulum ve femur posterior kısmına ulaşmak kolaylaşsa da, bu kesi ile dislokasyon riski anterior kesiye oranla fazladır. Asetabulum anterioruna ulaşma güç
olsa da abduktör kasların iliumdan sýrılmasý ile ekspozýr sağlanabilir. Femurun anteriores translasyonunu sağlamak amacý ile anterior kapsül ve gluteus maksimus insersiyosunun kesilmesi önem taýr (83).

Şekil 2.9. Uzatılmış trokanterik osteotomi

Lateral kesi ile girilerek vastus lateralisin lateral intermusküler septumdan ve femoral korteksten 1 cm'den geniş olmayacak şekilde ekarte edilerek femur lateralinin ortaya konması osteotomize edilecek fragmanın, vaskülaritesi ve kas devamlılığı sağlanır. Bu tarzda yapılacak bir modifikasyon ile tariif edilmiş tüm osteotomilerdeki avantajlardan faydalanılmış olur. Rekonstruktif özelliği ve myo-osseoöz flep sayesinde kemik pencerenin kırılma ve uzun dönemde kaynamama riski de en aza indirilmiş olur (84,85,86).

2.7. REVİZYON CERRAHİSİNDE TEKNİK

Hastanın genel sağlık şartlarının revizyon cerrahisi açısından yeterli olmasının yanı sıra, ameliyat geçirmiş bir kalçaya ait vasküler, nörolojik bozukluklar, hareketsizlik, kemik kaybı ve cilt problemleri gibi lokal faktörler de gözönünde bulundurulmalıdır.

Cerrahi teknik primer kalça artroplastisinden farklıdır. Revizyon artroplastisinin başarılı olabilmesi için cerrahi teknik ile ilgili bilinmesi gereken esaslar şunlardır:

trokanter sağlansa ve kemik kalitesi osteolize rağmen iyiyse, tam bir transferden ziyade çok az bir distal transfer planlanırsa düşünülebilir.

Tüm fibröz dokular iyice temizlendikten sonra ancak cerrah, kemik-cimentoaralığındaki kritik zonda gevsəmeyi parmağı ile test edebilir.

3. Femurun mobilizasyonu ve adduktor tenotomi: Femurun mobilizasyonu rutin olarak gerçekleştirilir. Çimentolu bir femoral stemde eğer baş belirgin bir biçimde aşınmışsa gevsəme olmadığı halde stem revize edilir. Çimentosuz bir stemde revizyon esnasında kemik büyümeye mümkün olduğunca zarar verilmemeye çalışılır. Femur pelvik duvardan tam kurtarılmadan kesilerek ve kemik jıçimentoaralığındaki kritik zonda gevşeme parmağı ile test edilebilir.

Femurun mobilizasyonu ve adduktor tenotomi: Femurun mobilizasyonu rutin olarak gerçekleştirilir. Çimentolu bir femoral stemde eğer baş belirgin bir biçimde aşınmışsa gevsəme olmadığı halde stem revize edilir. Çimentosuz bir stemde revizyon esnasında kemik büyümeye mümkün olduğunca zarar verilmemeye çalışılır. Femur pelvik duvardan tam kurtarılmadan kesilerek ve kemik jıçimentoaralığındaki kritik zonda gevşeme parmağı ile test edilebilir.

3. Femurun mobilizasyonu ve adduktor tenotomi: Femurun mobilizasyonu rutin olarak gerçekleştirilir. Çimentolu bir femoral stemde eğer baş belirgin bir biçimde aşınmışsa gevsəme olmadığı halde stem revize edilir. Çimentosuz bir stemde revizyon esnasında kemik büyümeye mümkün olduğunca zarar verilmemeye çalışılır. Femur pelvik duvardan tam kurtarılmadan kesilerek ve kemik jıçimentoaralığındaki kritik zonda gevşeme parmağı ile test edilebilir.

Yüzeyi kaplama olan stemlerin çıkarılması için öncelikle stemin proksimal/metafizyal parçasının guj, osteotom ve tur gibi aletlerle serbestleştirilmesi, daha sonra femur anterolateral korteksinde açılan bir pencere yardımı ile işlemiş ve işlenmiş silindirik segmentin kesmesi, proksimal kısmın kemikten serbestleştirilerek çıkarılması ve distal kısmın kemikten serbestleştirilerek çıkarılması gerekmektedir (84).

Proksimal femurdan stem çıkarılduktan sonra ve çimento iyice temizlendikten sonra asetabuluma geçmekte fayda vardır. Zira femur proksimalinde kalan az bir çimento bile femuru güçsüzleştirecek ve asetabulum hazırlanması esnasında
kırıga neden olabilecektir. Ayrıca bu aşamada tüm kapsül artıkları ve fibröz dokunun temizlandığından emin olmak gerekmektedir.

6. Eklemin cerrahi stabilizasyonunun sağlanması: Önceki cerrahi girişimlere bağlı olarak büyük trokanterin kaynamaması, skar dokusu veya abduktör kol üzerinde ektopik kemik oluşumu gibi nedenlerle abduktör fonksiyon iyi olmayabilir. Cerrahi sonrası dislokasyonları önlemek için, asetabuler komponentin
lokalizasyonu ve femoral komponentin boyu ameliyat öncesi çok iyi değerlendirilmelidir. Zira önceki ameliyatta kısalğa neden olan femur boyunun aşağıdan kesilmiş olması ve/veya asetabulumun yüksek yerleştirilmesi gibi problemler düzeltilebilir. Femur başı merkezi ile aksı arasındaki mesafenin azaltıldığı (örn. kısa boyun kullanılması) durumlarda femur pelvise daha çok yaklaştır ve trokanterik bölge temas edecek kadar yakın olduğundan kaynama ile ilgili problemler söz konusu olabilir.

7. Protez konulacak kemik yataklarının revizyon komponentleri için hazırlanması; gerektiğinde kemik defektlerin greftlenmesi.

8. Protez seçenekleri ve olanakların belirlenmesi.

9. Cerrahi sonrası primer total kalça protezine göre daha sık olan cerrahi ve dahili komplikasyonlara karşı uyanık olmak ve gerekli önlemleri almak.

2.8. REVİZYON CERRAHİSİNDE PROBLEMLER

2.8.1 Nörolojik Komplikasyonlar

Nörovasküler yapıların kalçaya yakın komşuluğu, bu yapıların cerrahi esnasında direk veya indirek yaralanmasına neden olabilir.

Revizyon cerrahisi sonrası nörolojik disfonksiyon santral veya daha sliklklka periferik bir lezyona ait olabilir. Revizyon cerrahisi sonrası periferik sinir lezyonları yaralanmanın şiddetine, lokalizasyona veya operasyon sonrası semptomların ortaya çıkış süresine göre sınıflandırılabilirler. Santral sinir sistemine ait bir yaralanma cerrahi esnasındaki hipoksiye, serebrovasküler bir olaya veya cerrahiden kaynaklanan yağ embolisine bağlı olabilir. Yağ ve kemik iliğinden açığa çıkan faktörlerin embolizasyonu cerrahinin direk etkisidir (87).

Çimentolama sonrası emboli materyalinin sağ ventrikül ve pulmoner damarlara ulaşması çoğunlukla tolere edilebilirken; belirgin hipotansiyon hipoksi, kardiyak arrest ve ölüm nadiren görülebilir (88). Dolaşma dahil olan bu maddelerin...
azaltılması mümkündür. Cerrahi esnasında medullar kanalin pulsatil lavaji, özellikle çimentolama uygulanacaksı potansiyel embolizasyonu azaltmak açısından önemlidir (89). Embolinin bu santral etkilerinden kaçınmak açısından yaşlı düşkün veya şant olduğu bilinen hastalarda basınçlı çimentolamadan kaçınılmak gerekmektedir.

Literatürde primer kalça artroplastisi sonrası siyatik sinir yaranlama oranı % 0,6 ile % 2,9 iken bu oran revizyon kalça protezi ameliyatı sonrasında % 1,8 ile % 7,6 arasında değişmektedir (113).

2.8.2. Vasküler Komplikasyonlar

Revizyon kalça artroplastisinde damar yaralanmaları cerrahi esnasında oluşan akut bir hemoraji veya geç ortaya çıkan kanama problemleri şeklinde semptom verebilir. Potansiyel sekeller arteriyel venöz yapıların trombozu, arteriovenöz fistül, pseudo
2.8.3. **Heterotrofik ossifikasyon (Ektopik Kemik Oluşumu)**

Ektopik kemik oluşumu (EKO) sebebi tam anlaşılamamış olsa da primer ve revizyon kalça artroplastilerinden sonra hareketi kısıtlaması sebebi ile can sıkıcı komplikasyonlardan biridir. Etiyolojide rol oynayan faktörler arasında: primitif bağ dokusu hücrelerinin metaplazisi, kemik iliği hücrelerinin migrasyonu, interstisyel hemoraji, kas nekrozu, yumuşak dokudaki travma etkisi, periosteal lezyonlar, kemik partiküllerinin ortamda bulunması, implant ile kemik arasında mikrohareket ve enfeksiyon sayılabilir. Ancak bu faktörlerin tümü az veya çok her hastada etkili olabilirken, esas etyoloji halen belirlenemeyen düşük dereceli bir inflamatuvar süreçtir. Sonuç olarak; kemik oluşumuna neden olan cerrahinin de içerisinde bulunduğu bir tetikleyici ajan, osteojenik prekürsör hücre varlığı ve osteogenezisin oluşabileceğini bir ortam fizyopatolojide rol oynar (79).

EKO sıklığı ve derecesini belirleyen faktörler:

1. *Cerrahi travma:* Cerrahi esnasında yumuşak dokularda verilen harabiyet, ekspozur genişliği ve cerrahi süresi etkilidir.

Radyolojik olarak Brooker (94) sınıflaması kullanılmaktadır. Buna göre:

1. Derece: Kalça çevresi yumuşak dokuda radyolojik olarak izlenen kemik adacıkları.

2. Derece: Pelvis ve proksimal femur arasındaki karşılıklı yüzeyler arasında en az 1 cm.kadar mesafenin bulunması.

3. Derece: Pelvis ve proksimal femur arasındaki karşılıklı yüzeyler arasında 1 cm.'den az mesafenin bulunması.

Önlenmesi için profilaksinin gerektiği olduğu durumların (Aynı taraf veya karşı tarafta geçirilmiş kalça cerrahisi, Özetlediğimiz patolojiler ve erkek hasta, Aktif juvenil veya erişkin ankilozan spondilit) belirlenerek radyasyon terapisi, prostaglandin inhibitörü olan indometazin veya diğer NSAI seçeneklerden birinin veya kombinasyonunun hastaya ve patolojiye göre değerlendirme gerekir. Brooker 3 veya 4 gibi kalça hareketinin aşırı kısıtlandığı veya ankiloz oluşturduğu durumlarda cerrahi tedavi düşünülebilir.
EKO'nun şu endikasyonlarda eksizyonu gerekebilir:

1. Bilateral kalça artroplasti sonrası EKO'nun kalça hareketlerini kısıtladığında,
2. Kabul edilemez bir pozisyonda (adduksiyon ve fieksiyon veya abduksiyonda) oluşan ankiloz,
3. Bel ağrısının giderilmesinde kalça mobilizasyonu gerektiğinde,
4. İpsilateral diz artrodezi bulunduğunda profilaktik destek tedaviye cerrahi eksizyonu eklemek gerekebilir.

EKO'nu önlemek için revizyon esnasında dokulara travmatik davranılmamalı, radyasyon ve NSAİ ilaçlarla profilaksiye özen gösterilmelidir (79).

Resim 2.8. TKP uygulanmasının takiben gelişen Evre 3 heterotropik ossifikasyon

2.8.4 Trokanterik Osteotomi Komplikasyonları

İleri derecede deforme olmuş bir kalçada abduktor mekanizmaya en az zarar vermek, biyomekanik dengeyi sağlayabilmek amacıyla uzatılmış trokanterik bir yaklaşım düşünülebilir. Revizyon cerrahisi, ileri derecede protrüzyo asetabuli, konjenital veya edinsel çıkmalar, ileri osteoporoz gibi durumlarda trokanterik ossteotomi güvenilir bir
yöntem olsa da; artık günümüzde birçok kalça artroplastisi trokanterik osteotomi yapılmadan gerçekleştirilmektedir.

Koparma kuvvetlerine karşı erken postoperatif dönemde yeterli direnç sağlanamazsa osteotomi hattında psödoartrozla sonuçlanır. Komplikasyonların önlenmesi açısından fiksasyon yönteminin güvenli olması gerekmektedir. Fiksasyon amacıyla vida, klamp ve serklaj amaçlı kablo veya tel kullanılabılır. Sıkça kullanılan serklaj teli ile gerçekleştirilen fiksasyonun başarısızlığı: telin biyomekanik özelliklerine; tel üzerinde oluşan deformitelere; kemik defektine; erken metal yorgunluğu ve geç metal yorgunluğuna bağlı olarak postoperatif dönemde çeşitli şekillerde karşımıza çıkabilir. Trokanterik komplikasyonlar: migrasyon olmakzızın telin radyolojik olarak kırıldığını aşeptomatik durumlar, migrasyonla beraber kırık, bursit, ektopik kemik oluşumu, migrasyon olmakzızın fibroz kaynamama, telde kopma olmakzı trokanterde migrasyon, kaynama ile beraber bir cm.'den az migrasyon, kaynamama ile beraber 1 cm.'den fazla migrasyon ve migrasyon ile beraber tekrarlayan çıkık oluşmasıdır. (79,39)
3. HASTALAR VE YÖNTEM

Hastalar preoperatif olarak ayrıntılı bir anamnez ve klinik muayene sonrasında standart her iki kalça A-P ve etkilenen kalça A-P ve yan grafileri ile değerlendirildi. Ameliyat öncesi kullanılacak protezin şablonlanması tüm hastalar için yapıldı. Revizyon endikasyonu konulan hastalarda en sık neden olarak %48 oranında asepitik gevşeme saptandı.

Tüm hastalarda tam kan, ESR , CRP düzeyleri standart olarak incelendi. Enfeksiyon düşündülen hastalarda steril koşullarda aspirasyon , sintigrafi gibi ek tetkiklerde preoperatif olarak incelendi. Ayrıca hastalar preoperatif olarak başka bir enfeksiyon kaynağı (idrar, boğaz, kan kültürleri) açısından rutin olarak taramaları yapıldı. Operasyon için ortalama olarak her hasta için 5 ünite eritrosit süspansiyonu hazırlanıdı. Rutin ameliyat hazırlıkları dışında özellikle femoral ve asetabular defekt saşyanması AAOS ‘a göre yapıldı ve greft kullanılması için gerekli hazırlıklar yapıldı. İki basamaklı revizyon planlanan enfekte olmuş vakalarda preoperatif olarak spacer için yeterli miktarda çimento ve antibiyotik hazırlanıdı.

Hastaların ameliyatlarında %74 oranında kombine spino-epidural anestezi uygulandı.

Her iki komponent yerleştirildikten sonra hareket genişliğine (Range of Motion;ROM) ve stabiliteye bakıldı. Hareket sınırları ve stabilitenin yeterli olduğu görüldükten sonra ameliyat bölgesine irrigasyonu takiben bir adet hemovak dren konuldu, katlar usuline uygun olarak kapatıldı ve ameliyata son verildi.

Ameliyat sonrası 1. gün Kuadriseps Femoris ve Gluteus maksimuma izometrık egzersizler, solunum egzersizleri, diğer eklemlere ROM ve kuvvetlendirme egzersizleri verildi. Hareket sınırları ve stabilitenin yeterli olduğu görüldükten sonra ameliyat bölgesinde irrigasyonu takiben bir adet hemovak dren konuldu, katlar usuline uygun olarak kapatıldı ve ameliyata son verildi.

Antibiyotik profilaksisi tüm hastalara uygulandı. Profilakside sefazolin Na (Sefazol® Mustafa Nevzat, İstanbul, Türkiye) 1 gr her 6 saatte bir üç gün süreyle uygulandı.

Bütün hastalara tromboembolik komplikasyonların önlenmesi için düşük molekül ağırlıklı heparin (Enoksaparin 0,4 ml) (Clexane, Sanoﬁ Aventis, İstanbul, Türkiye) cilt altı enjeksiyonu şeklinde ameliyattan sonraki 4-6 saat içinde başlandı. Risk grubu hastalara (derin ven trombozu öyküsü olanlar, aşırı kilolu hastalar) 0,4 ml uygulandi. Hastalara en az 3 hafta süreyle düşük molekül ağırlıklı heparin verildi.

İstatistiksel analizlerde SPSS 15.0 istatistik paket programı kullanıldı. Verilerin normal dağılım gösterip göstermediğine Kolmogorov-Smirnov Testi ile bakıldı. İşlem öncesi ve işlem sonrası karşılaştırılmalarda parametrik olmayan testlerden Wilcoxon testi kullanıldı. p< 0.05 değeri istatistiksel olarak anlamlı kabul edildi.
4. BULGULAR

Bu hastalardan 9’una (%18) birden fazla revizyon ameliyatı uygulanmış olup tamamı dış merkezlerde yapılmış ameliyatlardı.

Tüm olguların primer artroplasti yaş ortalamaları 56±13,8 idi. Tüm olguların revizyon ameliyatları sırasında yaş ortalamaları 62,8±13,4 olarak saptandı.

İncelemeye alınan olgularda ilk ameliyatında yapılmış olan arthroplasti tipleri değerlendirilmiş ve aşağıdaki tabloda detaylı olarak belirtilmiştir.

Tablo 4.1. Primer artroplasti tipleri ve oranları

<table>
<thead>
<tr>
<th>Primer Artroplasti Tipleri ve Yüzdeleri</th>
<th>Hasta Sayısı</th>
<th>Yüzde</th>
</tr>
</thead>
<tbody>
<tr>
<td>TKP</td>
<td>33</td>
<td>66.00%</td>
</tr>
<tr>
<td>Unipolar</td>
<td>7</td>
<td>14.00%</td>
</tr>
<tr>
<td>Bipolar</td>
<td>9</td>
<td>18.00%</td>
</tr>
<tr>
<td>Kap Artroplastisi</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Rezeksiyon</td>
<td>1</td>
<td>2.00%</td>
</tr>
<tr>
<td>Artrode</td>
<td>0</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Primer artroplastisi kliniğimizde yapılan hastalardan kaçının başka bir merkezde revizyon ameliyatı olduğu arşiv taraması ve hasta takıpleri ile kesin ortaya konamamakla beraber, başka bir merkezde primer artroplastisi gerçekleştirilmiş.
olguların da dahil edildiği revizyon ameliyatlarında ilk teşhisi osteoartrit olan hastaların oranı 38.00% (19 hasta) olarak bulunmuştur.

Tablo 4.2. Primer artroplasti nedenleri

<table>
<thead>
<tr>
<th>Primer Artroplasti Endikasyonları ve Dağılımı</th>
<th>Hasta Sayısı</th>
<th>Yüzde</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSTEOARTRİT</td>
<td>19</td>
<td>38.00%</td>
</tr>
<tr>
<td>KİRİK</td>
<td>16</td>
<td>32.00%</td>
</tr>
<tr>
<td>AVN</td>
<td>5</td>
<td>10.00%</td>
</tr>
<tr>
<td>ENFEKSIYON</td>
<td>1</td>
<td>2.00%</td>
</tr>
<tr>
<td>RA</td>
<td>2</td>
<td>4.00%</td>
</tr>
<tr>
<td>PERTHES</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>DKÇ</td>
<td>4</td>
<td>8.00%</td>
</tr>
<tr>
<td>AS</td>
<td>3</td>
<td>6.00%</td>
</tr>
</tbody>
</table>

İncelemeye alınan olgularda revizyon sebepleri enfeksiyon, komponentlerden birinde veya her ikisinde gözlenen gevşeme, protezde kırık, primer artroplasti veya revizyon sonrası gelişen femur kırığı, tekrarlayan dislokasyon ve ağrıdır. Tüm olgular incelendiğinde aseptik gevşeme oranı %48 olarak bulunmuştur.

Tablo 4.3. Revizyon cerrahisi nedenleri

<table>
<thead>
<tr>
<th>Revizyon Artroplasti Nedenleri</th>
<th>Hasta Sayısı</th>
<th>Yüzde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aseptik Gevşeme</td>
<td>24</td>
<td>48.00%</td>
</tr>
<tr>
<td>Dislokasyon</td>
<td>6</td>
<td>12.00%</td>
</tr>
<tr>
<td>Ağrı</td>
<td>1</td>
<td>2.00%</td>
</tr>
<tr>
<td>Enfeksiyon</td>
<td>11</td>
<td>22.00%</td>
</tr>
<tr>
<td>Periprostetik Femur Kırığı</td>
<td>8</td>
<td>16.00%</td>
</tr>
<tr>
<td>Implant Kırığı</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Fonksiyonel Kısıtlılık.</td>
<td>2</td>
<td>4.00%</td>
</tr>
<tr>
<td>Diğer</td>
<td>1</td>
<td>2.00%</td>
</tr>
</tbody>
</table>
Revizyon ameliyatı sırasında hastaların karşı kalça kalçalarının durumları incelemeye alınmıştır.

Tablo 4.4. Karşı kalça değerlendirmesi

<table>
<thead>
<tr>
<th>Karşı Kalcanın Durumu</th>
<th>Hasta Sayısı</th>
<th>Yüzde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol sublukse kalça</td>
<td>1</td>
<td>2.00%</td>
</tr>
<tr>
<td>Normal</td>
<td>36</td>
<td>72.00%</td>
</tr>
<tr>
<td>TKP opere</td>
<td>6</td>
<td>12.00%</td>
</tr>
<tr>
<td>Artroz</td>
<td>5</td>
<td>10.00%</td>
</tr>
<tr>
<td>PKP ameliyatlısı</td>
<td>1</td>
<td>2.00%</td>
</tr>
<tr>
<td>DKÇ</td>
<td>1</td>
<td>2.00%</td>
</tr>
<tr>
<td>Toplam</td>
<td>50</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

İncelenen tüm olgularda 48 hastaya revizyon kalça protezi uygulanmış, 2 hastada ise rezeksiyon artroplastisi uygulanmıştır.

Tablo 4.5. Revizyon tipi ve oranları

<table>
<thead>
<tr>
<th>Revizyon Hastalarının Revizyon Tipi ve Hasta Sayısı</th>
<th>Hasta Sayısı</th>
<th>Yüzde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revizyon Kalça Protezi Uygulandı</td>
<td>48</td>
<td>96.00%</td>
</tr>
<tr>
<td>Rezeksiyon</td>
<td>2</td>
<td>4.00%</td>
</tr>
</tbody>
</table>

İlk ameliyatında primer total kalça artroplastisi uygulanan 33 hasta incelendiğinde %63.6 oranında femoral stemlerin çimentolu yapıldığı gözlenmiştir, asetabular tarafta ise çimentosuz ve vida ile fiske edildiği gözlenmiştir.
Tablo 4.6. TKP tipleri ve oranları

<table>
<thead>
<tr>
<th>TKP çeşitleri ve Dağılımı</th>
<th>Hasta Sayısı</th>
<th>Yüzde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femur Çimentolu</td>
<td>21</td>
<td>63.64%</td>
</tr>
<tr>
<td>Femur Çimentosuz</td>
<td>12</td>
<td>36.36%</td>
</tr>
<tr>
<td>Femur Toplam</td>
<td>33</td>
<td>100.00%</td>
</tr>
<tr>
<td>Asetabulum Çimentolu</td>
<td>4</td>
<td>12.12%</td>
</tr>
<tr>
<td>Asetabulum Çimentosuz Vidalı</td>
<td>17</td>
<td>51.52%</td>
</tr>
<tr>
<td>Asetabulum Çimentosuz Vidasız</td>
<td>12</td>
<td>36.36%</td>
</tr>
<tr>
<td>Asetabulum Çimentosuz</td>
<td>29</td>
<td>87.88%</td>
</tr>
<tr>
<td>Asetabulum Toplam</td>
<td>33</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Tablo 4.7. Asetabulum seçenekleri

<table>
<thead>
<tr>
<th>Revizyon TKP Hastalarının Asetabular komponent Yüzdeleri (Hasta sayısı = 39)</th>
<th>Hasta Sayısı</th>
<th>Yüzde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asetabulum Çimentosuz Viadalı</td>
<td>27</td>
<td>69,23%</td>
</tr>
<tr>
<td>Asetabulum Çimentosuz Vidasız</td>
<td>11</td>
<td>28,2%</td>
</tr>
<tr>
<td>Asetabulum Çimentolu</td>
<td>1</td>
<td>2.56%</td>
</tr>
<tr>
<td>Asetabulum Cage kullanma</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Asetabulum Greft kullanma</td>
<td>3</td>
<td>7.69%</td>
</tr>
<tr>
<td>Toplam</td>
<td>39</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
48 revizyon kalça protezi ameliyatında 7 hastaya femoral revizyon yapılmamış, femoral revizyon yapılan hastaların %82 oranında çimentosuz stem kullanıldığını saptanmıştır.

Tablo 4.8. Femur seçenekleri

<table>
<thead>
<tr>
<th></th>
<th>Hasta Sayısı</th>
<th>Yüzde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femur Çimentolu</td>
<td>7</td>
<td>17.07%</td>
</tr>
<tr>
<td>Femur Çimentosuz</td>
<td>34</td>
<td>82.92%</td>
</tr>
<tr>
<td>Femur Toplam</td>
<td>41</td>
<td>100.00%</td>
</tr>
<tr>
<td>Femura Gref Kullanma</td>
<td>1</td>
<td>2.43%</td>
</tr>
<tr>
<td>Femura UTO Yapılma</td>
<td>24</td>
<td>58.53%</td>
</tr>
<tr>
<td>Femura Kablo Kullanma</td>
<td>26</td>
<td>63.41%</td>
</tr>
</tbody>
</table>

Tüm olguların yıllara göre dağılımlarında direkt lateral yaklaşımı yapılan revizyon kalça artroplastisinin en sık olarak 2004 yılında 9 hasta olarak saptanmıştır.

Tablo 4.9. Revizyon Yılı

<table>
<thead>
<tr>
<th>Revizyon Yılı Dağılımı</th>
<th>Hasta Sayısı</th>
<th>Yüzde</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>1</td>
<td>2.00%</td>
</tr>
<tr>
<td>1999</td>
<td>4</td>
<td>8.00%</td>
</tr>
<tr>
<td>2000</td>
<td>4</td>
<td>8.00%</td>
</tr>
<tr>
<td>2001</td>
<td>1</td>
<td>2.00%</td>
</tr>
<tr>
<td>2002</td>
<td>7</td>
<td>14.00%</td>
</tr>
<tr>
<td>2003</td>
<td>6</td>
<td>12.00%</td>
</tr>
<tr>
<td>2004</td>
<td>9</td>
<td>18.00%</td>
</tr>
<tr>
<td>2005</td>
<td>5</td>
<td>10.00%</td>
</tr>
<tr>
<td>2006</td>
<td>5</td>
<td>10.00%</td>
</tr>
<tr>
<td>2007</td>
<td>4</td>
<td>8.00%</td>
</tr>
<tr>
<td>2008</td>
<td>2</td>
<td>4.00%</td>
</tr>
<tr>
<td>2009</td>
<td>2</td>
<td>4.00%</td>
</tr>
<tr>
<td>Toplam</td>
<td>50</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
Şekil 4.1. Revizyon yılları dağılımı

İncelemeye alınan hastalarda ameliyat sonrası veya hastaneden ayrılmadan çekilen direkt röntgenler takip esnasındaki graflerle karşılaştırılırak antero-posterior planda gevseme hatları zonlara göre detaylı incelemiş, her iki (asetabulum ve femur) komponentin pozisyonu, asetabular migrasyon ve femoral çökme (subsidence) açısından değerlendirilmiştir. Karşılaştırma amacıyla röntgenler üzerinde tanımlanması kolay trokanter minör, iskial tuberositas, trokanterik serklaj, asetabuler gözyaşı damlası gibi kilavuz noktalardan yararlanılmıştır.

Gevseme saptanan tüm olgular Gruen ve DeLee ve Charnley sınıflaması'na göre zonlara ayrılırak belirtilmiştir. Gruen’in femoral tartaftaki gevsme zonlarına göre incelenen toplam 34 hastada en sık zone 1 ve zone 6 da 2 mm üstünde seri radyografilerde saptanan gevseme alanları tesbit edilmiştir. Gevseme saptanan hastalar septik ve aseptik olarak ayrı ayrı incelenmiş toplam gevseme saptanan 34 hastadan 27’si aseptik gevseme olarak saptanmıştır. Aseptik gevseme saptanan 27 hastada en sık femoral tartaftaki gevsme zone 6 olarak bulunmuş ve buradaki radyolusensi alanı seri radyografilerle değerlendirilmiştir ve 2 mm üzeri olanlar anlamlı olarak kabul edilmiştir.

Tablo 4.10. Gevşeme zonlarına göre dağılım

<table>
<thead>
<tr>
<th>Femoral Stemdeki Gevşeme Zone Dağılımları (Hasta sayısı = 34) (GRUEN)</th>
<th>Hasta sayısı</th>
<th>Yüzde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td>25</td>
<td>71.43%</td>
</tr>
<tr>
<td>Zone 2</td>
<td>15</td>
<td>42.86%</td>
</tr>
<tr>
<td>Zone 3</td>
<td>18</td>
<td>51.43%</td>
</tr>
<tr>
<td>Zone 4</td>
<td>14</td>
<td>40.00%</td>
</tr>
<tr>
<td>Zone 5</td>
<td>14</td>
<td>40.00%</td>
</tr>
<tr>
<td>Zone 6</td>
<td>17</td>
<td>48.57%</td>
</tr>
<tr>
<td>Zone 7</td>
<td>15</td>
<td>42.86%</td>
</tr>
</tbody>
</table>

Tablo 4.11. Aseptik gevşemelerin dağılımı

<table>
<thead>
<tr>
<th>Femoral Stemdeki Aseptik Gevşeme Zone Dağılımları (Hasta sayısı = 27)</th>
<th>Hasta sayısı</th>
<th>Yüzde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td>1</td>
<td>4.17%</td>
</tr>
<tr>
<td>Zone 2</td>
<td>1</td>
<td>4.17%</td>
</tr>
<tr>
<td>Zone 3</td>
<td>9</td>
<td>37.50%</td>
</tr>
<tr>
<td>Zone 4</td>
<td>6</td>
<td>25.00%</td>
</tr>
<tr>
<td>Zone 5</td>
<td>7</td>
<td>29.17%</td>
</tr>
<tr>
<td>Zone 6</td>
<td>16</td>
<td>66.72%</td>
</tr>
<tr>
<td>Zone 7</td>
<td>9</td>
<td>37.50%</td>
</tr>
</tbody>
</table>

Gevşeme saptanan toplam 34 hastadan 7 olguda enfeksiyon saptanmış ve bu olgularda da en sık gevşeme zone 4-5-6’da gözlenmiştir.
Tablo 4.11. Enfeksiyona bağlı gevşemelerin dağılımı

<table>
<thead>
<tr>
<th>Enfeksiyona Bağlı Gevşeme Zone Dağılımları (Hasta sayısı = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Zone 1</td>
</tr>
<tr>
<td>Zone 2</td>
</tr>
<tr>
<td>Zone 3</td>
</tr>
<tr>
<td>Zone 4</td>
</tr>
<tr>
<td>Zone 5</td>
</tr>
<tr>
<td>Zone 6</td>
</tr>
<tr>
<td>Zone 7</td>
</tr>
</tbody>
</table>

Ayrıca aseptik gevşemesi mevcut olan ve periprostetik femur kırığı oluşmuş olan 3 hasta incelendiğinde de en sık gevşeme zone 3 (%100) bölgesinde bulunmuştur.

Tablo 4.12. Aseptik gevşemesi ve kırığı olan hastalardaki dağılım

<table>
<thead>
<tr>
<th>Aseptik Gevşemesi ve Periprostetik Femur Kırığı Olan Hastalardaki Zone dağılımları (Hasta sayısı = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Zone 1</td>
</tr>
<tr>
<td>Zone 2</td>
</tr>
<tr>
<td>Zone 3</td>
</tr>
<tr>
<td>Zone 4</td>
</tr>
<tr>
<td>Zone 5</td>
</tr>
<tr>
<td>Zone 6</td>
</tr>
<tr>
<td>Zone 7</td>
</tr>
</tbody>
</table>
Asetabular komponent için DeLee ve Charnley’in tarif etmiş olduğu gevşeme zonları kullanılmıştır. Toplam beş hastada asetabular gevşeme izlenmiştir ve bu hastaların tamamı aseptik gevşeme olarak değerlendirilmiştir. Bu tarafta en sık gevşemenin izlendiği zone 1 bölgesi olmuştur.

Tablo 4.13. Asetabular gevşemelerin zonelara göre dağılımı

<table>
<thead>
<tr>
<th>Asetabular Gevşeme Zone Oranları (Hasta sayıısı = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasta sayısı</td>
</tr>
<tr>
<td>Zone 1</td>
</tr>
<tr>
<td>Zone 2</td>
</tr>
<tr>
<td>Zone 3</td>
</tr>
</tbody>
</table>

Tablo 4.14. Stem pozisyonları

<table>
<thead>
<tr>
<th>Femoral Stem Pozisyonu (Hasta sayısı = 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frekans</td>
</tr>
<tr>
<td>Normal</td>
</tr>
<tr>
<td>Valgus</td>
</tr>
<tr>
<td>Varus</td>
</tr>
</tbody>
</table>
Preoperatif radyolojide stem pozisyonu normal olarak değerlendirilen 25 hastanın 9’unda (%36) aseptik gevşeme saptanmıştır. Stem pozisyonu valgus olarak değerlendirilen 13 hastada ise gevşeme 7 hastada (53,8) saptanmıştır. Bu 13 hastadan 6’sına unipolar, 3’üne unipolar, 4’üne ise çimentolu TKP yapılmıştı. Stem pozisyonu valgus olarak saptanan ve aseptik gevşeme tesbit edilen hastalardan 4’üne unipolar, 3’üne ise çimentolu TKP yapılmıştı.

Stem pozisyonu varus olarak değerlendirilen 12 hastada ise gevşeme 8 (66,7 %) hastada saptanmıştır. Bu 12 hastadan ise; 2’sine bipolar, 1’ine unipolar, 9’una ise çimentolu TKP yapılmıştı. Bu hastalardan stemi varusta olup aseptik gevşemesi olan 1 hastaya unipolar, 1 hastaya bipolar, 6 hastaya ise çimentolu TKP yapılmıştı.

3 hastada ise aseptik gevşemeyle beraber periprostetik femur kırgı olduğu için bu değerlendirmeye alınmamıştır.

Tablo 4.15. Stem pozisyonu ve Aseptik gevşeme ilişkisi

<table>
<thead>
<tr>
<th>Stem Pozisyonu</th>
<th>Hasta sayısı</th>
<th>Aseptik Gevşeme</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yok</td>
<td>Var</td>
</tr>
<tr>
<td>normal</td>
<td>16</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>Stem Pozisyonu</td>
<td>64.0%</td>
<td>36.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>valgus</td>
<td>6</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Stem Pozisyonu</td>
<td>46.2%</td>
<td>53.8%</td>
<td>100.0%</td>
</tr>
<tr>
<td>varus</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Stem Pozisyonu</td>
<td>33.3%</td>
<td>66.7%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td>24</td>
<td>50</td>
</tr>
<tr>
<td>Stem Pozisyonu</td>
<td>52.0%</td>
<td>48.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Tüm olgular aynı zamanda aseptik gevşeme ve femoral çökme arası ilişkilendirilmiştir. Toplamda 27 olguda aseptik gevşeme saptanmış, ancak 3 hastada femur kırığına eşlik ettiğinden bu 3 olgu değerlendirilmeye alınmamıştır. Tüm olgular incelendiğinde toplamda aseptik gevşeme saptanan 24 hastadan 16’sında (66,6%) femoral stemde çökme görülmüştür. Stem çökmesi saptanmayan toplam 22 hastada 8 hastanın aseptik gevşeme ile beraberlik gösterdiği saptanmıştır.

Tablo 4.16. Stem çökmesi ve aseptik gevşeme ilişkisi

<table>
<thead>
<tr>
<th>Stem çökmesi</th>
<th>Aseptik gevşeme</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yok</td>
<td>Var</td>
</tr>
<tr>
<td>var</td>
<td>Hasta sayısı</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>stem çökmesi</td>
<td>42.9%</td>
</tr>
<tr>
<td>yok</td>
<td>Hasta sayısı</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>stem çökmesi</td>
<td>63.6%</td>
</tr>
<tr>
<td>Total</td>
<td>Hasta sayısı</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>stem çökmesi</td>
<td>52.0%</td>
</tr>
</tbody>
</table>

Femoral stem pozisyonu ile femoral stemdeki çökme arasındaki ilişki araştırılmış; Femoral stem çökmesi bulunan 28 olguda, stem pozisyonu normal olan 7 hasta (%25), valgus saptanan 11 hasta (%39,3), varus saptanan 10 hasta (%35,7) bulunmuştur.

Bu bilgiler göre; ölçümleri yapılabilen hastalarda revizyon kalça protezi sonrası preoperatif değerlendirmeye kap inklinasyon açılarında azalma saptanmıştır.
Tablo 4.18. Preop ölçüm ortalamaları

<table>
<thead>
<tr>
<th></th>
<th>Ortalama</th>
<th>Standart Sapma</th>
</tr>
</thead>
<tbody>
<tr>
<td>As. Kap Yük</td>
<td>4.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Kap. Đnk.</td>
<td>51.7</td>
<td>14.3</td>
</tr>
<tr>
<td>Hor. Mesafe</td>
<td>2.0</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Tablo 4.19. Postop ölçüm oranları

<table>
<thead>
<tr>
<th></th>
<th>Ortalama</th>
<th>Standart Sapma</th>
</tr>
</thead>
<tbody>
<tr>
<td>As..Kap Yük</td>
<td>4.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Kap. Đnk..</td>
<td>43.9</td>
<td>9.8</td>
</tr>
<tr>
<td>Hor.Mesafe</td>
<td>2.1</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Dislokasyon altı hastada saptandı. Üç hastada problem malagmient (%50), iki hastada idiotatik (%33,3), bir hastada (%16,6) ise polietilen aşınması saptandı.

İki hastada implant kırığı saptandı. Bir hastada femoral stemde, diğer hastada asetabular komponentte kırık saptandı. Femoral stemdeki kırık preoperatif radyolojik olarak, asetabular komponent kırığı intraoperatif saptandı.

medikal tedaviye cevap vermeyen dirençli enfeksiyon neticesinde rezeksiyon artroplastisi uygulanmak zorunda kalınılmıştır.

Ağrının preoperatif ön planda olduğu toplam onbir hasta saptandı. Bu hastalardan 7 olguda periprostetik femur kırığı, 3 olguda aseptik gevşeme, 1 olguda femoral stemde kırık saptandı.

Tablo 4.20. Ameliyat sonrası protez çevresi kırıkları için Vancouver sınıflaması

<table>
<thead>
<tr>
<th>TİP</th>
<th>FEMUR'DA YERİ ALT TİPİ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Trokanterik bölge A<sub>0</sub> (trokanter major)</td>
</tr>
<tr>
<td></td>
<td>A<sub>1</sub> (trokanter minör)</td>
</tr>
<tr>
<td>B</td>
<td>Protez çevresi yada hemen altı B1 (protez stabil)</td>
</tr>
<tr>
<td></td>
<td>B2 (protez stabil değil)</td>
</tr>
<tr>
<td></td>
<td>B3 (yetersiz kemik stoğu)</td>
</tr>
<tr>
<td>C</td>
<td>Kırık protezin distalinde</td>
</tr>
</tbody>
</table>

Tablo 4.21. Asetabular kemik kayıplarını sınıflaması (AAOS) ve hasta sayıları

<table>
<thead>
<tr>
<th>Sınıflama</th>
<th>Hasta Sayısı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip I: Segmenter yetmezlik</td>
<td>1</td>
</tr>
<tr>
<td>Periferik</td>
<td>-</td>
</tr>
<tr>
<td>Superior</td>
<td>1</td>
</tr>
<tr>
<td>Anterior</td>
<td>-</td>
</tr>
<tr>
<td>Posterior</td>
<td>-</td>
</tr>
<tr>
<td>Santral (medial duvar yok)</td>
<td>-</td>
</tr>
<tr>
<td>Tip II: Kaviter yetmezlik</td>
<td>2</td>
</tr>
<tr>
<td>Periferik</td>
<td>1</td>
</tr>
<tr>
<td>Superior</td>
<td>-</td>
</tr>
<tr>
<td>Anterior</td>
<td>-</td>
</tr>
<tr>
<td>Posterior</td>
<td>1</td>
</tr>
<tr>
<td>Santral (medial duvar intakt)</td>
<td>-</td>
</tr>
<tr>
<td>Tip III: Kombine yetmezlık</td>
<td>1</td>
</tr>
<tr>
<td>Tip IV: Pelvik devamsızlık</td>
<td>-</td>
</tr>
<tr>
<td>Tip V: Artrodez</td>
<td>-</td>
</tr>
</tbody>
</table>
Tablo 4.22. Femoral kemik kayıpları sınıflaması: (AAOS)

<table>
<thead>
<tr>
<th>Sınıflama</th>
<th>Hasta sayısı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip I: Segmenter yetmezlik</td>
<td>8</td>
</tr>
<tr>
<td>Proksimal</td>
<td>4</td>
</tr>
<tr>
<td>Parsiyel</td>
<td>2</td>
</tr>
<tr>
<td>Komple</td>
<td>1</td>
</tr>
<tr>
<td>Intercalary</td>
<td></td>
</tr>
<tr>
<td>Büyük trokanterik</td>
<td>1</td>
</tr>
<tr>
<td>Tip II: Kaviter yetmezlik</td>
<td>4</td>
</tr>
<tr>
<td>Kansellöz</td>
<td>1</td>
</tr>
<tr>
<td>Kortikal</td>
<td>3</td>
</tr>
<tr>
<td>Ektazi</td>
<td>-</td>
</tr>
<tr>
<td>Tip III: Kombine yetmezlik</td>
<td>-</td>
</tr>
<tr>
<td>Tip IV: Malalignment</td>
<td>-</td>
</tr>
<tr>
<td>Rotasyonel</td>
<td>-</td>
</tr>
<tr>
<td>Açısal</td>
<td>-</td>
</tr>
<tr>
<td>Tip V: Femoral stenoz</td>
<td>-</td>
</tr>
<tr>
<td>Tip VI Femoral devamsızlık</td>
<td>-</td>
</tr>
</tbody>
</table>

Hastalara revizyon ameliyatları sırasında kullanılan kan miktarları incelenmiştir. 38 (%76) hastada kullanılan kan miktarı 3 ünite ve altı, 22 (%44) hastada kullanılan kan miktarı 4 ünite ve üstü olarak saptandı.

Hastalar revizyon ameliyatı sırasında kullanılan anestezi tipi incelenmiş ve 37 (%74) hastada spino-epidural kombin bir anestezi, 13 (%26) hastada genel anestezi uygulanmıştır.

Ayrıca tüm olgularda kullanılan anestezi tipi ve kullanılan kan miktarı arasındaki ilişki araştırılmıştır. Aşağıdaki tabloda belirtdiği gibi genel anestezi yapılan hastalarda kullanılan kan miktarı spino-epidural anestezi yapılan hastalara göre daha az çıkmıştır. Örneğin 4 ünite ve üstü kan kullanımı genel anestezide %15,4 iken spino-epidural anestezide bu oran %27 olarak bulunmuştur.
Tablo 4.23. Kan Ünitesi ve Anestezi Tipi arasındaki ilişki

<table>
<thead>
<tr>
<th>Kan Ünitesi</th>
<th>Anestezi Tipi</th>
<th>Hasta Sayısı</th>
<th>ITGA</th>
<th>spinal-epidural</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3 Ünitesi</td>
<td>Hasta Sayısı</td>
<td>11</td>
<td>27</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kan Ünitesi</td>
<td>28.9%</td>
<td>71.1%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anestezi Tipi</td>
<td>84.6%</td>
<td>73.0%</td>
<td>76.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toplam</td>
<td>22.0%</td>
<td>54.0%</td>
<td>76.0%</td>
<td></td>
</tr>
<tr>
<td>4-5 Ünitesi</td>
<td>Hasta Sayısı</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kan Ünitesi</td>
<td>16.7%</td>
<td>83.3%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anestezi Tipi</td>
<td>15.4%</td>
<td>27.0%</td>
<td>24.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toplam</td>
<td>4.0%</td>
<td>20.0%</td>
<td>24.0%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Hasta Sayısı</td>
<td>13</td>
<td>37</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kan Ünitesi</td>
<td>26.0%</td>
<td>74.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anestezi Tipi</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toplam</td>
<td>26.0%</td>
<td>74.0%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Hastaların ortalama takip süreleri 6.1 yıl ±2.5 yıl olarak bulunmuştur.

<table>
<thead>
<tr>
<th>Klinik değerlendirme</th>
<th>Puanlar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ağrı (40 Puan)</td>
<td></td>
</tr>
<tr>
<td>Yok</td>
<td>40</td>
</tr>
<tr>
<td>Hafif veya arasıra</td>
<td>35</td>
</tr>
<tr>
<td>Orta şiddette</td>
<td>20</td>
</tr>
<tr>
<td>Şiddetli</td>
<td>0</td>
</tr>
<tr>
<td>Fonksiyon (20 Puan)</td>
<td></td>
</tr>
<tr>
<td>Yürünebilen mesafe (15 Puan)</td>
<td></td>
</tr>
<tr>
<td>>10blok</td>
<td>15</td>
</tr>
<tr>
<td>6 blok</td>
<td>12</td>
</tr>
<tr>
<td>1-3 blok</td>
<td>7</td>
</tr>
<tr>
<td>Ev içerisinde</td>
<td>2</td>
</tr>
<tr>
<td>Yürüyemiyor</td>
<td>0</td>
</tr>
<tr>
<td>Yürüme cihazı desteği (5 Puan)</td>
<td></td>
</tr>
<tr>
<td>Yok</td>
<td>5</td>
</tr>
<tr>
<td>Arasıra baston kullanıyor</td>
<td>4</td>
</tr>
<tr>
<td>Devamlı baston veya tek koltuk değneği</td>
<td>3</td>
</tr>
<tr>
<td>2 baston veya koltuk değneği</td>
<td>2</td>
</tr>
<tr>
<td>Walker</td>
<td>1</td>
</tr>
<tr>
<td>Yürüyemiyor</td>
<td>0</td>
</tr>
<tr>
<td>Hareket ve kas gücü (20 Puan)</td>
<td></td>
</tr>
<tr>
<td>Oturma (5 Puan)</td>
<td></td>
</tr>
<tr>
<td>Herhangi bir iskemlede rahatlıkla uzun süre</td>
<td>5</td>
</tr>
<tr>
<td>Yüksekçe bir iskemlede yarım saat</td>
<td>3</td>
</tr>
<tr>
<td>Herhangi bir iskemlede rahat oturamama</td>
<td>0</td>
</tr>
<tr>
<td>Ayak bakımı (5 Puan)</td>
<td></td>
</tr>
<tr>
<td>Kolaylıkla</td>
<td>5</td>
</tr>
<tr>
<td>Güçlükle</td>
<td>3</td>
</tr>
<tr>
<td>İmkansız</td>
<td>0</td>
</tr>
<tr>
<td>Merdiven çıkabilme (5 Puan)</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>5</td>
</tr>
<tr>
<td>Trabzana tutunarak</td>
<td>4</td>
</tr>
<tr>
<td>Her seferinde tek basamak</td>
<td>2</td>
</tr>
<tr>
<td>İmkansız</td>
<td>0</td>
</tr>
<tr>
<td>Topallama (5 Puan)</td>
<td></td>
</tr>
<tr>
<td>Yok</td>
<td>5</td>
</tr>
<tr>
<td>Hafif</td>
<td>3</td>
</tr>
<tr>
<td>Şiddetli</td>
<td>0</td>
</tr>
</tbody>
</table>
Tablo 4.25. Radyolojik değerlendirme

<table>
<thead>
<tr>
<th>Asetabulum (10 Puan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kesintisiz kemik-çimento (protez-kemik) aralığı</td>
</tr>
<tr>
<td>Tamamlanmış radyolusen hat, <1 mm</td>
</tr>
<tr>
<td>Progresyon gösteren radyolusen hat, <1mm</td>
</tr>
<tr>
<td>Tamamlanmış veya progresyon gösteren radyolusen hat, >1mm</td>
</tr>
<tr>
<td>Komponent migrasyonu</td>
</tr>
<tr>
<td>Femur (10 Puan)</td>
</tr>
<tr>
<td>Kesintisiz kemik-çimento (protez-kemik) aralığı</td>
</tr>
<tr>
<td>Tamamlanmış radyolusen hat, <1 mm</td>
</tr>
<tr>
<td>Tamamlanmış veya progresyon gösteren radyolusen hat, >1mm</td>
</tr>
<tr>
<td>Progresyon gösteren radyolusen hat, <1mm</td>
</tr>
<tr>
<td>Çökme (subsidence)</td>
</tr>
<tr>
<td><2mm</td>
</tr>
<tr>
<td>>2mm</td>
</tr>
<tr>
<td>Protez-çimento (protez-kemik) arası radyolusens</td>
</tr>
<tr>
<td><1mm</td>
</tr>
<tr>
<td>2mm</td>
</tr>
<tr>
<td>>2mm</td>
</tr>
</tbody>
</table>

Hastalar preoperatif bu skalaya göre değerlendirildiğinde klinik değerlendirmede hastaların %60’ıda hafif ve arasıra olan ağrı, %24’ünde orta şiddetli, %16’sında ise şiddetli olarak ağrı tariflemişlerdir. Hastalar fonksiyonel açıdan inceleyendiğinde %70 hastada 1-3 blok kadar yürümeye mesafesi, %14 hastada sadece ev içinde yürümeye mevcut iken %16 hastada da yürüyememe mevcuttu. %70 hasta sadece tek baston yada koltuk değneği kullanırken, %16 hastada da yürüyememe,% 8 hastada ara sıra baston, %6 hastada ise walker ihtiyacı vardı. Tüm hastalarda hareket ve kas gücü ortalaması 11 puan (%75) olarak bulunmuştur. Radyojik değerlendirme de tüm hastalarda 7 puan (%70) ortalama değer olarak bulunmuştur.
Hastalar postop yine aynı skalaya göre değerlendirilmiştir. Son kontrollerde %75 hastada ağrı hafif ve ara sıra olan ağrı şeklinde % 4 hastada orta-şiddetli ağrı, %21 hastada ise ağrı hemen hemen yok olarak kaydedilmiştir. Yürümeye mesafesi % 70 hastada baston ihtiyacı olmadan 6 blok mesafesi kadar yürüme, %26 hastada ara sıra baston ihtiyacı olarak 10 blok dan fazla yürüme ve %4 hastada ise yürüyememe yada walker destekli olarak ev içerisinde yürüme tesbit edilmiştir. Hareket ve fonksiyon güç değerlendirilmesinde 15 (%72) puan ortalaması saptandı. Radyolojik incelemlerde ortalama puan 15 (%70) olarak saptanmıştır.
4.1. Vaka Örnekleri

Vaka -1: A.D. 77y, bayan, 14 sene önce yapılmış hibrid TKP, Postop 9.senede başlayan akıntı sonrası medikal tedavi, debridman ve protezi koruyucu cerrahi yapılmış. Enfeksiyonda gerileme olmaması üzerine hastaya rezeksiyon artroplastisi yapıldı.

Vaka – 4: Ş.Ö 83 y, bayan 20 sene önce yapılmış TKP. Özellikle uyluk ağrısı şikayeti olan hastada çimentosuz yapılmış femoral stemde hemen hemen tüm zonlarda gevşeme tesbit edilmesi üzerine hastaya revizyon kalça protezi yapıldı.
Vaka - 5: Ö.K. 33 y, erkek. 17 yıl önce AVN sebebi ile TKP uygulanmış. Hastada 5 .yılında gelişen özellikle proksimal femoral zonlarda aseptik gevşeme ile disloksiyon saptanmış.Hastaya revizyon kalça protezi yapıldı.İntraoperatif oluşan kırık 2 adet serklaj teli ile tesbit edildi.

Vaka – 6: D.Ç. 64 y, erkek. 10 yıl önce AVN nedeni ile yapılmış TKP. Postoperatif 6. Yılında femoral stemde çökme ile beraber stem distalinde varus izlenmekte idi. Hastaya femoral stem revizyonu yapıldı. Çimento temizlenmesi sırasında oluşan kortikal delinmeye bağlı oluşan kırık 3 adet serklaj ile orijinal stem koyulması öncesinde tesbit edildi.
Vaka – 7: H.T. 76 y, erkek. 15 sene önce yapılmış bipolar kalça protezi ameliyatlısı. Hasta uyluk ağrısı, topallama ve kısalık şikayetiyle başvurdu. Femoral stemde çökme ile beraber femoral stemin distalinde varus ve proksimal zonlarda gevşeme saptandı. Hastaya çimentosuz uzun stemli revizyon total kalça protezi uygulandı. İntraoperatif oluşan kırık 2 adet serklaj ile tesbit edildi.

![Image of Vaka 7](image7.png)

![Image of Vaka 8](image8.png)
5. TARTIŞMA

Revizyon kalça cerrahisinde amaç; uygulanan protezin kemiğe stabil olarak tesbitini, ağrıyi gidermeyi, biyomekanik yapıyi düzeltmeyi ve kemik ile protez arasındaki uyumluğu sağlamak amacını alır. Sonuç olarak revizyon cerrahisi hastayı ağrısız, fonksiyonel ve mobilize olacak bir hale getirmeli ve bunu da uzun vadeli kılacak hastanın yaşam konforunu artırmalıdır (97,98).

Primer kalça protez cerrahisi sayısının artması ve endikasyonların giderek daha genç yaşlara kadar inmesi revizyon ameliyat sayısının artmasına neden olmuştur (99). Bizim hastalarımızda revizyon uygulama yaş ortalaması 62,8±13,4 olarak belirlenmiştir. Bu nedenle primer uygulama sırasında en iyi koşulları sağlamak ve iyi bir cerrahi teknik uygulamak gerekmektedir. Ayrıca hasta yapılacak müdahalenin özellikleri açısından bilgilendirilmeli, ameliyat sonrası dönemde düzenli olarak mümkünse aynı doktor tarafından kontrol edilmeli, kaliteli ve protezin tamamını gösteren radyografilerle dokümantede edilmelidir (49).

Kalça protezlerindeki sorun nedeniyle hastaları en sık hekime sevkeden şikayet ağıdır. Kliniğimizde kalça protez revizyonu uyguladığımız hastalarda da en sık başvuru nedeni, kalça ağrısi olarak belirlenmiştir.

saptanmış, bu olgular arasında aseptik gevşeme beraberliği 16 (%57.1) olduğu görülmüştür.

İyi bir revizyon cerrahisi için, yeterli bir cerrahi yaklaşım gereklidir. Uygun cerrahi yaklaşımı ise cerrahin deneyimi, revizyon yapılacak komponentlerin tipi, kemik defektlerinin yeri ve büyüklüğü ve önceden yapılan cerrahi yaklaşım belirler. Tüm revizyon cerrahileri düşünülüğünde ameliyatı gerçekleştirecek olan cerrahın tüm yaklaşımmlara alışkin olması gerekmektedir (112). Literatürde kalça revizyonları için kullanılabilecek birçok cerrahi yaklaşım yöntemi tanımlanmış ve bunların avantaj ve
dezavantajları bildirilmiştir. Bizim kliniğimizde ise bütün hastalarımızda lateral uzatılmış insizyon kullanılmıştır.

Tüm poroz kaplı olan protezlerde protezin sağlamlığı ve çökme miktarının az olması protezin meduller kanala tam ve uyumlu oturmasıyla koreledir. Tapered
stemlerin amacı kanalı doldurmak değildir. Bunun yerine 3 nokta presibine göre fiksasyon sağlanmaktadır.

Kwong ve ark. (111) 143 hastanın 2-6 yıllık takiplerindeki komplikasyonlar ise; 7 vakada derin yara enfeksiyonu, 4 hastada DVT gelişmiş, 2 hastada enfeksiyon devam etmiş, 4 hastada ameliyat sonrası düşmeye bağlı travmatik kırık oluşmuş, tüm bu komplikasyonlar ameliyat sonrası ilk 8 hafta içinde gerçekleşmiştir. Hastaların %24’ü cerrahiden yeterince memnun olmamıştır. Tüm bu sonuçlar primer TKP yapılan hastalara oranla revizyon yapılanlarda başarının biraz daha düşük olduğunu göstermektedir. Bu sonuçlara etki eden faktörlerin başında genişletilmiş cerrahi diseksiyon gelmektedir, diğer faktörler ise;preoperatif hastanın düzensizliği, yaşlılık ek ko-morbit problemlerdir. Tüm bu sonuçlar eşliğinde revizyon total kalça artroplastisi yapılacak hastanın seçiminde sadece kemik stok bozukluğu olması tercih sebebi olmamalıdır. Diğer sebeplerde değerlendirmelidir Çalışmamızda 3 hastada uzamış olan seröz akıntı gelişmiş ve takiple azalmıştı. 1 hastada erken dislokasyon görüldü ve kapalı redüksiyonla oturulduktan sonra 6 haftalık immobilizasyonla takip edildi. 1 hastada intra-op gelişen asetabulum kırığı aynı seansta fiske edilerek revizyon kalça protezi uygulandı. 1 hastada ise rezeksyon artroplastisi yapılmasına rağmen uzamış ve medikal tedaviye cevap veren derin yara yeri enfeksiyonu gelişti.

Merkezden merkeze değişmek üzere, endoprotez cerrahisi sonrası enfeksiyon oranı % 1-5 olarak belirtilmektedir. Bu oran enfeksiyon etkeninin tedaviye dirençli olması, tekrarlayabilirliği, cerrahi girişimi kötü yönde etkilemesi, ağır ekonomik yük getirmesi ve mortaliteye neden olmasından ötürü oldukça önem arz etmektedir. Bizim tüm olgular incelendiğinde revizyon endikasyonu olarak enfeksiyon düşünülen hasta sayısı 11 idi. Bu olgulardan 5’i başka bir merkezde primer artroplasti yapılmış olan hastalardı. 6 olgumuzda ise geç gelişen enfeksiyon nedeni ile revizyon kalça protezi yapılmıştır. Tüm olgulardan iki tanesine rezeksiyon artroplastisi yapıldı. 9 hastaya ise iki basamaklı revizyon cerrahisi uygulandı. İki basamaklı uygulan revizyon girişimlerinde hastalara ilk seansta antibiyotikli çimento yapılmış ve takiplerde yara yeri iyileşmesi, ESR, beyaz küre ve CRP değerleri dikkate alınmıştır. İkinci seansın uygulanma zamanı ortalama8-12 hafta arasındaydı.
Genel bilgiler kısmında belirtilen tüm risk faktörleri tek başına da instabilitesine neden olabilirler. Artroplasti sonrası en sık çıkık sebebi tez çalışmasında incelenen hasta grubunda da olduğu gibi kap veya stem orientasyonundaki hatalardır ve cerrahi ile %80 başarı sağlanak mümkündür. Esas sebep bulunamadığı durumlarda osteofit temizliği ve kapsülün gergin gergin dikilmesi problemi çözülebilir. İlk çıkık esnasında komponent orientasyonunun belirlenmesi ve 5°den fazla fazla retroversiyon veya 20-30°den fazla anteversiyon belirlendiğinde kapın revizyonu gerekli olmaktadır. Serimizde üçüncü sıkıştırılmak (%12) karşılaştırılmış bu problem olguların %50'sinde (3/6) cerrahi tekniğinde hatalar nedeni ile gerçekleşmiştir. Gerek komponentlerden birisinin veya her ikisinin değiştirilmesiyle, gerekse femoral başın değiştirilmesi ile esas patolojisinin düzeltiltiği kalçalarda fonksiyonel olarak diğer revizyon sebepleri ile karşılaştırıldığında iyi sonuçlar alındığı bir geçerliktir.

Kalça protez revizyonlarında karşılaştırılan en büyük problemlerden birisi de periprostetik kemik stok kaybıdır. Bu nedenle kemik greftlerine ve kemik bankalarına ihtiyaç duyulmaktadır (103).

Kalça artroplastisi sonrası femur kırığı tedavisi kompleks ciddi bir komplikasyondur. Önceleri az rastlanılan bu komplikasyon giderek daha çok merkezde ve daha çok sayıda yapılan primer kalça ve periprostetik kırığa zemin hazırlayan proksimal femoral kemik kayıplarının bulunduğu revizyon artroplastileri nedeni ile daha sık karşıımızda çıkabilmektedir. İntraoperatif ve postoperatif olarak bu kırıkları ikiye ayırabiliriz. Revizyon cerrahisi gibi özellikle çimentosuz stemleri tercih ettiğimiz ve kemik kayıplarının fazla olduğu olgularda, profilaktik serikajı uygulamak ile femoral kanalin stem için hazırlanması ve stemin yerleştirilmesi esnasında kortikal duvarda oluşabilecek çatlamaların önüne geçilebileceği bildirilmiştir. Kavanagh primer artroplastilerin %1’inden daha azında postoperatif femur kırığı izlenirken, revizyon artroplastileri sonrası bu oranın %4’lere yükselebileceğini ifade etmiştir. Beals ve Tovver da bu oranın protezin tüm ömrü boyunca %1’den daha az olduğuunu söylemiştir. İncelemeye alınan hasta grubunda ise revizyon artroplastisi esnasında çimento temizlenmesi amacı ile açılan kortikal pencere intraoperatif kırıkların esas
nedenini oluşturmuştur. İntraoperatif femur diafiz kırığı sıklığımız %4 olarak saptadık.

Kalça revizyon cerrahisinin, maliyet ve olası komplikasyon oranları primere göre oldukça yüksek olmaktadır. Revizyon ameliyatları hem cerrah, hemde hasta için büyük sorunların olabileceği girişimlerdir (49,100). Hastalarımızda ameliyat sırasında %76'sında ortalama 3 ünite ve %44'ünde ise ortalama 4 ünite eritrosit süspansiyonu verme ihtiyacı doğmuştur. %26'sına da genel anestezi uygulaması yapılmıştır.
6. SONUÇLAR

1) 1998 - 2009 yılları arasında direk lateral yaklaşımı yapılmış 50 hastanın revizyon kalça protezi uygulamaları retrospektif olarak incelenmiştir.

2) Bütün olgular direk lateral yaklaşımı ve hasta supine pozisyonunda iken revize edilmiştir.

3) 50 hastanın 19’u erkek (%38), 31’i kadın (%62) idi.

4) Yaş ortalamaları 69±13,5 olarak bulundu.

5) Uygulanan taraf olarak 28’i sağ (%56), 22’si sol (%22) tarafından revizyon ameliyatı geçirmiş olan hastalardı.

6) Tüm olguların primer artroplasti yaş ortalamaları 56±13,8 idi.

7) Tüm olguların revizyon ameliyatları sırasında yaş ortalamaları 62,8±13,4 olarak saptandı.

8) Primer artroplastide hastalardan 33’üne (66.00%) total kalça protezi yapılmıştı.

9) Primer artroplastide hastalardan 7 hastaya (%14) unipolar çimentosuz, 9 hastaya (%18) ise bipolar çimentolu kalça protezi yapılmıştı.

10) Primer artroplasti nedenleri arasında en sık olarak osteartrit (19 hasta; 38.00%) bulundu.

11) Revizyon ameliyatlarında ise en sık endikasyon sebebi olarak aseptik gevşeme (24 hasta; %48) bulundu.
12) Primer artroplastide total kalça protezi uygulanmış 33 hasta incelendiğinde %63,6 oranında femoral stemlerin çimento lu yapıldığı gözlenmiş, asetabular tarafta ise çimentosuz ve vida ile fikse edildiği gözlenmiştir.

13) Toplamda 39 hastada asetabular revizyon ihtiyacı duygulmuş, bu hastalarda asetabular sistem 27 (69,23%) hastada çimentosuz ve vidalı olarak kullanılmıştır.

14) 48 revizyon kalça protezi ameliyatında 7 hastaya femoral revizyon yapılmamış, femoral revizyon yapılan hastaların %82 oranında çimentosuz stem kullanıldığı saptanmıştır.

15) Direk lateral yaklaşımla yapılan revizyon kalça artroplastisinin en sık olarak 2004 yılında 9 hasta olarak saptanmıştır.

16) Gruen’in femoral tarafzonlarına göre incelenen toplam 34 hasta en sık zone 1 ve zone 6 da gevşeme saptanmıştır.

17) Femoral stemde aseptik gevşeme 27 hastada saptanmış ve en sık olarak zone 6 da bulunmuştur.

18) Femoral stemde septik gevşeme 7 hastada bulunmuş ve en sık olarak zone 4-5-6 olarak saptanmıştır.

19) Aseptik gevşeme bölgesi zone 3 te yoğunlaşan 9 hastadan 3’ünde periprostetik femur kıırığı saptanmıştır.

20) Asetabular tarafta gevşeme saptanan 5 hasta bulunmuş ve tüm hastalar aseptik gevşeme olarak saptanmıştır. En sık gevşeme zone 1 (100.00) olarak bulunmuştur.

22) Stem pozisyonu valgus olarak değerlendirilen 13 hastada ise gevşeme 7 hastada (%53,8) saptanmıştır.

23) Stem pozisyonu varus olarak değerlendirilen 12 hastada ise gevşeme 8 (66,7 %) hastada saptanmıştır.

24) Tüm olgular incelemede toplamda 28 (%56) hastada femoral stemde çökme saptanmış, bu olgular arasında aseptik gevşeme beraberliği 16 (%57,1) hastada saptanmıştır.

25) Stem çökmesi saptanmayan toplam 22 hastada (%44) 8 hastanın (%36,4) aseptik gevşeme ile beraberlik gösterdiği saptanmıştır.

26) Femoral stem pozisyonu ile femoral stemdeki çökme arasındaki ilişkide, femoral stemi valgusta olan toplam 13 hastanın 11’inde (%78,6) sında subsidence saptanmıştır.

27) Femoral stem pozisyonu ile femoral stemdeki çökme arasındaki ilişkide, femoral stemi varusta olan 12 hastanın 10’unda (%83,3) çökme saptanmıştır.

28) Tüm olgularda asetabular açıların ortalamaları incelenmiş ve preop ve postop ölçümler arasında anlamlı fark bulunamamıştır.

29) Dislokasyon 6 hastada saptandı (%12). En sık neden olarak protez malpozisyonu (%50) saptandı.

enfeksiyon saptanmış ve 9 hastaya (%81,8) iki basamaklı revizyon, 2 hastaya rezeksiyon artroplastisi (%18,1) yapılmıştır.

31) Sekiz olguda periprostetik femur (%16) kırığı saptanmıştır. Oluşan kırıklar Vancouver sınıflandırmasına göre tiplendi. En sık tip 3 kırık (4 hasta,%50) bulundu.

33) Asetabular defekt saptanan 4 hasta (%8) tesbit edildi. Bu hastalarda en sık tip 2 (%50) kaviter defekt saptandı.

34) Bir hastada (%2) intraop dönemde asetabulum kırığı gelişmiş ve internal fiksasyonla beraber revizyon kalça protezi yapılmıştır.

35) Bir hastada erken postop çıkık (%2) gelişmiş ve hastaya kapalı redüksiyon uygulanmıştır.

36) Hastalara revizyon ameliyatları sırasında kullanılan kan miktarları incelenmiştir. 38 (%76) hasta kullanılan kan miktarı 3 ünite ve altı, 22 (%44) hasta kullanılan kan miktarı 4 ünite ve üstü olarak saptandı.

37) Hastalar revizyon ameliyatı sırasında kullanılan anestezi tipi incelenmiş ve 37 (%74) hastada spino-epidural kombine anestezi, 13 (%26) hastada genel anestezi uygulanmıştır.

38) Ayrıca tüm olgularda kullanılan anestezi tipi ve kullanılan kan miktarı arasındaki ilişki araştırılmıştır. Genel anestezi yapılan hastalarda kullanılan kan miktarı spino-epidural anestezi yapılan hastalara göre daha az çıkmıştır.
Bütün olgulardan 47 hastada postop destekli yürüme zamanı ortalama olarak 6.haftaya kadar sürdürülmüş; 6. haftadan sonra ise dekteksiz yürüme önerilmiştir. Sadece intraop asetabulum kırığı gelişen hastada 3 ay basmadan mobilizasyon sağlanmış; rezeksiyon yapılan 2 hasta ise destekli yürüme mecburiyetinde kalmıştır.

Hastaların ortalama takip süreleri 6.1 yıl ±2.5 yıl olarak bulunmuştur.

Tüm hastalarda kullanılan skorlama sistemine göre klinik değerlendirmede artış saptanmıştır. Ayrıca hastalarda kas gücü ve radyolojik değerlendirmelerde de anlamlt fark gözlenmiştir.
ÖZET
Revizyon Kalça Protezi Uygulamalarımız ve Değerlendirilmesi

Fonksiyonel sonuçlarının yüksek oranda iyi olması ve uygulama yaşının giderek düşmesi nedeni ile yaygın olarak uygulanan kalça artroplastileri sonucunda günümüzde revizyon kalça protezi uygulamalarında giderek artmaktadır.

Anahtar Kelimeler: revizyon kalça artroplastisi, kemik restorasyonu, klinik sonuç, radyolojik sonuç.
SUMMARY

Our Clinical Revision Total Hip Arthroplasty Patients and Their Evaluation

Because of the good results and decreasing of the patients age of total hip arthroplasty patients, revision hip arthroplasty procedures increase nowadays. We have evaluated revision hip arthroplasty patients retrospectively, which are operated in Ankara University İbni Sina Hospital at our orthopaedia clinic between 1999-2009 with using lateral surgical exposure. We have investigated 50 patients in this study. 19 of them were male 31 of them were female. Median age was 69 ± 13,5. Mean follow up time was 6,1±2,5 year. At 48% of the patients revision hip arthroplasty reason was aseptic loosening. At 48 patients revision hip arthroplasty and at two patients resection arthroplasty procedure has been performed. At 39 patients we had to make acetebular revision and 97,4% of them were cementless and at 41 patients we had to use cementless femoral stem for revision. We performed revision to nine patients in 2004. Loosening detected patients were evaluated according to Grue, Delee and Charnley classification. In aseptic loosening detected 27 patients loosening was mostly seen at Zone 6 and at 66,7% of the evaluated patients loosening was at entire the zones. At four patients acetebular migration was detected. At 6 patients dislocation was seen and the reason for this was malposition of the components. At eleven patients infection was the reason and at eight patients periprosthetic fracture was detected. These fractures were evaluated according to the Vancouver classification and mostly type C was seen. At twelve patients femoral bone defect was found and mostly type 1 segmentel defect was seen. At four patients acetebular bone defect was detected and mostly type 2 cavity defect was seen. The blood transfusion amounts of the patients also have been evaluated and at 38 patients 3 units and lower units of eritrosite suspension have used. At 74% of the patients spino-epidural anesthesia has choosen. During evaluation of our patients we have found that the mostly seen revision hip arthroplasty reason was aseptic loosening. Pain was the major indication for revision. At revision operations we have mostly used cementless femoral stems and acetebular components with screws.

Key words: Revision hip arthroplasty, Bone restoration, clinical results, radiological results.
7. KAYNAKLAR

27. Freiberg AA. The radiology of Skeleteal implants: An atlas of Tecniques and Assessment. St. Louis: Mosby; 2001:95-130

42. Della Valle CJ, Paprosky WG. Classification and an algorithmic approach to the
reconstruction of femoral deficiency in revision total hip arthroplasty. J

44. Gruen TA, McNeice GM, Amstutz HC."Modes of Failure" of cemented stem
1979; 141: 17-27.

45. Delee JG, Charnley J. Radiological demarcation of cemented sockets in total hip

46. Hodgkinson JP, Shelley P, Wroblewski BM. The corelation between the
roentgenographic appearence and operative findings at the bone cement junction of the

47. Oh, I, Hardacre JA. Fatique fracture of the inferior pubic ramus following total

48. Garvin KL, Hanssen AD. Infecction after total hip arthroplasty: Past, present and

49. Ege R (Ed). Kalça Cerrahisi ve Sorunları. Türk Hava Kurumu Matbaası
Ankara, 1996

50. Carlsson AS, Gentz CF. Radiographic versus clinical loosening of acetabular

99. Steinberg ME, Garino JP. Revision total hip arthroplasty Lippincott Williams&Wilkins Philadelphia, 1998

112. Hugh R. Blackley, MB, ChB*; and Cecil H. Rorabeck, MD** Extensile Exposures for Revision Hip Arthroplasty. Clinical orthopaedics and related research Number 381, pp. 77–87