BİLATERAL SUBTOTAL TİROİDEKTOMİ YAPILAN MULTİNODÜLER GUATR OLGULARINDA, REZİDÜ TİROİD DOKUSUNDA MİKRONODÜL ORANI

Dr. Şiyar ERSÖZ

GENEL CERRAHİ ANABİLİM DALI
TIPTA UZMANLIK TEZİ

DANİŞMAN
Prof. Dr. Savaş KOÇAK

ANKARA
2010
KABUL VE ONAY

Ankara Üniversitesi Tıp Fakültesi
Genel Cerrahi Anabilim Dalı

Tıpta Uzmanlık eğitimi çerçevesinde yürütülmüş olan "BILATERAL SUBTOTAL TİROİDEKTOMİ YAPILAN MULTİNODÜLER GOİTRE OLGULARINDA, REZİDÜ TİROİD DOKUSUNDAYA MİKRONODÜL ORANI" başlıklı,

Dr. Şiyar ERSÖZ 'e ait bu çalışma aşağıdaki jüri tarafından Tıpta Uzmanlık Tezi olarak kabul edilmiştir.

Tez Savunma Tarihi: 12.11.2010

Prof. Dr. Semih Baskan
Ankara Üniversitesi Tıp Fakültesi
Genel Cerrahi Anabilim Dalı
Jüri Başkanı

Prof. Dr. Savaş Koçak
Ankara Üniversitesi Tıp Fakültesi
Genel Cerrahi Anabilim Dalı
Üye / Tez Danışmanı

Prof. Dr. Kaan Karayalçın
Ankara Üniversitesi Tıp Fakültesi
Genel Cerrahi Anabilim Dalı
Üye
TEŞEKKÜR

Uzmanlık eğitimin süresince, bilgi ve deneyimlerinden yararlandığım, her konuda yakın ilgi ve desteğini gördüğüm değerli hocam Prof. Dr. Savaş KOÇAK’a,

Tez çalışmamdaki katkıları dolaylı Prof. Dr. Serpil DİZBAY SAΚ’a, Op. Dr. İknur KEPENEKÇİ BAYRAM’a, Doç. Dr. Atıl ÇAKMAK’a, Op. Dr. Volkan GENÇ’e,

Eğitimimize katkılarından dolaylı Ankara Üniversitesi Tıp Fakültesi Genel Cerrahi Anabilim Dalı Başkanımız Prof. Dr. Semih BASKAN başta olmak üzere tüm saygıdeğer hocalarımı,

Tezimin değerlendirilmesi sırasında yardımcıları için Biyoistatistik Anabilim Dalı Başkanı Doç. Dr. Atilla ELHAN’a

Klinik deneyimlerini ve dostluklarını benden esirgeyen başasistan, asistan arkadaşlarına,

Birlikte çalışmaktan büyük mutluluk duyduğum kliniğimiz ve ameliyathane hemşire ve tüm personeline,

Ayrıca yetişmemde büyük emeği olan, kendi doğrularını bulmayı sağlayan, ideallerim için mücadele etmeyi öğrenen, her zaman ve her koşulda bana güvenen, kayıtsız şartlar dahilinde esirgemeyen, sevgi ve destekleriyle her zaman yanımın başta annem Halime ERSÖZ, babam İskender ERSÖZ, kardeşim Dilşah ERSÖZ olmak üzere tüm aileme,

Her zaman desteğini gördüğüm eşim Dr. Cevriye CANSIZ ERSÖZ’e, en içten teşekkürlerimi sunarım….

Dr. Şiyar ERSÖZ
İÇİNDEKİLER

KABUL VE ONAY .. i

TEŞEKKÜR .. ii

İÇİNDEKİLER ... iii

ŞEKİLLER DİZİNİ .. vi

TABLOLAR DİZİNİ .. vii

RESİMLER DİZİNİ .. viii

1. GİRİŞ .. 1

2. GENEL BİLGİLER .. 3
 2.1. Tarihçe ... 3
 2.2. Embriyoloji .. 6
 2.3. Histoloji .. 8
 2.4. Anatomı .. 8
 2.4.1 Yüzeyel servikal faysa ... 9
 2.4.2 Derin servikal faysa .. 9
 2.4.2.1 Derin servikal süperfisyal fasya (DSSF) .. 10
 2.4.2.2 Derin servikal pretrakeal fasya (DSPTF) 10
 2.4.2.3 Derin servikal prevertebral fasya (DSPVF) 10
 2.4.3. Tiroid Bezi ile İlgili Boyun Kasları ve Komşu Yapılar 11
 2.4.4. Tiroid Bezinin Arterleri .. 12
 2.4.5. Tiroidin Venleri ... 13
 2.4.6. Tiroidin Lenfatik Drenajı ... 14
 2.4.7. Tiroid Bezinin İlişkide Bulunduğu Sinirler ... 15
2.4.8. Paratiroidler ... 19

2.5. Fizyoloji .. 19
 2.5.1. Tiroid Hormonlarının Sentezi ve Salgı Mekanizması 20
 2.5.2. Tiroid Hormonlarının Transportu ve Metabolizması 21

2.6. Multinodüler Guatr .. 22
 2.6.1. Toksik Nodüler Guatr .. 24
 2.6.2. Tiroid Kanserleri .. 24
 2.6.3. Nodüler Guatr Patogenezi ve Onkogenezi 25

2.7. Tanı ... 27
 2.7.1. Biyokimyasal yöntemler .. 28
 2.7.1.1. Tiroid fonksiyon testleri .. 28
 2.7.1.2. Tiroid antikorları .. 31
 2.7.2. Radyolojik yöntemler ... 32
 2.7.3. İnce iğne aspirasyon biyopsisi (İİAB) 35

2.8. Tiroidektomi tipleri ... 37
 2.8.1. Nodül eksizyonu .. 37
 2.8.2. Subtotal lobektomi ... 37
 2.8.3. Totale yakın lobektomi .. 37
 2.8.4. Total lobektomi .. 38
 2.8.5. Subtotal tiroidektomi ... 38
 2.8.6. Totale yakın (Near total) tiroidektomi 39
 2.8.7. Total tiroidektomi .. 39

2.9. Tiroidektomi tekniği .. 39

2.10. Komplikasyonlar ... 47
 2.10.1. Hematom ... 47
2.10.2. Hipoparatiroidizm ...48
2.10.3. Sinir yaralanmaları ..49
2.10.4. Sempatik sinir yaralanması ..52
2.10.5. Duktus torasikus yaralanması ...52
2.10.6. Trakea yaralanması ...53
2.10.7. Özofagus yaralanması ..53

3. MATERYAL VE METOD ..54

4. BULGULAR ...60

5. TARTIŞMA ..63

6. ÖZET ..66

7. SUMMARY ...67

8. KAYNAKLAR ..68
ŞEKİLLER DİZİNİ

Şekil 2.1. Tiroid bezinin altıncı servikal vertebra seviyesinden geçen transvers kesitinde servikal fasyal planlar, kaslar ve damarsal yapılar ...11

Şekil 2.2. Nervus laringeus superior’un external dalının seyr12

Şekil 2.3. Tiroid bezinin arteryel kanlanması..13

Şekil 2.4 Tiroid bezinin venöz dolaşımı...14

Şekil 2.5. Tiroidin lenfatik drenaji ..15

Şekil 2.6. Rekürren laringeal sinirlerin larenks ve trakea arkasındaki seyri ...16

Şekil 2.7. Rekürren sinirin inferior tiroid arter ile olan ilişiği:
A-Rekürrensin arterin iki dalının arasındaki seyri,
B-Rekürrensin arterin iki dalının önündeki seyri,
C-Rekürrensin arterin iki dalının arkasındaki seyri, D-Non rekürren seyir ..17
TABLOLAR DİZİNİ

Tablo 2.1. Inferior tiroid arter ile rekürren sinirin ilişkisi ..18

Tablo 2.2. Dünya Sağlık Örgütü Guatr Derecelendirmesi22

Tablo 2.3. Tiroid Tümörlerinin Dünya Sağlık Örgütü Tarafından
 Belirlenen Sınıflaması..25

Tablo 2.4. Günümüzde kullanılmakta olan tiroid fonksiyon testleri..............28

Tablo 4.1. Sağ subtotal doku v.s. Bilateral subtotal tiroidektomi
Crosstabulation ..61

Tablo 4.2. Sol subtotal doku v.s. Bilateral subtotal tiroidektomi
Crosstabulation ..61

Tablo 4.3. Sağ subtotal doku v.s. Sol subtotal doku Crosstabulation62
RESİMLER DİZİNİ

Sayfa No:

Resim 3.1. Tiroid lobu mobilize edildikten sonra subtotal cerrahi sınırının işaretlenmesi ...55

Resim 3.2. Subtotal tiroidektomi yapılsaydı geride kalacak olan” 1 – 3 gram ağırlığında dokunun ayrılması ..56

Resim 3.3. Subtotal tiroidektomi dokusunun standart makroskopik incelemesi...57

Resim 3.4. Subtotal tiroidektomi dokusunun standart makroskopik incelemesi...57

Resim 3.5. Subtotal tiroidektomi yapılsaydı geride kalacak olan” tiroid dokusunun makroskopide milimetrik kesitlerle değerlendirilmesi...58

Resim 3.6. Subtotal tiroidektomi ve Subtotal tiroidektomi yapılsaydı geride kalacak olan” tiroid dokusunun makroskopide milimetrik kesitlerle değerlendirilmesi ...59
1. GİRİŞ

Tiroid bezinin kısmen veya tamamen çıkarılması anlamına gelen tiroidektomi, genel cerrahi ve endokrin cerrahisi kliniklerinde en sık uygulanan cerrahi girişimlerden biridir. Seçilen cerrahi yöntem, hem hastalığın ortadan kaldırılmasına hem de postoperatif kompleksiyonların en az düzeyde tutulmasına olanak sağlamalıdır (1).

Tiroidektomi esnasında tiroid, paratiroid ve larengeal sinirlerin bir bütün halinde kabul edilmeleri ve diseksiyonun bu bütüne göre planlanması cerrahi komplikasyonların önlenmesi açısından önemlidir (1).

Tiroid ameliyatlarında rezeksiyon sınırı zaman içinde değişiklik göstermiştir. Son yıllarda fonksiyon ve morfolojiye dayalı cerrahi popüler olmaya başlamıştır. Bu yüzden rezeksiyon sınırları minimal tek tarafından rezeksiyondan, sağlıklı doku bulunmayan durumlarda, total rezeksiyona kadar değişebilmektedir.

Günümüzde tiroid kanserinde total tiroidektomi tercih edilen bir yöntem iken benign tiroid hastalıklarında rezeksiyon sınırının ne olması gerektiğini halen tartışma halindedir (1).

Günümüzde tiroid cerrahisi genel cerrahideki modern teknünün, yöntem ve tecrübe, anestezinin, asepsi ve antisepsinin gelişmesine paralel olarak ilerlemiş ve tiroidektomilerdeki mortalite ve morbidity oranları, tarihi seyir içinde azalmıştır (2).

19. yüzyıl ortalarına kadar yapılan tiroid cerrahisinde mortalite oranları %40’lar gibi tehlikeli oranlardan günümüzün tecrübeli ve deneyimli cerrahları tarafından sıfıra kadar indirilebilmiş ve %13, ciddi komplikasyonların ise %2’den daha az hastada geliştiği saptanmıştır (2).
Oranlardaki bu azalma; endikasyonun doğru konulması, ameliyat öncesi hastanın uygun şekilde hazırlanması, uygun anestezi tipinin seçilmesi, asepsi ve antissepsi kurallarına uyması, cerrahanın tecrübeli olması, gerekli ve en uygun tirolektomi tipinin tespit edilmesi gibi kurallara uyulması ile sağlanmıştır. Bu gelişmelerle paralel olarak tiroidin cerrahi tedavisi, antitiroid ilaçlar, tiroid ekstreleri ve radyoaktif iyot (I131) gibi non invaziv tedavi yöntemlerine rağmen, önemini ve güncelliğini halen korumaktadır (2).

Tirolektomi ameliyatlarının en önemli kompleksiyonları rekürren larengeal sinir yaralanması sonucu ses kısıklığıdır. Tirolektomi sonrası rekürren sinir yaralanma insidansı %0.3-14 oranında değişmekle birlikte, deneyimli cerrahlar tarafından yapıldığı zaman bu oran %0.2-0.3’lere kadar düşmektedir (4, 5, 6, 7,). En sık görülen metabolik kompleksiyon ise paratiroid hasarı sonucu hipokalsemi gelişimidir (1).

Paratiroid ya da sinir hasarı hayatı tehdit eden kompleksiyonlar değildir ancak önemli kronik morbidite ile sonuçlanmaktadır.

Günümüzde multinodüler guatr tek başına bir tirolektomi endikasyonu değildir. Ancak başı ve hipertiroidi (otonomi kazanan nodüller) nedeniyle siklikla benign multinodüler guatrarda tirolektomi yapılmaktadır. Bu hastaların tedavisinde total tirolektomi birçok merkezde tercih edilen cerrahi yöntem haline gelmiştir. Ancak kanser dışı endikasyonlarla yapılan tirolektomilerde total tirolektomiden kaçan cerrahlar da vardır.

Benign patolojiler nedeniyle uygulanan tiroid cerrahisinde sınırlı yaklaşımların (enükleasyon, lobektomi, subtotal tirolektomi) daha yüksek oranda nüksle birlikte olması, buna karşılık, geniş rezeksiyonların daha yüksek komplikasyon oranlarıyla birlikte olduğunun düşünülmesi nedeniyle rezeksiyonun sınırını konusundaki tartışmalar sürmektedir.

Bu çalışmada amacımız multinodüler guatr hastalarında subtotal tirolektomi yapılrsa, geride bırakılacak olan rezidü tiroid dokusunda nüks nedeni olabilecek patolojilerin varlığını değerlendirmektir.
2. GENEL BİLGİLER

2.1. Tarihçe

Tiroid, ilk kez Rönesans devrinde tanımlanmıştır. Buna karşın tiroide ait büyümenin M.Ö. 3000 yıllarında tanımlandığı ve tiroide yönelik ilk cerrahi girişimin ise M.S. 500 yılında yapıldığı varolan bilgiler arasındadır (8).

Hiptertiroidi veya ekzoftalmik guar İlk kez 1825’de Parry, daha sonra 1835’de Graves ve 1840’da von Basedow tarafından tanımlanmıştır. Hipotiroidi veya miksödem 1850’de Curling ve 1875’de Gull tarafından tanımlanmış, 1882’de Reverdin total veya parsiyel tiroidektomi yaparak miksödem meydana getirmiş, Murray ve Tlowitz 1890’dan tiroid ekstreleri ile miksödem tedavi etmişlerdir (9).

İnsanda ilk başarılı tiroidektomi ameliyatı Bağdatlı cerrah Ebu El Kasım Halefi bin Abbas El Zehravi (963-1013) tarafından yapılmış ve belgelenmiştir. Avrupa kaynaklarında adı sürekli değiştirildiği için en sık Albucasis ve Elzahawi olarak isimlendirilmiştir (9).

Tiroid cerrahisi 19. yüzyıl ortalarına kadar %40’dan fazla mortalite oranları ile tehlikeli olmaya devam etmiştir. 1855’dede Alman Profesörü Gurlt, tiroid ameliyatlarını cerrahları küçülten, düşünülmeden yapılan bir kasaplık olarak nitelendirmiştir. Ancak genel anestezi (1840), antisepsi (1860), asepsi (1883) ve hemostazdaki (1888) ilerleme cerrahlara daha düşük mortalite ile tiroid cerrahisi uygulama imkanı vermiştir (2,3).

Zürih’li cerrah Edmund Rose 1877’de deneysel olarak tiroid bezini çıkardıktan sonra hastalar üzerinde dikkatli ve titizlikle uyguladığı hemostazla çok iyi sonuçlar aldığını yayınlamıştır. Bundan sonra o zamanın cerrahları olan Theodor Billroth (1829-1894) ve Emil Theodor Kocher (1841-1917) tiroid cerrahisine yönelmişlerdir (2).
1877’den önce Billroth Viyana’da bulunduğu sırada yaptığı tiroidektomilerde, dünyaca ünlü bir isim olmuştur. Mortalite oranını % 40’tan, %8’e kadar düşürmüştür.

Mortalitenin nedeni tetani sonucu olduğu belirlenmiştir. Weiss, tetaninin total tiroidektomi sonrası ortaya çıktığını vurgulamasından sonra Eiselsberg, bu komplikasyon paratiroidlerin çıkarılmasına bağlı olduğunu belirtmiştir. Billroth, hemostaza önem vermeden hızlı bir şekilde ameliyat uyguladığı için, postoperatif dönemde fazla gelişen hipoparatiroidi olguları, daha sonra paratiroid bezini koruyamamasına bağlıdır.

1891’de George Murray’in koyun tiroidinden hazırlanan ekstreleri kullanmasından 30 yıl sonra Kendall tiroksini izole etmiştir. 1930’da ise Berger’in
tiroksini sentezlemesi ve tiroksinin tedaviye girmesi ile total tiroidektomiye bağlı hipotiroidizm büyük ölçüde sorun olmaktan çıkmıştır (12).

Tiroid bezinin tamamının çıkartılmasını tetaniye sebep olduğu ortaya çıkan Weiss’ten sonra von Eisselberg, bu olayın paratiroid bezlerinin çıkartılması sonucu geliştğini bildirmiştir (8). Ansong Wölfer (1879), Theodor Billroth’un ameliyat ettiği hastaların tetani ile total tiroidektomik arasındaki ilişkiyi ilk kez belgelemiştir (2, 13). 1909’da Mac Callum ve Voegtlin, kalsiyum kontrolünün paratiroidler tarafından yapıldığını göstermişlerdir (8).

Mayo kardeşler aynı yıllarda ABD’de tiroid cerrahisinin gelişmesine katkıda bulunmuşlardır. Charles Mayo 1912’ye kadar 278 ekzoftalmuslu ve hipertiroidik guatrhl hastayi mortalitesiz ameliyat etmiş ve tiroid önü kaslarını kesilmesi ile tiroide daha kolay ulaşabileceği göstermiştir (8).

Amerikalı George Washington Crile 1932 yılına kadar yarısı tirotoksikozlu olan 22000 civarındaki hastaya tiroidektomi yapmış ve mortalite oranı yaklaşık %1 olarak saptamıştır.

1953 yılında tiroid kanserlerinde radikal boyun diseksiyonlarının önemini belirtmiştir (3, 2).
Amerika’nın en büyük cerrahi öğretmeni olarak anılan F.H.Lahey, Graves hastalığında uyguladığı subtotal tiroidektomi tekniği ile mortaliteyi %1 civarında tutmayı başarmıştır. Aynı zamanda bazal metabolik hızı, hipertiroidizmde test olarak kullanılan ilk cerrah olmuştur.

Modern cerrahi prensipler büyük uğraşlar sonucu ortaya çıkmıştır. Günümüzde tiroidektomi ameliyatları dikkatli teknik ve cerrahide eğitimin gelişmesi ile düşük morbidity ve mortalite oranları ile başarıyla uygulanmaktadır.

2.2. Embriyoloji

Brankial arkus ve faringeal poşlar gelişirken, yaklaşık 24. günde primitif farinksin tabanında orta hatta, birinci ve ikinci poşlar arasında kalan bölgede, tiroid bezi bir divertikül şeklinde başlar ve ventrale doğru büyür. Divertikülün ağzı dil köküne açılır ve foramen caecum adını alır. Embriyolojik olarak primitif mide barsak sisteminin bir uzantısıdır. Divertikülün distal lümeni hücrelerin hızla coğalmasıyla kapanırken hem ventrale hem de her iki laterale doğru büyümeye devam ederek iki loblu tiroid haline dönür ve boyun orta hattında hyoid kemik ve larinksi oluşturacak yapıların önünden aşağıya doğru inmeye başlar (14).

Altıncı haftadan itibaren; üçüncü faringeal poşun dorsal bölgeleri alt paratiroidlere, ventral bölgeleri ise primitif timusa dönür. Dördüncü faringeal poş da
dorsal ve ventral olarak iki kısuma ayrılır. Dorsal kısmın üst paratiroidleri, ventral kısımlar nöral kristadan gelen hücrelerle beraber ultimobranskial cisim oluşturulur. Tiroid aşağı doğru inerken dördüncü ve beşinci faringeal poşların ultimobranskial cisimlerinden köken alan lateral komponentler katılır. Bu lateral komponentler tiroidin kalsitonin salgılayan C hücrelerini oluşturur (14, 15).

Alt paratiroidler timusla beraber farinks duvarından ayrılar; kaudal ve medial bölgelere doğru gider ve daha sonra timustan ayrılarak tiroidin alt bölgesi civarına yerleşir. Timus ise alt boyun ve mediastene iner (14, 15).

Tiroid kaudale doğru inerken, divertikülün açık kalan kısmı uzayarak tiroglossal kanal adını alır. Kanal, çoğunlukla dejenerasyona uğrayarak kaybolur ve yedinci hafta sonunda tiroid son şeklini alır. Tiroid gelişimindeki kritik devre yedinci hafta sonuna kadar olan devre olup, gelişim anomalilerinin çoğu bu sıralarda ortaya çıkar (14, 16).

Gebelikin onuncu haftasının sonunda tiroidde foliküller oluşur, onikinci haftanın sonunda da tiroid iyot tutmaya ve kolloid üretmeye başlar. Onüçüncü haftadan itibaren itibaren hipofiz ve serumda tiroid stimulan hormon (TSH) belirlenebilir.

Onsekizinci haftadan itibaren TSH ve tiroksin (T4) paralel olarak artmaya başlar ve tiroiddeki iyot konsantrasyonu yüksek düzeylere ulaşır. Yaklaşık onüçüncü haftadan itibaren hipotalamus, hipofiz ve tiroid ekseri fonksiyonel olarak olgun hale gelir. TSH, triiodotironin (T3) ve (T4) doğumdan sonra, birkaç hafta içinde erişkindeki normal düzeye ulaşır (14, 15, 17).

2.3. Histoloji

TSH reseptörü içerip tiroglobulin sentezi yapabilmesine karşın fonksiyonu tam olarak bilinmemektedir. C hücresi (parafolliküller hücre) esas olarak tirokalsitonin hormonunun yapım ve salınmasından sorumludur ve TSH’nın kontrolünde değildir. Amin precursor uptake decarboxylase (APUD) sisteminin de bir parçasıdır (15)

2.4. Anatomi

omohiyoid kas ve aşağıda da SCM kasının 1/3 alt kısımları ile sınırlıdır. Tiroid bezi bu bölgenin en alt kısmında bulunur (18).

Dermiste kollagen liflerinin demetleri, paralel diziler halinde yerlesik tirler. Bu kollagen dizilerinin yönü "Line's of cleavage" (Langer çizgisi) olarak bilinir. Bu kıvrımlar boyunda transvers yöndedir (8,19).

Boyun Fasyaları: Hiyoid kemik seviyesinin aşağısında boynun fasyal tabakaları; biri yüzeyel servikal fasya (YSF), diğeri ise derin servikal fasya (DSF)’nın 3 adet tabakasından oluşur (8,19).

2.4.1 Yüzeyel servikal fasya

Derinin damarları YSF’nin altındaki damarlardan çıkar. Platisma kasının arka tarafı ile derin fasya arası büyük ölçüde avasküler bir plan olduğundan bu alanda, her iki flap minimal kan kaybı ile kaldırılabilir (2, 9, 18, 21).

2.4.2 Derin servikal fasya

Yüzeyel servikal fasyanın altında uzanır ve incedir. Burada kaslar, damarlar ve boyun yumuşak dokusunun desteklik yaptığı areolar dokunun karışımıdır. 3 anatomik tabakadan meydana gelir;
2.4.2.1 Derin servikal süperfisyen fasya (DSSF)

Bu tabaka boynu tamamen bir naylon sargı gibi sarar. Arka tarafına ligamentum nucha ve servikal vertebaların spinöz çiğnemiplerinden başlar. Trapezius ve SCM kaslarını önden ve arkadan örter ve boynu öntərafı çevreleyerek uzanır (8, 18, 19).

2.4.2.2 Derin servikal pretrakeal fasya (DSPTF)

Bu narın ve ince fasya; tiroid bezi ve trakeanın önünden, fakat strap kaslarının arkasından geçer. Tiroid bezi üzerinde ikiye ayrılarak, bezi tamamen önden ve arkadan sarar (19, 22).

2.4.2.3 Derin servikal prevertebral fasya (DSPVF)

Bu tabaka servikal vertebra ve ligamentum nucha’dan başlar ve posterior, lateral ve anterior vertebral kasları çevreler. Özesagus ve trakeanın arkasından geçerken retroviseral fasya adını alır. Retroviseral fasya, posterior lamina ve anterior lamina (Alar fasya) olarak iki yapraka ayrılır.

Karotis arteri, internal juguler veni ve vagus sinirini saran karotis kılıfı, derin boyun fasyasının hem yüzeyel hem de derin tabakasından aldığı yapraklarla oluşur (Şekil 2.1) (23).
Şekil 2.1. Tiroid bezinin altıncı servikal vertebra seviyesinden geçen transvers kesitinde servikal fasyal planlar, kaslar ve damarsal yapılar (18)

2.4.3. Tiroid Bezi ile İlgili Boyun Kasları ve Komşu Yapılar

Tiroid, yüzeyden derine doğru; deri, YSF, DSSF ve bu tabakanın örttiği SCM, omohiyoid, sternohiyoid ve sternotiroid kasları tarafından örtülür. Arka medialde özefagus ve trakea, arka lateralde karotis kılıfı tarafından sınırlanmıştır (Şekil 1). Ancak poste posterior süspansuar ligament (Berry ligamenti) aracılığı ile krikoid kıkırdak ve üst trakeal halkalara, sıkıca yapışktır. Rekürren laringeal sinirin (RLS) en çok bu bölgede yaralanabileceği unutulmamalıdır (8).

Süperior laringeal sinirin eksternal (SLS-E) dalının innerve ettiği, krikotiroid kas çiftinin korunması da önemlidir. Fonksiyon olarak, vokal kordların uzamasını sağlar. Dolayısıyla kordların gerginliğini temin eder. SLS-E dalı sternotirolaringeal uççende superior tiroid arterin (STA) medialinde seyrederek ilerler (Şekil 2.2).
Şekil 2.2. Nervus laringeus superior’un external dalının seyri (18)

Tiroid dokusunun gelişimi ve yerleşimi sırasında bazı anomaliler ortaya çıkabilir. Bir lobun gelişememesi %0.1’den daha azdır. İstmus ise %10 oranında görülmeyebilir. Yaklaşık %7 oranında bir lob diğerinden küçüktür (sol<sağ) (2,8).

2.4.4. Tiroid Bezinin Arterleri

Genel olarak STA ve İTA tarafından beslenir. Tiroidin kan akım hızı, her gr için dk. da 5.5ml.dir (8, 18, 24). A.tiroidea ima, üçüncü arter sistemi olarak tiroidin kan akımına katkında bulunur. Görülme oranı %1.5-12.2 arasında değişir. A. Tiroidea süperior, a. carotis eksterna’nın ilk dalıdır. A. tiroidea inferior’lar subklavian arter’in dali olan trunkus tiroservikalis’ten çıkarlar (Şekil 2.3).
2.4.5. Tiroidin Venleri

Sayıları ve yerleri değişmekte beraber, üç ayrı ana ven tarafından drene olur. Vena tiroidea superior, bezi a.tiroidea superior’un anteromedialinde üst kutuptan terk ederek v. jugularis internaya dökülür. V. tiroidea inferior tiroidi alt kutuptan terk eder, çoğunlukla innominat vene direkt olarak drene olurlar. V. Tiroidea media direkt olarak tiroid bezinin lateralinden V.jugularis internaya dökülür. V.tiroidea media tiroidektomi ameliyatlarında daima ortaya koyulup, bağlanması gereken bir damardır (8, 9). (Şekil 2.4) (25)
2.4.6. Tiroidin Lenfatik Drenaji

Üst kutup hariç tiroidin lenfatik drenaji esas olarak santral gruba doğrudur. Lateral boyun lenf zinciri tiroid lenfatığının drene olduğu ikinci bölgedir. Santral bölgenin lenfatik drenajında obstrüksiyon olursa, retrograd yolla lateral boyun lenfatik sisteme yayılma olabilir. Tiroidin üst kutup lenfatığı prelaringeal lenf düğümlerine doğrudur (26). (Şekil 2.5) (27)
2.4.7. Tiroid Bezinin İlişkide Bulunduğu Sinirler

Tiroidektomi esnasında dikkat edilmesi gereken anatomik ilişkiler; Rekürren Larengeal Sinir, Superior Larengeal Sinir ve paratiroidlerin tiroid bezi ile olan ilişkileridir.

Rekürren laringeal sinir: RLS sağ ve sol olmak üzere değişik seviyelerde vagus sinirinden çıkar. Sağ RLS; sağ vagus sinirinin subklavian arterin ilk bölümünü anterioryüzden çaprazladığı bölgede, sağ vagal trunkustan ayrılır. Subklavian arterin arka yüzünü çevreleyip, süperiora doğru döndüğü sırada subklavian arterin altında bir kıvrım meydana getirir (Şekil 2.6). Sonra larkse doğru, trakeanın sağ lateralinde
oblik bir doğrultuda yukarı çıkar ve tiroid bezi alt kutbu hizasında, trakeaya yaklaşır (2, 22).

Sol RLS; mediastende sol vagus sinirinin arku aortanın ön yüzünü çaprazladığı sırada, sol vagal trunkustan ayrılır. Arku aortanın posterior yüzünü çevreleyip, superiora doğru çıkarken, bir sinir kıvrımı meydana getirir. Daha sonra arku aortanın arkasından superiora ve larinkse doğru çıkarken, tiroid bezi alt kutbu hizasında trakeaya yaklaşır (2, 22).

Tiroid lobu arkasında seyrine devam eden sinir Berry ligamanları arasından veya arkasından geçip larinkse ulaşabilmek için krikotiroid kasın altında girer. Burada iki veya üç dala ayrılır. Lateral ve medial olarak iki ana dal dışında superiör laringeal sinir ile Galen anastomozunu yapan üçüncü bir dal verir.
Her iki sinirin, tiroid alt kutbu hizasından, İTA ile çaprazlaşma yaptığı tiroid bezinin 1/3 orta ve 1/3 alt kısımlarının kesiştiği yere kadar olan seyri hakkında, trakeanın neresinden ve hangi sıklıkta geçtiği konusunda değişik bilgiler mevcuttur (18). En sık trakeoözefageal oluktan, daha az oranda trakeanın lateralinden, en az ihtimalle de trakeanın anterolateralinden geçer.

Rekürren sinir motor, duyusal ve parasempatik lifler taşır. Bu sinirden ayrılan internal dal, vokal kordların ve subglottik alanın duyusal iletimini sağlar ve SLS’nin internal dalı ile Galen Anastomozu’nun yapar. Eksternal dal, 4 veya 5 intrensek laringeal kasın motor fonksiyonunu sağlar (29).

Non rekürren sinir ilk olarak, 1823’de tanımlanmış ve sinirlerden bir tanesinin non rekürren olma olasılığı değişik kaynaklarda, %0.28-1 olarak belirtilmiştir (2, 18, 22, 24, 30). Sinirin servikal bölgede vagustan ayrılarak, direkt olarak larinkse girmesidir. Non rekürren sinir hemen daima sağ tarafta görülür ve sağ subklavian arterin gelişme anomalisi ile beraberdir. Dekstrokardi ya da situs inversus varlığında sola görülebilir. Reed (31), rekürren sinir ile İTA arasında 28 değişik varyasyon göstermiştir. (Sekil 2.7)

Şekil 2.7. Rekürren sinirin inferior tiroid arter ile olan ilişkisi: A-Rekürrensin arterin iki dalının arasındaki seyri, B-Rekürrensin arterin iki dalının önündeki seyri, C-Rekürrensin arterin iki dalının arkasındaki seyri, D-Non rekürren seyir (2)
Dedo (32), RLS’nin laringeal kasları innerve eden tek motor kök olduğunu göstermiştir. İTA'nın trunkus veya dallarının önünden, arkasından veya dalları arasından hangi sıklıkta geçtikleri konusunda değişik kaynaklarda değişik oranlar belirtilmiştir.

Tablo 2.1. Inferior tiroid arter ile rekürren sinirin ilişkisi

<table>
<thead>
<tr>
<th>Inferior laringeal sinir lokalizasyonu</th>
<th>Taraf</th>
<th>Oran</th>
<th>Inferior laringeal sinir lokalizasyonu</th>
<th>Taraf</th>
<th>Oran</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trakeözefageal aralıktaki</td>
<td>Sağ</td>
<td>%64</td>
<td>Inferior tiroid arter dalları arasında</td>
<td>sağ</td>
<td>%7</td>
</tr>
<tr>
<td></td>
<td>Sol</td>
<td>%77</td>
<td></td>
<td>Sol</td>
<td>%6</td>
</tr>
<tr>
<td>Trakeanın lateralinde</td>
<td>sağ</td>
<td>%28</td>
<td>Arterin arkasında</td>
<td>sağ</td>
<td>%53</td>
</tr>
<tr>
<td></td>
<td>sol</td>
<td>%17</td>
<td></td>
<td>sol</td>
<td>%69</td>
</tr>
<tr>
<td>Trakeanın onunde</td>
<td>Sağ</td>
<td>%8</td>
<td>Arterin onunde</td>
<td>sağ</td>
<td>%37</td>
</tr>
<tr>
<td></td>
<td>Sol</td>
<td>%6</td>
<td></td>
<td>Sol</td>
<td>%24</td>
</tr>
</tbody>
</table>

Krikotiroid kas hariç, vokal kord hareketlerini kontrol eden laringeal kaslar rekürren laringeal sinirin motor dali tarafından innerve edilir. Bu kaslar, vokal kord abdüktörleri olan internal aritenoid ve tiroaritenoid, vokal kord addüktörleri olan lateral ve posterior krikoaritenoid kaslardır. Postoperatif devrede vokal kordların pozisyonu hangi sinirlerin travmaya uğradığını gösterebilir (2, 9).

Süperior laringeal sinir (SLS): SLS, kafatası kaidesi civarında vagustan ayrılır, karotis damarlarının medialinden aşağı doğru iner ve hiyoid kemik civarında

Mooseman ve Deweese SLS'yi %21 olguda gözlemlemiş ve %15'inin STA trunkus veya dallarına yapışık olduğunu ve %6'sında STA dalları arasında veya etrafında bir kangal oluşturarak seyrettğini saptamışlardır (29).

2.4.8. Paratiroidler

2.5. Fizyoloji

Tiroid hormonları genel anlamda bazal metabolizmayı düzenleyen hormonlardır. Hücre içinde nükleus reseptörlerine bağlanarak protein yapımını regüle ederler (34). Mitokondrilerde oksidasyon olaylarını hızlandırırlar. Membran yapısında yer alan enzimlerin aktivitesini kontrol ederler. Fötüs ve yenidoğanın yaşamında, beyin ve sinir sisteminin gelişimi tiroid hormonlarına bağlıdır. Çocukluk döneminde tiroid hormonlarının azlığı, somatik büyüme ve gelişimin engellenmesi...
demektir. Geriatrik popülasyonda hipotiroidi reversibl demansla sonuçlanabilir. Bu nedenle tiroid hormonları, yaşam boyunca vücuda mutlak gerekli bir hormon olarak tanımlanabilir (35).

Tiroid bezinden triiyodotronin(T3) ve tiroksin(T4) sekresyonu anterior hipofizden salgılanan TSH'nın kontrolü altındaadır. TSH uyarısı T3 ve T4 salınımı uyarırken, kandaki T3 ve T4 artsı hipofizden TSH salınımı suprese eder (negatif feed-back). TSH salınımı ise hipotalamustan salgılanan tirotropin releasing hormonun (TRH) kontrolü altındaadır. TRH, hipotalamusun paraventriküler nükleuslarında bulunan parvosellüler nöronal sistemde yapılır. Aksonlar tarafından median eminensteki primer pleksusa taşınan bu hormon, daha sonra portal ven aracılığıyla anterior hipofizeye ulaştır(2,36). TSH'nın yapım ve salınmasına etki eden birçok uyaran vardır. Bunlardan TRH, alfa reseptör etkili katekolaminler ve vasopressin uyarıcı; somatostatin, dopamin ve tiroid hormonları baskılayıcı etkiye sahiptir (36).

TSH'nin salınması belirli bir ritm içindeidir. Sağlıklı bir insanda; uykudan birkaç saat önce serum TSH düzeyi yükselmeye başlar, gece maksimum düzeyeye ulaşır ve sabaha doğru azalarak öğleye doğru minimum düzeyeye düşer. Buna TSH'nin sirkadiyen ritmi denir (36).

2.5.1. Tiroid Hormonlarının Sentezi ve Salgı Mekanizması

Tiroid bezinin en fazla sentezlendiren hormonu T4, en etkin hormonu ise T3'dür. Her iki hormonun yapısında kimasal köprülerle birbirine bağlı iki tirozin aminoasiti bulunur. Tiroid hormonları tirozin aminoasitlerine iyon bağlanması ile oluşurlar. Günlük iyon gereksiniminin %90'ı gidalardan, % 10'u içme suyundan sağlanır. Gıdalardaki iyon yaklaşık %50'si emilmektedir. Plazmada inorganik iyon halinde bulunur ve düzeyi 0.1-0.5 μg/dl arasındadır(37). Belirgin iyon eksikliği içeren diyetle beslenen hastalarda, tiroid bezinin iyon konsantrasyonu ve tiroglobulin iyodinisasyonu azalır, ancak tirositte monoiyodotironin (MİT)/diiyodotironin (DİT) ve T3/T4 oranı artar. Serum T4 düzeyi düşerken, TSH artar.

2.5.2. Tiroid Hormonlarının Transportu ve Metabolizması

Tiroid bezinin hormon sentezlemesi, depolaması ve salgılanması hipotalamus-hipofiz-tiroid ekseninde sıkı kontrol altında. Tetikleme olayı TRH sentezi ile başlar. Tiroid hormonları hipofiz bezini etkiler, TSH sentez ve salgısı baskılanır. TSH salgısının azalmasıyla birlikte, TRH'nin da azalığı görülür.

Tiroid hormonları hedef hücresi pasif diffüzyonla veya ATP bağımlı aktif transportla geçer. Daha sonra hücre çekirdeğindeki tiroid hormon reseptörlerine bağlanarak etkilerini başlatırlar (36, 39).

2.6. Multinodüler Guatr

Tiroidin herhangi bir nedenle büyümesine guatr denir. Bezin büyüklüğü, objektif bir şekilde hacim ya da boyut olarak ultrasonografi ile belirlenebilir. Büyümesi durumunda kolayca palpe edilen ve çoğu zaman gözle görülen bu bezin büyüklüğü; Dünya Sağlık Örgütü’nün derecelendirmesine göre subjektif olarak saptanır (2, 40, 41).

Tablo 2.2. Dünya Sağlık Örgütü Guatr Derecelendirmesi

<table>
<thead>
<tr>
<th>Evre</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1A</td>
</tr>
<tr>
<td>1B</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Guatrlar endemik ya da nonendemik olarak sınıflandırırlar. İyot eksikliği olan bölgelerde, nüfusun %10’undan fazlasında guatr ortaya çıkıyor; bu guatrlar endemik guatr olarak adlandırılır. İyot kaynakları yeterli olan ülkelerde ise, insanlara...
yiyecik ve ilaçlarla fazla miktarda iyot verildiğinde, tiroid hormon sentezi azalır ve guatr gelişir; bu guatrlar da nonendemik guatr olarak adlandırılır (2, 40, 41).

Multinodüler guatr (MNG) ise; tiroidin birçok alanında olan nodüllerle büyümesine verilen bir isimdir. 1955’de Mortensen, 1000 vakalık otopsi serisini raporlamış ve vakaların %50’sinde tiroid nodüllerine rastlamıştır. Bu nodüllerin, %20’si açıkça palpe edilen, %30’u ise histolojik olarak ortaya konmuş nodüllerdir. Tiroid nodülleri; toksik ya da nontoksik, diffüz ya da nodüler ve soliter ya da multipl şeklinde sınıflandırılabilir (42).

Diffüz ve nodüler guatr patogenezinde; yeni folikül oluşumu için foliküler epitelyum hücrelerinin proliferasyonu esastır. Neoplazik olmayan tiroid büyumesinde; tiroid uyarıcı hormonun (TSH) etkisi ve tiroidi büyüten immunglobülinler üzerinde durulmaktadır. DeneySEL çalışmalarda; nodüler guatrarda, epidermal büyüme faktörü, fibroblast büyüme faktörü ve transforming büyüme faktörü’nün arttığı gösterilmiştir (43).

Soliter nodüler guatrarda, ince iğne aspirasyon biyopsisi ile değerlendirilen 1,5 cm’nin altındağındaki nodüllerde hem klinik hem de sitopatolojik malignite kriterleri yoksa; medikal tedavi ile izlem yapılabilir. Diffüz ve ötiroid guatrarda, supresyon tedavisinin yararı olmakla birlikte; özellikle soliter nodüllerde bu tedavinin yararı sınırlıdır (36).

Supresyon uygulanan hastalar yakından izlenmeli, her yıl ultrasonografi ile nodülün büyüyüp büyümedığı belirlenmeli ve sitopatolojik olarak değerlendirilmelidir. Tedavi altında iken büyüyen nodülde; tek tedavi cerrahidir (2, 44).

2.6.1. Toksik Nodüler Guatr

Toksik nodüler guatr; bir veya daha fazla tiroid nodülünün TSH’den bağımsız olarak fazla miktarda iyot tutması, tiroid hormonu sentezlemesi ve salgulamasıdır. Toksik nodüler guatr olguları daha çok endemik guatr bölgelerinde görülür. Çoğu sıcak veya otonom nodülün TSH reseptörü mutasyonları vardır (2, 40, 41, 42).

Toksik nodüler guatrdadı; hipertiroïdizm genellikle Graves’ten daha hafiftir ve oftalmopati, pretibial miksödem, vitilligo veya tiroid artropatisi gibi tiroid dışı bulgular yoktur. İyodidlerin (örn; intravenöz kontrast madde) verilmesiyle iyoda bağlı hipertiroïdizm (Jod-Basedow fenomeni) ortaya çıkarılabilir (2, 40, 41, 42).

2.6.2. Tiroid Kanserleri

Diferansiyel kanserler tüm tiroid kanserlerinin %80-90’sini oluşturur ve alt grupları ile birlikte papiller ve folliküler kanserlerden oluşur (45).

Tablo 2.3. Tiroid Tümörlerinin Dünya Sağlık Örgütü Tarafından Belirlenen Sınıflaması

<table>
<thead>
<tr>
<th>EPİTELYAL TÜMÖRLER</th>
<th>NON-EPİTELYAL TÜMÖRLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>-Folliküler adenom</td>
<td>-Fibrosarkoma</td>
</tr>
<tr>
<td>-Papiller adenom</td>
<td>-Digerleri</td>
</tr>
<tr>
<td>Malign</td>
<td>NADİR GÖRÜLENLER</td>
</tr>
<tr>
<td>-Folliküler karsinom</td>
<td>Karsinosarkom</td>
</tr>
<tr>
<td>-Papiller karsinom</td>
<td>Malign hemangioma</td>
</tr>
<tr>
<td>-Skumoz hücreli karsinom</td>
<td>Lenfoma</td>
</tr>
<tr>
<td>-İndiferansiyeye(anaplastik)karsinom</td>
<td>Teratomlar</td>
</tr>
<tr>
<td>-Medüller karsinom</td>
<td></td>
</tr>
<tr>
<td>SEKONDER TÜMÖRLER</td>
<td></td>
</tr>
<tr>
<td>SINIFLANDIRILAMAYANLAR</td>
<td></td>
</tr>
<tr>
<td>TÜMÖR BENZERİ LEZYONLAR</td>
<td></td>
</tr>
</tbody>
</table>

2.6.3. Nodüler Guatır Patogenezi ve Onkogenezi

Günümüzde hangi moleküler mekanizmanın tiroid foliküllerini içerisinde sadece bazı folikül hücrelerinin büyümesini uyardığı veya niçin bu procesin normal tiroide karşıın multi nodüler guatrda meydana geldiği, bilinmemektedir. Ancak otonom çoğalan folikül hücrelerinin bir varsayılma göre fotal tiroid dokusu kalıntıları olduğu ve bunların da TSH baskılanmasına rağmen fotal tiroidin proliferasyonunu uyardığı sanılmaktadır. Tiroid dışı faktörler ve guatrojenler, bu tip folikül hücrelerinin intrensek ve anormal büyüme potansiyeline tesir edebilir ve bu nedenle nodüler büyümenin tiroide büyümemeyi yol açtığıdır. Diğer taraftan guatr büyümesinde insülin
benzeri büyüme faktörü (IGF-1), epidermal büyüme faktörü ve immünoglobulinler de etkili olabilirler (46).

bağlanmaları hücre içi sinyal aktarım sistemlerinin aktivasyonuna neden olur. Hücre içi sistemlerinden ilk adenilat siklaz (AS)-siklik adenosin monofosfat (cAMP)-protein kinaz A (PKA), diğerleri ise fosfolipaz C (PLC)-protein kinaz C (PKC) ve büyüme faktörü-tirozin kinaz (TK) sistemleridir(35, 48, 49).

Tiroid hücrelerinin büyüme ve fonksiyonlarını uyaran en önemli faktör TSH olup, TSH’nin hücre membranındaki TSH reseptörlerine bağlanması AS ve PLC sistemlerini aktive eder. TSH reseptörlerinde oluşacak nokta mutasyonlar reseptörlerin liganddan bağımsız olarak uyarılması yola çıkar. Buna bağlı olarak da familial hipertiroidizm ve hiperfonksiyone tiroid adenomları ortaya çıkabilir(2,50).

Son dönemde yapılan çok sayıda çalışma tiroid hücre büyümesi ve fonksiyonunun fizyolojik kontrolünde trofik faktörler arasında kompleks bir ağı işaret eder. Bu faktörler etkilerini ikinci mesajcı sistemler aracılığı ile yaparlar(51). Literatürde, tirozin kinaz büyüme faktörü reseptörlerinin (IGF-1, EGF, Erb-B2 ve hepatosit büyüme faktörü) anormal ekspresyonunun tiroid kanserlerinin biyolojik davranışlarını etkilediğiine dair çalışmalar vardır(52, 53,54, 55).

2.7. Tanı

Tiroid hastalıklarında tanı için noninvazif olarak tiroid fonksiyon testleri, ultrasonografi, tiroid sintigrafisi, bilgisayarlı tomografi ve manyetik rezonans görüntüleme; minimal invazif yöntem olarak ise ince iğne aspirasyon biyopsisine başvurulabilir.
2.7.1. Biyokimyasal yöntemler

2.7.1.1. Tiroid fonksiyon testleri

Tiroidin fonksiyonel bozukluğu populasyonda %5 sıklıkta görülmektedir ve yaş ilerledikçe sıklığı artmaktadır. Tiroid fonksiyonlarını direkt olarak yansıtan en değerli test serum tiroid hormon düzeyi veya doku hormon konsantrasyonudur (56).

Moleküler düzeyde tiroid hormon etkinliği T3 ile sağlanır. Tiroksin bağlayan globulin (TBG) konsantrasyonuna göre değişik değerler elde edilebildiğinden total tiroid hormon konsantrasyonu tiroid fonksiyonunu çoğu zaman doğru olarak yansıtmaz. Genellikle serbest hormon düzeyleri ile belirlenir. sTSH ile saptanan hiper ve hipotiroidizmin derecesini belirlemek için tiroid hormon düzeylerinin saptanması gereklidir.

Tablo 2.4. Günümüzde kullanılmakta olan tiroid fonksiyon testleri (56)

<table>
<thead>
<tr>
<th>İn vitro testler</th>
<th>İn vivo testler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total T4(TT4)</td>
<td>Radyoaktif iyot tutulumu(RAIU)</td>
</tr>
<tr>
<td>Serbest T4(FT4)</td>
<td>Tirotropin uyarıcı hormon(TRH)</td>
</tr>
<tr>
<td>Serbest T4 İndeksi(FT4İ)</td>
<td>TSH uyarı testi</td>
</tr>
<tr>
<td>T3 Resin Uptake(T3RU)</td>
<td>T3 supresyon testi</td>
</tr>
<tr>
<td>Total T3(TT3)</td>
<td></td>
</tr>
<tr>
<td>Serbest T3(FT3)</td>
<td></td>
</tr>
<tr>
<td>Serbest T3 İndeksi(FT3İ)</td>
<td></td>
</tr>
<tr>
<td>Tiroid Uyarıcı Hormon(TSH)</td>
<td></td>
</tr>
<tr>
<td>Serolojik Testler</td>
<td></td>
</tr>
<tr>
<td>-Tiroid peroksidaz antikorları(TPO Ab)</td>
<td></td>
</tr>
<tr>
<td>-Antimikrozomal antikor(AMA)</td>
<td></td>
</tr>
<tr>
<td>-Anti Tiroglobulin antikorlar(ATA)</td>
<td></td>
</tr>
<tr>
<td>-TSH reseptor antikorlar(TR Ab)</td>
<td></td>
</tr>
<tr>
<td>-Tiroid stimulan immunglobulin(TSİ veya TS Ab)</td>
<td></td>
</tr>
<tr>
<td>-Tiroid bloke edici antikorlar(TB Ab)</td>
<td></td>
</tr>
<tr>
<td>Tiroglobulin</td>
<td></td>
</tr>
<tr>
<td>Kalsitonin</td>
<td></td>
</tr>
</tbody>
</table>
sTSH: Non-izotop immünometrik TSH analizi (sTSH) ile hipertiroidizmdeki en düşük düzeyden sağlıklı kimselerdeki konsantrasyona kadar olan değerler gösterilebilmiştedir. Bu nedenle Amerikan Tiroid Hastalıkları Topluluğu 1993 yılında sTSH testini tiroid disfonksiyonu için tek taraflı testi olarak önermiştir. Yüksek duyarlılıklı bu modern analiz teknigi hipertiroidiil hastalardaki suprese düzeyler ile ötiroid bireylerdeki normal TSH düzeylerini güvenilir bir şekilde ayırt edebilip bu teknikle TSH 0,001 mU/l'ye kadar duyarlı olarak ölçülblemektedir.

Ötiroid durumun sürdürülmesi, kana uygun miktarda tiroksin salınımı ve bunun hipofiz tarafından kontrolüne bağlıdır (TSH salgısının artması ve azalması). Hipotalamus-hipofiz ekseni normal çalıştığı sürece TSH düzeyini tiroid hormonunun hipofizden etkinliği belirler ve bireylerin ötiroid durumda tutulmasını sağlar. Özellikle FT4 düzeyindeki küçük bir değişim TSH’nin katlanarak artmasına veya azalmasına neden olur.

sTSH, primer hipotiroidizmin ve subklinik hipertiroidizm tanısında, tiroid hormon replasman (hipotiroidizm) ve supresyon (benign guatr ve tiroidektomi yapılmış diferansiyel tiroid karsinomu) tedavilerini değerlendirmede ideal bir testtir. Ancak serum TSH düzeyi her zaman tiroidin fonksiyonel durumunu doğru olarak yansıtmayabilir. Örnek hiper beta hipotiroidizmin tedavisi sırasında tiroid hormon düzeyleri hızla değiştiğinden TSH’nın FT4 ile sabit bir dengeye ulaşması uzun sürer (bazen 6 aya kadar). Tiroid hormonlarına direnç varsa ve klinik otiroid veya hipertiroidiil hastalarda, FT3 konsantrasyonunun yükselmış olmasına karşın TSH düzeyi normal ya da yüksekse.(56)

Hipertiroidizm, çoğunuz kez artmış TSH salgısı sonuçunda gelişmediğinden TSH salgısı ve serum TSH düzeyi, artmış tiroid hormon düzeyleri ile genellikle baskılanmış bulunmaktadır.
Klinik olarak tiroid disfonksiyonu bulunmadığını gösteren en etkin tek laboratuar testi duyarlı TSH’dır (sensitive TSH, sTSH). Tiroid disfonksiyon olasılığı klinik olarak yüksek olan hastalarda eğer hipotiroidizmden şüpheleniliyorsa sTSH ve serbest T4 (FT4), eğer hipertiroidizmden şüpheleniliyorsa ek olarak FT3 ya da total T3 düzeylerinin bilinmesi gereklidir. (56)

Total T4 (TT4, Total Tiroksin): Serum total T4 düzeyi tiroid fonksiyonunu göstermede çoğu zaman yetersiz kalmaktadır. Total T4 sadece T4 bağlanma anomalilerini göstermede güvenlidir. (56)

Free Tiroksin (FT4): Proteine bağlanmayan bu fraksiyon hücrelere girer ve burada T3’e dönüşür. Aynı zamanda tiroid hormonunun hipofizdeki negatif feed back etkisini oluşturur. Klinik hiper ya da hipotiroidizm gibi fonksiyonel tiroid hastalığı bulunan ve diğer hastalıklarla komplike olmamış bireylerde, tüm FT4 testlerinin tanısal kesinliği %90-100 dolayındadır. FT4 düzeyini hiçbir yöntemle tam ve güvenilir bir şekilde belirlemek mümkün olamamaktadır. Dolayısıyla hastalar FT4 ile değerlendirilirlikten dikkatli olunmalıdır. (56)

Total T3 (TT3): TT3, proteine bağlı ve serbest T3’den oluşur. T3 de en çok TBG’ye bağlanır. Ancak TBG düzeyindeki değişiklikler TT3 değerlerinin de değişmesine neden olur. T3 replasman tedavisindeki hastaların izlenmesinde de güvenilir bir test değildir, tiroid dışı hastalıklarda düzeyi değişebilmektedir. Ancak Graves hastalığında erken rekürrensten şüpheleniliyorsa TT3, TT4’den daha yararlı bir testtir. (56)

Free Triiyodotironin (FT3): FT3’de TBG’ne bağlı olarak değişim çoğunlukla yoktur. Muhtemel FT3 değerinin ölçülüğü indeks daha güvenilir bir testtir. Ideal ve mantıksal olarak yararlı testin FT3 olması gerektirdi. Hiçbir FT3 testi gereğince araştırılmamamıştır. Hatta klinik olarak FT3 ve TT3’den hangisinin daha değerli olduğu konusu da belirgin değildir. (56)
2.7.1.2. Tiroid antikorları

Tiroidin kendi antijenine otoantikor oluşturması ilk kez 1956 yılında Hashimoto tiroiditinde tanımlanmıştır (antitiroglobulin antikoru). Otoimmun tiroid hastalıklarında serumda tiroid otoantikorlarının varlığını göstermesi başlıca tanı yöntemidir.

En sık kullanılanları antimikrozomal antikor (AMA), antiıtroperoksidaz (TPOAb), antitiroglobulin antikorları (ATA) ve TSH reseptör antikorları (anti-TRAb)”dır.

Anti tiroid peroksidaz antikoru (TPO Ab): TPO follikul hücreleri içinde yeni sentezlenmiş tiroglobulinin follikül lümenine transferini sağlayan veziküllerin yapısında bulunur. Kronik otoimmün tiroiditli hastaların %90’dan fazlasında pozitiftir. Hashimoto tiroiditinde bu oran %90-100, Graves hastalığında ise %65-80 arasındadır. Titrenin yüksek oluşu ile tiroid fonksiyonu arasında ilişki yoktur.

Anti-TSH reseptör antikorları: Graves hastalığının otoimmün patogenezi araştırılırken sonradan TSH reseptörüne karşı geliştiği tespit edilen bu otoantikorlar önceli uzun etkili tiroid stimülatöru (Long acting thyroid stimulator- LATS) olarak isimlendirilmiştir. TRAb’nin iki tipi mevcuttur. Bunlardan tiroid stimüle eden antikor(TSAb) ya da tiroid stimülayan immünglobulin (TSl); Graves’lı hastaların %90-95’inde yüksek saptanır. Tiroid bloke edici immünglobulin (TBAb) ise geçici neonatal hipotiroidizmi olan bebeklerin annelerinde en yüksek düzeyde saptanmaktadır.

Anti tiroglobulin antikoru: TgAb otoimmün tiroiditlerin %60-70,Graves hastalığında ise %20-40 oranında saptanmaktadır. TPO Ab ile kıyaslandığında duyarlılığının düşük olması nedeniyle klinik değeri sınırlıdır.(56)
2.7.1.3. Radyolojik yöntemler

Direkt grafi: Tiroid hastalıklarının ve nodüllerinin değerlendirilirildiğinde fazla bir tanı değeri olmasa da indirekt bulgular yol gösterici olabilir. Herhangi bir nedenle çekilmiş boyun anteroposterior (AP) ve lateral grafilerde opasite artışı veya posteroanterior akciğer grafilerinde retrosternal bölgeye uzanan opasite artış guatrı akla getirir. Yine tiroid lojundaki yumurta şeklinde kalsifikasyon kalsifiye bir kisti, küçük kalsifikasyonlar ise psammoma cisimciklerini düşündürürebilir. Hava yolunda daralma ve deviasyon da hem anestezist hem de cerrah için yol gösterici olabilir (57).

Tiroid ultrasonografisi: USG, yüksek frekanslı ses dalgalarının kullanılması ile oluşturulan bir görüntüleme yöntemidir ve bu yöntemde, sesin farklı dokularda farklı hızda yayılabilme özelliğinden faydalanılır. Tiroid USG’si dinamik bir görüntüleme yöntemi olup cihazın özellikleri ve yapan kişinin deneyimine bağlı olmakla birlikte en fazla bilgi verici radyoloji k yöntemdir. (57)

Tiroid, USG olarak her iki ana karotis arter ve juguler ven arasında trakeanın ön ve yanında yerleşmiş, USG’nin gri tonlarında homojen görünümde ve düzgün sınırları olan bir yapı olarak görülür. Büyümüş tiroid (guatr) denebilmesi için Amerikan standartlarına göre kalınlığının 2 cm üzerinde, Avrupa standartlarına göre 1,7 cm’nin üzerinde olması gerekir.

USG tiroidin boyutları, volumü ve parankim özellikleri hakkında bilgi verirken; tiroiddeki büyümnenin diffüz veya nodüllere bağlı olup olmadığını; nodüllerin sayıları, boyutları, eko özelliklerini; çevre dokulara varsa invazyonu ve boyun lenf düğümleri hakkında bilgi verir.

Endemik guatr bölgelerinde tiroid nodüllerini en sık görülen patolojiderdendir. Çapları 3 mm’e kadar olan nodüller USG saptayabilir. USG’de tespit edilen nodüller, eko yapısına göre solid nodül, kistik nodul ve mikst yapıda nodül olarak üçe ayrılır. Parankim ekosu ile aynı ekoda olan nodüller izoekoik, parankimden daha yüksek ekoda olan nodüller hiperekoik, parankimden daha düşük ekoda olan nodüller hipoekoik, kistik yapıda olan nodüller ise ekosuz olup anekoik nodül olarak görülürler. Gerçek nodüllerin yanında subakut tiroiditin son evrelerinde ve
Hashimoto tiroiditinde olduğu gibi psödonodüller de görülebilir. Bunlar sınırları düzensiz ve parankımden net ayrılamayan hipoeokoik alanlar şeklindedir ve dikkat edilmez ise gerçek nodüller ile karıştırılabilirler.(57)

Nodüllerin malign-benign ayrımında USG fikir verici olabilir. İçinde mikropartikul olan ve solid yapı içermeyen anekoik ve 4 cm’den küçük nodüllerle, genellikle kenarları düzensiz, etrafında ince hipoekoik halosu olan nodüllер benign olarak değerlendirilir. Mikrokalsifikasyon içeren ve/veya düzensiz kenarlı olan nodüllerde malignite ihtimali fazladır. USG’de malignitenin en önemli bulgusu ise nodülünün belirgin olarak ekstratiroidal uzamını göstermesidir.

Renkli doppler USG: Doppler USG’de ses dalgalarını kullanır, farklı damar içindeki eritrositlerin akımını, damardaki akım hızı ve damar direnci gibi kriterleri de belirleyebilmesidir. Renkli Doppler USG ile tespit edilebilen tiroid parankınımden vaskülerite artış Graves hastalığının akut alevlenme dönemi veya Hashimoto tiroiditini akla getirirken, psödonodüllerin ayrımında da yardımcı olur.

Bilgisayarlı tomografi: BT özellikle tiroidin konjenital anomalilerini ortaya koymada avantajlı bir tekniktir. Ayrıca tiroid kanserlerinin çevre dokulara invazyon derecesinin belirlenmesinde, retrosternal guatrların tanısında da kullanılmaktadır.

Manyetik rezonans görüntüleme: MRG’nin de kullanım alanları BT’ye benzer. Multiplanar ve geniş görüntüleme sağlaması önemli avantajıdır.(57)
Tiroid sintigrafisi: Sintigrafik görüntüleme, radyoaktif maddelerden yayılan ışınların özel tarayıcılar tarafından algılanıp, çeşitli sistemlerden geçirildikten sonra özel bir yazıcı ile film veya kağıt üzerinde çizilen noktacıklar halinde ya da bilgisayar ekranında gösterilmesidir. Özellikle gama kameraları yapılan iki boyutlu görüntülemede alınan bilgiler çoğu zaman yeterlidir. Tiroid sintigrafisi tiroidin hem fonksiyonel durumunu hem de morfolojik özelliklerini ortaya koyması bakımından özellikle hipertiroidi olgularında vazgeçilemeyecek bir tanı aracıdır. (58,59)

Tiroid sintigrafisi yorumlanırken; hastanın anamnezinin, tiroid palpasyonunun, varsa tiroid hormon ve USG sonuçlarının birlikte değerlendirilmesi en sağlıklı sonuçları verecektir.

Tiroid sintigrafisi; tiroid fonksiyonunun genel değerlendirilmesi, en büyük çapı 8 mm ve daha fazla olan nodüllerin fonksiyonel durumunun belirlenmesi, hipertiroidizm nedeninin belirlenmesi (özellikle Graves hastalığı ile sıcak nodül ayrımı), Basedow- Graves hastalığının tanısında ve izlenmesinde, antitiroide ilaç tedavisi gören hastalarda tiroid aktivitesinin devam edip etmediğinin belirlenmesi, sıcak nodüllerin otonomi kazanıp kazanmadığının belirlenmesinde, De Quervain subakut tiroiditinin tanısında, bezin organifikasyon bozukluklarında, ektopik tiroid aranmasında, retrosternal guatrların belirlenmesinde, iyi diferansiye tiroid karsinomlu hastaların izlenmesi ve metastazların saptanmasında kullanılmaktadır.

Normal bir tiroid sintigrafisinde verilen izotop tiroid parankımında global olarak homojen bir dağılım gösterir. Her iki lob simetrik olup, kelebek kanadı şeklinde görünüm verirler. Her iki lobun birleştiği kısm olan istmus siklikla
görülmez. Yine normal sintigrafide tutulumda yer yer heterojeniteler izlenebilir (58, 59).

Nodüler guatrarda sintigrafi ile elde edilen görüntüler; soğuk (nodül radyoaktif izotopu hiç tutmuyorsa), ilk (nodül radyoaktif izotopu etrafı tiroid dokusu kadar tutuyorsa) ve sıcak (nodül radyoaktif izotopu etrafı tiroid dokusundan daha fazla tutuyorsa) nodül şeklinde yorumlanmaktadır. Soğuk nodüldeki (hipoaktif) malignite insidansı %6-20’dir. İlk (normoaktif) nodüldeki malignite insidansı %2-8’dir. Sıcak (hiperaktif) nodülde ise %1-2’dir. Nodül tespit etmede, I-131, Tc-99’a göre daha duyarlıdır (58, 59).

Graves (Basedow) hastalığının sintigrafik görünümü tipik olup tutulum homojendir ve global olarak artmıştır. Sintigrafünün bu hastalığın tanı ve takibinde önemli bir yeri olup ayrıca birlikte olabilecek soğuk nodüllerin varlığını da ortaya koyabilmektedir (tedavinin şeklini değiştirebileceğinden önemlidir).

Toksik multinoduler guatrda, nodüllerin bulunduğu bölgeler aktif olarak gözlenirken, diğer bölgeler sönmüş olarak izlenmektedir. Toksik soliter nodülde de benzeri bir görünüm oluşmaktadır.

2.7.1.4. İnce iğne aspirasyon biyopsisi (İİAB):

Tiroid dokusundan ince iğne aspirasyon biyopsisi ilk olarak 20.yy’in ortalarında tanımlanmış, ancak klinik kullanıma 1970’li yılların ikinci yarısından sonra yaygın olarak girmiştir. İİAB ile alan materyalin değerlendirilmesi malign, benign, şüpheli veya yetersiz materyal şeklinde yorumlanabilir (60).

Tiroid hastalıklarının tanısında diğer yöntemler daha çok tiroidin fonksiyonel ve morfolojik özelliklerini belirlerken, İİAB ile doku tanısı %90’in üzerinde
duyarlılık ve özgüllükle yapılabilmektedir. Böylece kanser şüphesi ile yapılacak cerrahi orani %25 oranında azaltılabilmektedir.

Malign lezyonlar içinde kesin tanı konabilen patolojiler; papiller, medüller, anaplastik karsinomlar, metastatik tümörler ve lenfalardır. Bunlar içinde en sık görüleni papiller karsinomlar olup İİAB’de genel görülme oranı %70 civarındadır. Gerek folliküler gerekse Hurthle hücreli lezyonlar ise sorun yaratır, çünkü bu lezyonlarda malign olduğunu belirten en önemli bulgu damar ve / veya kapsül invazyonunun tespitidir. İİAB bu özellikleri belirlemede yetersizdir.

İİAB endikasyonları;

-Tiroide soliter veya dominant nodül

-Boyunda tiroid dışı kitle (lenf bezi)

-Tiroiditler (subakut tiroidit, Hashimoto tiroidit, Riedel tiroidit)

İİAB endikasyonu konurken ilk dikkat edilecek nokta hastanın tedavi amacıyla boyuna düşük doz radyoterapi alıp almadığıdır. Eksternal radyasyon öyküsü varsa İİAB’ye gerekşim olmayacaktır, çünkü bu hastalarda kanser, çoğunlukla multisentrik olarak ortaya çıkmakta ve İİAB kanser açısından negatif geldiğinde yanıtıcı olabilmektedir. Eksternal radyasyon öyküsü olan hastalarda nodül tespit edildiğinde direkt cerrahi tedaviye önlenilmesi genel kabul gören bir görüşür.

Nodül değerlendirilmesi dışında; bazen inatçı subakut tiroidit ile tümöre bağlı psodotiroidit tablolarının aynında, Hashimoto tiroiditin zemininde gelişebilecek lenfoma veya karsinomun tanımlanmasında da İİAB yapılmaktadır.

Selim lezyonların önemli bir kısmını kolloidal noduller, tiroiditler ve kistler oluşturur. Selim rapor edilen olgularda yalancı negatif sonuçlar da alınabilir. Bunlarda yalancı negatifliği etkileyen en önemli faktörler; kanserin İİAB yapılan nodül dışından kaynaklanması, nodülün 3 cm den büyük olması ya da kistik dejenerasyon gören nodülde solid komponentten alınmamış olması olabilir.
İlk İİAB’de yetersiz veya şüpheli sonuç, İİAB endikasyonu konan ve palpasyonla kolay lokalize edilemeyen soliter veya dominant nodül, küçük ve tiroidin posterolateralinde yerleşmiş nodül, mikst yapıdaki nodülün solid kesimi, aspirasyon tedavisi yapılmış ve geride solid kısım kaldıgından şüphelenilen kistik nodül, USG ile görüntülenebilen derin servikal lenf düğümü varlığı USG eşliğinde İİAB endikasyonlarını oluşturur.\(^{(60,61)}\)

2.8. Tiroidektomi tipleri

2.8.1. Nodül eksizyonu

Tiroid bezindeki nodülün, etrafındaki az miktarda tiroid dokusu ile birlikte çıkarılmasıdır\(^{(62)}\). Günümüzde artık kullanılmayan bir yöntemdir.

2.8.2. Subtotal lobektomi

Nadiren uygulanabilen, tiroid bezinin sadece bir lobunun, % 50’sinden fazlasının ve isthmusun çıkarılmasıdır. Pratik olarak bir lobda 1-2 gr’dan fazla tiroid dokusu bırakılmasıdır\(^{(62)}\).

2.8.3. Totale yakın lobektomi

Bir lobda sadece arka kapsülle birlikte 1 gr’dan az doku bırakılmasıdır. Genelde RLS’in trakeaya girdiği bölgede siniri korumak ve paratiroidlerin beslenmesini korumak için total lobektomiye alternatif uygulanan bir yöntemdir\(^{(62)}\).
2.8.4. Total lobektomi

2.8.5. Subtotal tiroidektomi

Tiroidektomi iki tipi yapılır: bilateral subtotal tiroidektomi ve Hartley-Dunhill Prosedürü.

Bilateral subtotal tiroidektomi: Her iki tarafta 1-2 gr’den fazla doku bırakılarak uygulanabilir.

Hartley-Dunhill Prosedürü: Bir tarafa total lobektomi, ve istmektomi uygulanıp, bırakılacak bakiye tiroid dokusunun tek bir lobda bırakılmasıdır.
2.8.6. Totale yakın (Near total) tiroidektomi

Bir tarafa total lobektomi, karşı tarafta toplam 1 gr’dan az tiroid dokusu bırakılarak yapılan rezeksiyon ve istmektomi uygulanması veya her iki tarafta toplam 2 gr’dan az doku bırakılarak yapılan bilateral subtotal tiroidektomiye benzeyen yöntemdir. Başka bir deyişle; bir tarafta total lobektomi, diğer tarafta da arka kapsülle beraber, subtotal lobektomiden daha az miktarda tiroid dokusunun (%10dan daha az) bırakıldığı bir ameliyattır (62). Üst paratiroid bezlerinin ve RLS’in travmaya uğrama ihtimalinin yüksek olduğunu durumlarda total tiroidektomiye alternatif olduğu düşünülür. Reoperasyonun gerekebileceği düşünülen durumlarda, total lobektomi yapılan tarafta reoperasyon ihtimalini azaltır ve muhtemel olan yüksek morbidityi de engellemesi nedeniyle, total tiroidektomiye alternatif olduğu iddia edilir (65). Graves hastalığı olan hastalarda uygulanan bu yaklaşım, % 3 ila % 5 oranında rekürren hipertiroidi ve % 30 ila % 40 oranında da hipotiroidi gelişmiştir (64).

2.8.7. Total tiroidektomi

Tiroid dokusunun tamamının, isthmusta dahil olmak üzere çıkarılmasıdır (63, 64). Çoğu zaman tiroidin diferansiye ve medüller kanserlerinde, bazen Graves hastalığında ve toksik veya nontoksik multinodüler guatrarda uygulanan bir yöntemdir.

2.9. Tiroidektomi tekniği

Hastalar ameliyata alınmadan önce mutlaka ötiroid hale getirilmelidir. Preoperatif vokal kord muayenelerinin direkt veya indirekt laringoskopi ile yapılması gerekir.

Tiroid ameliyatları genel anestezi altında yapılır. Genel anestezi indüksiyonundan sonra, skapulaları yalnızca omuzlar geriye düşecak biçimde

En sık kullanılan kesi; boyundaki cilt kıvrımları (Langer’s line) paralel olarak yapılan, transvers Kocher kesisidir. Buna kolye kesi (Collar insizyonu) adı da verilmektedir. İmsizyon yapılırken orta hat belirlenmelidir. İki ayrı noktadan belirlenebilir; suprasternal çentiğin 1,5-2 cm yukarısı ya da krikoid kartilajının 1-1,5 cm aşağısıdır. Orta hattaki bu noktadan başlanıp, iki yana doğru transvers planda ilerleyerek ince bir çizgi halinde işaretlenir. Platismanın dahl olduğu yüzeyel servikal fasya ile derin servikal fasyanın yüzeyel tabakası arasındaki zayıf bağ dokusu, derinin fasya üzerinde rahat ekarte edilmesini sağlar. Bu nedenle aşırı ekartasyon gerektirecek kadar büyük guatr mevcut değil, kısa boyunlu ve kilolu değilse; kesi lateralde Sternokleidomastoid kasının ön kenarında sonlandırılır. Simetrik olarak yaklaşık 5 cm’lik bir insizyon yeterlidir. Büyük bir tümör veya guatr mevcut veya boyun kısa ve yağlı bir durumda ise, aşırı ekartasyon gerekir. Bu nedenle, klaviculanın 1/3 iç kısmından geçen vertikal bir çizginin (Sternokleidomastoid kasının orta noktası), bu insizyonun transvers planını kestiği nokta insizyonun üç noktası olabilir (8,63).

Cilt ve cilt altı geçilir. Platismanın kendisine dahil olduğu yüzeyel servikal fasya ve hemen altında derin servikal fasyanın yüzeyel tabakasına kadar ilerlenir. Anterior juguler venler görülüğünde doğru bir planda olunduğunu anlaşırlar ki, cilt altı insizyon bu venlerin görülmesi ile durdurulur (8, 63).

Üst flep; anterior juguler venler ve derin servikal fasyanın yüzeyel tabakasının önü ile, yüzeyel servikal fasya ve platisma kasının arkası arasındaki avasküler bir alan olan subplatismal alanda, koter ya da bisturi yardımı ile yapılan
disseksiyonla hazırlanır. Süperionda ve median hatta, tiroid kartilaj ve yanlarda sternokleidomastoid kas görülenle kadar, disseksiyona devam edilir. Sonuçta; ortasında tiroid kartilaj bulunan ve açıklığı inferior tarafta bakan, yarımaya halinde bir alan meydana gelir. Bu disseksiyon işlemi esnasında meydana gelen kanamalar durdurulmalıdır.

Alt flep de, benzer şekilde hazırlanır. Sınırları, median hatta suprasternal çentik ve laterallerde klavikula süperion kenarıdır.

Derin servikal fasyanın yüzeyel tabakası; tiroid kartilaj ile suprasternal çentik arasındaki vertikal çizginin belirlendiği ve her iki sternohiyoid kasın birleştigi orta hattan açıklar ve altında seyreden sternohiyoid kasın üzerinden bir miktar kaldırılır. Bu aşama sırasında derin servikal fasyanın yüzeyel tabakasının anterior ve posterior yapraklarının, sternum anterior ve posterior kenarına yapışarak oluşturduğu suprasternal aralıkta, her iki anterior juguler veni birleştiren bir dalın geçtiği görülür ki; bu dalın her iki taraftan bağlanarak kesilmesi uygun olur. Bu damarın yanlışlıkla kesilmesi sonucunda ortaya çıkan, damar uçlarından olabilecek hava embolisinden kaçınılmalıdır (8, 63).

Sternohiyoid kasın arkasından sternotiroid kası geçer ki, bu kaslar tiroidin lateral yüzünü örter. Bu iki kas arasında yapılan künnt ve keskin disseksiyon işlemene; sternotiroid kasın üzerinde ve lateralinde, ve internal juguler venlerin medialinde bulunan ansa servikalis görülünceye kadar devam edilir. Bu iki kasın birbirinden ayrılmasıdan sonra, sternotiroid kasın altına ve tiroid lojuna girdeden önce,
sternotiroid kasının üzerinden tiroid bezinin eksplorasyonu yapılabilir. Herhangi bir patoloji düşünülmeyen tarafta, sternotiroid kasın kaldırılması gerekmeyecek ve reoperasyon gerektiği durumlarda, o bölge anatomisi bozulmamış olur.

Sıra sternotiroid kas ile tiroid bezinin ayrılmasına gelmiştir. Tiroidin cerrahi kapsülü; derin servikal fasyanın pretrakeal tabakasından ayrılan gevşek bağ dokunun inci bir tabakası tarafından oluşturulur ve tiroid bezi bu tabaka tarafından cephe cephe sarılır. Bu fasya, tiroid bezi içerisinde septalar göndererek, psodolobüller oluşturulur. Tiroid bezi mediale, ve strep kasları da laterale ve anteriora doğru çekilerek, sternotiroid kas ile tiroid dokusu arasındaki gevşek bağ dokusu; tiroid bezi ve üzerindeki venlere zarar vermeden süperiora, inferiorea ve laterale doğru kant ve keskin bir diseksiyonla ayrılır. Tiroid bezinin medial tarafla çekilmesi sırasında, zorlayıcı olmamamıştır.

Çünkü; tiroid bezinin lateralinden çıkan, bir veya iki VTM (Vena tiroidea media)’nin kopması sonrası gelişen kanamalar olabilir. Bu nedenle VTM, ortaya konarak bağlanır ve kesilir. Böylece tiroid bezi anteriora ve mediale doğru çekilerek, lateral lobların posterolateraline daha kolay ulaşılması sağlanmış olur (8).

Tiroid bezi üst kutbunun, çok uzun ve derin yerleşimli olduğu ya da bu bölgede yeterli görüş alanının sağlanamadığı, büyük tiroid kanseri veya büyük guattrı bulunan hastalardaki strep kasları; hemen altındaki tiroid bezi dokusundan ayrılamayacak kadar yapışık durumda ise, bu kasların kesilerek inferior ve süperior kısımlara ayrılarak gerekir. Bu işlem sırasında dikkat edilmesi gereken nokta; můsküler sinirlerin bu kaslara girdiği seviyenin değişken olmasıdır. Hollinshead (67); Süperiorda tiroid kartilaj seviyesinde, sternohiyoid ve sternotiroid kaslarına giren bir sinir dalını ve inferiorda suprasternal çentiği hafif üzerinde, aynı kaslara giren ikinci belirli bir sinir dalını işaret etmiştir. Tiroid kartilajın inferior kenarını ile suprasternal çentiğin süperior kenarı arasındaki, vertikal hattın orta noktasından yapılan bu şekildeki ayırma işlemi ile; hipoglossal sinirinden ayrılarak, strep kaslarına giren C1, C2 ve C3 sinirlerinin ventral dalları korunmuş olur. Öncelikle; Sternokleidomastoid kas ile sternohiyoid kas arasındaki yüzeyel servikal fasya, sternokleidomastoid kısımların ön kenarı boyunca vertikal planda açılmalıdır. Bu sıraya anterior ve eksternal juguler
ven arasındaki ven dalları bağlanıp, kesilir. Sternokleidomastoid kas laterale doğru çekilirken, daha önce serbestleştirilmiş olan strep kaslarının keseceği yerin inferior ve superior kısımlarına, medialden laterale doğru transvers bir biçimde, kocher klempleri konularak arasından kesilir ve kontunu bir sütüle dikilir. İnsizyon kapatılırken de, bunların birbirine dikilmesi gerekir (22, 67).

Bu traksiyon ve diseksiyon işlemi sırasında, İTA haffifçe gerilir ve kolayca görülebilir. Bu așamada, İTA proksimalde yalnızlaştırılarak askıya alınabilir. Bilindiği gibi İTA; karotis kılıfı ile birlikte yukarı doğru çıkarken, C 6-7 vertebral hizasında karotis kılıfının altında çikarak, tiroidin 1/3 orta ve 1/3 alt kısımlarının birleşme yerinin laterline doğru, medial tarafa dönerek ve tiroid bezine girme hareketi sağlayancaya dek (8.
Bu hizada İTA, nonrekürren laringeal sinir istisna olmak üzere, hemen daima RLS ile, dallarına ayrılmadan ya da ayrıldıktan sonra bir çaprazlaşma yapar. İTA, sağda % 3 solda % 1 oranında mevcut olmayabilir. İTA‘ın bifurkasyona uğramadan, en lateralinden askıya alınması, daha sonraki diseksiyonu kolaylaştırır. İkisi dala ayrılar; üst dal tiroid bezinin arka yüzüne, alt dal ise tiroid bezi alt kutbuna, ve üst ve alt paratiroid bezlerine giden bir dal verir.

İTA askıya alındıktan sonra, tiroid bezi ve karotis kilifına uygulanan traksiyona devam edilir. Tiroidin posterolateral kenarı boyunca kaudalden kraniale doğru, RLS trasesine paralel olarak diseksiyonu devam edir ve tiroidin cerrahisi kapsülü ile lateralindeki dokular birbirinden ayrılır. Bu bölgede bulunan küçük damarlar; sinire zarar vermemek için, kesinlikle koterize edilmemelidir ve ince emilebilen sütür materyali ile bağlanmalıdır.

Pek çok cerrah tiroid cerrahisi sırasında; RLS‘den kaçmak yerine, izole edilmesini önerir. RLS’in korunması ve izole edilebilmesi; önemli anatomik sınırlardan faydalanarak, cerrahi tekniğin dikkatli uygulanması halinde mümkün olur.

RLS’in ortaya konması için güvenilir bir anatomik sınır, İTA’dır. Her iki sinir, tiroid bezinin 1 / 3 medial kısmının alt sınırında, İTA ile yakın ilişki içerisindedir, Beahrs (70); posteriorda karotis komunis arter, süperiorda STA ve anteroinferiorda RLS bulunacak şekilde, bir üçgen tarif etmiştir. Bu tarif edilen önemli üçgene rağmen, RLS’in kesin olarak bu alanda tespit edileceğinin garantisi yoktur. Çünkü, İTA ve RLS’in çok farklı şekillerde nörovasküler ilişkileri mevcuttur (71).

Berry ligamanı, RLS izolasyonunda önemli bir sınır noktası (29, 63). Nonrekürren laringeal sinir ve RLS bu bölgeden larinkse girdikleri için, her ikisinin de bu bölgede görülmesi mümkün olabilir (68). Özellikle tiroid bezini aşırı büyümesi, karsinom nedeniyle meydana gelen fibrozis, Graves hastalığı veya Haşimoto tiroiditi gibi durumlarda total lobektomi yapılacak ise; RLS, bu bölgede arınmış bir risk altındadır ve tiroidektomi sırasında en fazla yaralanma, bu bölgede görülmedir (63, 66). Yaralanma olasılığının fazla olduğu diğer bölgeler ise İTA...
Tiroid bezinin traksiyonu sırasında; Berry ligamanına gömük durumda sinir liflerinin, öne doğru çekilmesi durumunda yaralanmaya elverişli hale gelir (29). Tiroid bezinin lateral loblarının, trakea etrafından posteriora yaptığı uzantı olan Zuckerkandl Tüberkülü, yalnız giyinir dudaklar, RLS’in bir tümör invazyonuna uğradığı düşmecisile, sinirin gereksiz yere feda edilmesine sebep olabilir (29, 73). RLS ile İTA ilişkisi saptandıktan sonra, tiroid bezinin alt kutup venleri; medialden lateral doğru, bize yakın olarak ortaya konulur, bağlanır ve kesilir.

Tiroid bezinin anatomik olarak ilişkide bulunduğu diğer önemli yapılar, paratiroid bezleridir. Tiroidektomi sırasında, paratiroid bezler de görülmeli ve korunmalıdır. Paratiroid dokusunun ayırmı çok kolay olmadığını durumda, tiroidektomi sırasında; hemostaza dikkat edilerek uygulanan, cerrahi teknik çok önemlidir. Aksi takdirde oluşan kanamalar, dokuların birbirinden ayrılabilir (63). Paratiroid bezinin her biri, % 80 oranında, lateral lobun posterolateral yüzünde ve İTA’nın l cm etrafında bulunur. Alt paratiroid bezi; RLS’in anteromedialinde, üst paratiroid bezi ise; RLS’in posteromedialindedir.

Tiroid bezini inferior ve medial taara, strep kaslarını da lateral ve anteriorda doğru çekerek, karotis kılıfinin medialinde ve üst kutunun hemen lateralinde yapılan kuant diseksiyon ile, üst kutup rahatlıkla mobilize edilebilir; çünkü bu alanda sinir bulunmaz. SLS’in yaralanma riski; tiroid bezi üst kutunun yeterli görünümünü sağlamaktan, strep kaslarının lateral çekilmesi ile, oldukça önemli bir derecede azaltılmış olur .

Üst kutunun mediali ile krikotiroid kas fasyası arasında avasküler olan bu krikotiroid alanda bulunur. Süperior laringeal sinirin eksternal dalının yaralanmasından kaçınmak ve süperior tiroid damarlarının görülmesini kolaylaştırmak için, tiroid bezine yaklaşım bu plandan olmalıdır. Bunun için; sternotiroid kas kesilir ya da bu kas superiorda, tiroid bezi üst kutbu da inferior ve lateral tarafo doğru çekilerek, anterior süspansuar ligaman kesilir ve böylece krikotiroid alana ulaşılabilir. Vasküler pedikülün itina ile çekilmesi yoluya, Süperior laringeal sinirin eksternal dalı krikotiroid kasın gövdesinden girerken veya yüzeyi
boyunca seyredenken, % 80 olguda görülebilir (65). Tiroidin cerrahi kapsülü bu bölgede zayıf olduğu için, üst kutup ve damarları üzerinde yapılan nazik bir künt diseksiyonla, gevşek durumdaki bağ dokusunu ayırma mümkündür. Krikotiroid alanın genişçe açılması; üst kutup damarlarının bağlanması sırasında, Süperior laringeal sinirin eksternal dalının yaralanmasını engeller (63, 70).

Üst kutbun çok büyüdüğü nadir durumlarda; sternotiroid kasın tiroid kartilaja bağlandığı yerin inferiorundan kesilmesi neticesinde, nörovasküler yapıların daha iyi görünümü sağlanabilir (63, 65, 66).

Süperior tiroid damarlarının izole edilmesinden sonra; tiroid kapsülü üzerinden ve STA bifurkasyonu distalinden, üst kutup kaudale çekilerek, STA’ın anterior ve lateral dallan tek tek bağlanıp kesilmelidir. Bu adımlara dikkat edilerek yapılan diseksiyonda, SLS’in yaralanma riski (% 2), sık değildir (65).

SLS’in yaralanma riskini en aza indirmek için, bu bölgede koter kullanılmamalıdır.

Superior pedikül klemple geçilirken ihtiyatlı çalışılmalıdır. Sinirin görülmesi mutlaka gerekli değildir ve sinirin görülmesi için harcanacak çaba, sinir travmasını yaratabilir (29). Üst kutup damarları bağlanıp kesildikten sonra, üst kutup posterolateralindeki gevşek bağ dokusu, tiroid bezinin posteromedial istikametinden bağlanarak ayrılır ve böylece üst paratiroid bezinin travanması haksız olur.

Hastaların % 50 (63, 64, 68) ila % 80inati (65) piramidal lob mevcuttur. Tiroid bezi ve istmusla beraber kaldırılacak tiroid kartilajı veya daha yüksekte bulunduğunu yere doğru, serbestçe diseksiyon yapılmalıdır. İstmusun hemen üzerinde, bir ya da daha fazla lenf bezi (Delphian nodu) çok defa mevcuttur ve tiroidle beraber kaldırılmalıdır. Lob ve istmus orta çizgiye doğru keskin diseksiyonla kaldırılır. Hazırlanan tiroid lobunun eksizyonu, orta çizgiye karşılık tiroid bezin klempları konularak, lobun kesilmesi suretiyle yapılabilir. Lobektomi uygulanacağı zaman istmus, trakea üzerinden kaldırılacak karşılık taraftan ayrılır ve sütüre edilir. Total tiroidektomi uygulanacak ise, karşılıtaka da benzer işlemler uygulanarak, tiroid bezi
tamamen çıkartılır. Subtotal lobekomi uygulanacak ise, lobekomiye benzer prensiplerle gerçekleştirilir. Fakat üst kutubun ayrılmamasından sonra, lobun uzunluğu boyunca ve İTA’in lateral loba giriş yerinin anterioruna, genellikle yaklaşık 1 ila 2 gr’in üstünde tiroid dokusu kalacak şekilde klempler konur. Özellikle RLS trasesinin tümden izlenmediği durumlarda yerleştirilen klemplerin ucu kölemesine posteriora doğru olmamalıdır (8).

2.10. Komplikasyonlar

2.10.1. Hematom

Hastaların çoğunda hematom yaşamı acı olarak tehdit edici nitelikte değildir ancak bazı hastalarda acı cerrahi girişim ile hematom boşaltılarak kanama kontrolü
sağlanır. Reoperasyonda sıradıkça hiçbir spesifik kanama bölgesi belirlenemez ancak en olası alanlar, anterior juguler venler, superior kutup vasküler pedikül ve RLS girişini komşuluğundaki Berry ligamanının damarlarıdır. Bu komplikasyonun önlemek için tiroidektomi sırasında bu alanlara özellikle dikkatle dikkatli bir hemostaz yapılması önerilir (73, 74, 75).

2.10.2. Hipoparatiroidizm

Paratiroid bezleri, kan ihtiyacını tiroid beziyle paylaşan küçük narın yapılardır. Boyutlarının küçüklüğü (normali 30 ila 60 mg) ve yapılarının frajil olması, bunları tiroidektomi sırasında hasarlanmaya karşı özellikle hassas kılmaktadır. Tiroidektomiden sonra paratiroid fonksiyonları belirgin ölçüde azalan veya kaybolan hastalarda replasman gerektiren ciddi hipokalsemi ortaya çıkar (76, 77).

Hipokalseminin klasik bulguları Chvostek ve Trousseau bulgusudur. Chvostek bulgusu artmış sinir irritabilitesine bağlı fasyal kas kontraksiyonunu göstermek için yanğının lateral bölgesinde fasyal sinir üzerine nazikçe vurmak suretiyle oluşturulur. Bu bulgu normal serum kalsiyum düzeylerine sahip insanlarının az bir kısmında mevcuttur ve hipokalseminin tanısında bütünüyle güvenilir nitelikte değildir ancak bazı insanlarda kalsiyum seviyelerinin takip edilmesinde faydali olabilir. Trousseau bulgusu üst kola bir sfigmomanometre yerleştirilmesi ve sistolik
basınca kadar şişirilmesi yoluyla ortaya çıkarılır. Birkaç dakika içerisinde hastada, el bileğinin ve parmakların fleksiyonu ve başparmağın abdüksiyonu şeklinde şiddetli bir karpal spazm gelir. Bu bulgu hasta için oldukça rahatsız edici ve klinik olarak kullanımı uygun degildir. Genelde, hipokalseminin semptomları bulgularından çok daha güvenilirdir ve hasta değerlendirilmesi açısından daha faydalıdır (78).

Postoperatif dönemde akut hipokalseminin tedavisi hipokalseminin şiddetine ve semptomlara göre değişir. Total serum kalsiyum düzeyleri semptomlara ilişkilidir ancak bireyler arasında çok büyük değişkenlik gösterir. Karınçalanmaya neden olan hafif hipokalsemide, oral kalsiyum takviyeleri (kalsiyum karbonat 300 ila 1500 mg oral, 2x1 veya 3x1) hipokalseminin üstesinden gelinmesi için sıkılıkla yeterlidir. 3000 mg üzerinde günlük kalsiyum dozları, kalsiyumun gastrointestinal absorpsiyon limitini nedeniyle, yükselme açısından az mikarda fayda sağlar. Bu düzeyin ötesinde takviye edilmesi gerekiyorsa (şiddetli hipokalsemisi olan bir çok hastada olduğu gibi), vitamin D takviyesinin (kalsitriol 0.25 ila 1.0 μg 4X1) eklenmesi, gastrointestinal kalsiyum absorpsiyonunu artırarakart. Bu karışın, Vitamin D’nin etki etmesi için 48 ila 72 saat geçmesi gerektiktedir bu yüzden, bu zamanda kadar intravenöz kalsiyum takviyesine ihtiyaç duyulabilir.

Vitamin D’ye ihtiyaç duyulacakının önceden sezilmesi, tedaviye erken başlanması suretiyle hastanın yönetimini dikkate değer ölçüde kolaylaştıracaktır. Geçici hipokalsemi total tiroidektomi sonrası hastaların %10-30’unda meydana gelir ve kalıcı hipokalsemi yaklaşık %1’inde meydana gelir. Tiroidektomi esnasında her bir paratiroid bezine gelen kan dolasımı belirlenmemeli ve disseksiyon esnasında özellikle dikkat edilmelidir. Her bir paratiroid bezi, saksi geride kalan tek bezi gibi muamele görmelidir. Paratiroid bezinin beslenmesi bozulursa paratiroid ototransplantasyonu önerilmektedir (78, 79).

2.10.3. Sinir yaralanmaları

Rekürren larengeal Sinir (RLS) yaralanması ipsilateral vokal kord gerilimini kontrol eden kasların tek taraflı paralizisiyle sonuçlanır. Tek taraflı RLS yaralanması

RLS paralizi genellikle geçici ve günler ila aylar içerisinde düzelme görülür. İyileşmeye yardımcı olacak veya hızlandıracak bilinen bir yöntem yoktur. Unilateral bir parazinin kalıcı olduğu kanıtlanır ve vokal kord enjeksiyonu veya laringoplastiyle kord immobilenitini ve ses değişikliklerinin palyasyonu sağlanabilir. Bu prosedürler, konuşma sırasında karşı taraftaki kordun, paralize olan kord yaklaşımasına inmanı sağlayarak için palyizle olan kordu sertleştirir ve orta hatta yaklaştırır. Eğer her iki kord da etkilenmişse, palyatif işlemler daha kısıtlıdır ve ventilasyon için yeterli bir havayolu oluşturulmasından ibaretir (80, 83).

RLS’in rutin diseksiyonu ve görülmesi geçmişte tartışmalı bir yaklaşım olmakla beraber, günümüzde tartışmasız bir gerekliktir. Modern tiroid cerrahisinde sinirin‘sakınılması’ değil’saptanması’ gerektiği yaygın olarak kabul edilmektedir. Mättig ve ark. (84) 1756 olguluk çalışmalarında, olgular sinir diseksiyonu yapılmış ve yapılmayan olarak 2 gruba ayrılmış, sinir diseksiyonu yapılmayan grupta kalcı paralizi oranı 5.99, sinir diseksiyonu yapılmış grupta ise %0.88 olarak saptanmıştır. Sinir diseksiyonu ile yapılmış 1000 olguluk tiroidektomi serilerinde, Karlan ve ark. (84)

RLS’in distal segmentinin krikotiroid bileşke/Berry ligamanı ile daha sabit anatomik ilişkisi nedeni ile bu düzeyde disseksiyona yönelik önemli bir eleştirir, bazı yayınlarda sinirin %25 olguda Berry ligamanının içerisinde (ligamanı penetre ederek), transvers olarak seyretmesi nedeni ile Berry düzeyindeki disseksiyonlarda sinirin kolayca hasarlanabileceğini iddiasıdır. Sasou ve ark. (87) Berry ligamanı ile RLS ilişkisini orta olay koymak üzere yaptığı çalışmasına, sinirin hiçbir olguda ligamanı penetre ederek seyretmediğini veya ligamanın medyalinde olmadığını, ancak sinirin ligamanın laterodorsal konumunda seyrettiğini göstermişlerdir.

Literatürde, RLS-İTA ilişkisi gözetilerek yapılan disseksiyonlarda kalıcı paralizi oranlarının; Berry ligamanı seviyesinde disseksiyon yapılan olgulardan daha yüksek olduğu bildirilmektedir (73,80, 87).
Sinir yaralanmalarından sakınmayı veya bu yaralanmaları sınırlamayı deneme konusunda yararlı bir araç olarak sinir stimülatörlerinin ve larengeal kas potansiyel monitörlerinin kullanımı yakın zamanda araştırılmış bulunmaktadır. Yapılan çalışmalar sinir monitörizasyonunun birincil tiroid girişimlerinde kullanımının komplikasyon oranını azalttığını göstermiştir.

Superior larengeal sinirin eksternal dalı (EBSLN) krikofaringeal kasının fasyasını superoposterior kısmında penetre edecek şekilde dallarına ayrılmadan evvel, tiroid bezinin superior kutbundaki damarlara bitişik seyretmektedir. Sinir larinksin inferior konstriktör kaslarının motor innervasyonunu sağlamakta. Bu sinirin hasar görmesi larinksin, yüksek perdeden şarkı söyleme (soprano/falsetto) veya bağırma gibi yüksek basınçlı fonasyonu kontrol etme yetisini değiştirir. Bu sinirin yaralanmasından sakınmak için, üst kutuptaki damarların disseksiyonu ve dallarının ayrı ayrı bağlanması yeterli görülmektedir (81, 83).

2.10.4. Sempatik sinir yaralanması

Sempatik zincir ve stellat gangliyon tiroidektomi esnasında hasar görebilir ve bu da Horner sendromuna neden olabilir (ipsilateral ptozis, miyozis ve anhidroz). Sempatik zincir ve gangliyon ameliyat sahası dışında olduğu için genellikle boyun disseksiyonu sırasında veya ekartörün kötü kullanımı bağlı olarak sempatik sinir hasarı görülebilir (2).

2.10.5. Duktus torasikus yaralanması

Özellikle geniş tümörlerin tiroid bezinin alışסתmış sınırlarının dışına taşıdığı durumlarda, boyun bölgesindeki çeşitli diğer yapılar da yaralanmaya karşı hassastırlar. Duktus torasikus, sternokleidomastoid kasının klavikulaya yapışma yerinin posteriorunda sol internal juguler vene boşalmaktadır. Duktus torasikusun hasar görmesi çok miktarda lenf veya şilin operatif vatağa birikmesine neden olabilir. Eğer sızıntı küçükse bu drenaj sonrası spontan olarak iyileşebilir ancak sızıntı,
output’un azaltılması (total parenteral beslenme ve oktreotit infüzyonu) şeklinde iyileşmeye olanak sağlayacak teşebbüsle rağmen sıkıla devam eder. Eğer sıçıntı 3 haftadan daha uzun süre devam ederse, torakoskopik teknikler kullanılarak ductus torasikus, sol hemitoraks içerisinde bölünebilir. Bu neredeyse her zaman sıçıntıın iyileşmesine olanak sağlar (2).

2.10.6. Trakea yaralanması

Trakeal yaralanmalar, özellikle de geniş invaziv tümörlerin çıkarılması esnasında meydana gelebilir. Trakeal yaralanmaların çoğu rezorbe olabilen sütürlere primer olarak onarılabilir. 10 mm’nin üzerindeki defektlerde, trakeanın sternokleidomastoid kasının bir pedikülüyle onarılması veya etkilenmiş alana gömlek kolu (sleeve) rezeksiyonu uygulanması tercih edilebilir. Eğer rezeksiyon uygulanmışsa, dren yerleştirilmesi tercih edilebilir. Trakeanın kesilmiş uçları absorbbe olabilen sütürlere yeniden yaklaştırılır. Onarım yerinden kaçak yapan havanın tahliye edilmesi için bir dren yerleştirilmesi tercih edilebilir. Positif basınçlı ventilasyon tamir撅inde etkilerinden kaçınılmak yönünden hastanın operasyonun bitiminde ekstübe edilmesi daha iyidir. Trakesotomi açılması nadiren gerekli ancak havayolu güvenliğini ilgilendiren başka meseleler varsada, geçici bir trakeostomi yerleştirilmesi uzun süreli entübasıona tercih edilebilir (2, 78).

2.10.7. Özofagus yaralanması

Özofageal yaralanmalar tiroidektomi esnasında nadiren meydana gelir. Eğer özofagus lümenine girilmişse, operatif seçenek, distal lümenin primer tamiri veya kapatılması ve servikal özofagostomidir. Geniş doku kaybı veya hasarı olmadığı muvedetçe genellikle primer tamir tercih edilir (2, 78).
3. MATERYAL VE METOD

Ameliyat öncesi hastalara tiroid USG, T3, T4, TSH testleri yapılarak şüpheli olgularda İİAB yapıldı. Bunun dışında operasyona hazırlık amacıyla rutin biyokimyasal testler, hemogram, kanama profili, PA akciğer grafisi ve EKG tetkikleri yapıldı.

Hastalar operasyon ve çalışma hakkında bilgilendirilerek aydınlatılmış onam formları alındı. Tüm hastalar operasyondan 6 saat önce başlayan açlık sonrası operasyona alınarak bilateral total tiroidektomi yapıldı.

Preoperatif değerlendirmede malignite tanısı ve şüphesi olan, nüks olan, intraoperatif frozen section çalışması yapılan ve çalışmayı kabul etmeyen hastalar çalışma dışı tutuldu.

Ameliyat sırasında her iki tarafta tiroid lobları mobilize edildikten sonra, makroskopik nodüllerin dışında kalacak şekilde subtotal cerrahi sınırı işaretlendi. Total tiroidektomi yapıldıktan sonra, her iki yanda “subtotal tiroidektomi yapılsaydı geride kalacak olan” 1 – 3 gram ağırlığında doku ayrıldı. “Subtotal tiroidektomi yapılsaydı geride kalacak olan” dokuda makroskopik nodül olmadığı denetlendi ve Ankara Üniversitesi Tıp Fakültesi Patoloji Laboratuvarına ayrı olarak gönderildi.

Postoperatif dönemde hastalarda oluşan komplikasyonlar değerlendirildi. Bunlar kalıcı veya geçici hipokalsemi, sinir yaralanması ve tiroidektomiye özgü diğer komplikasyonlardır.
Hastaların yaşları, cinsiyetleri, postoperatif komplikasyonları, patoloji raporları değerlendirilerek arşivlendi. Bu veriler SPSS 15 programına kayıt edilerek Crosstabulation oluşturuldu ve bunun üzerinden kappa uyumluluk testi yapıldı.

Resim 3.1. Tiroid lobu mobilize edildikten sonra subtotal cerrahi sınırın işaretlenmesi
Resim 3.2. Subtotal tiroidektomi yapılsaydı geride kalacak olan” 1 – 3 gram ağırlığında dokunun ayrılması

Patoloji Anabilim Dalı tarafından subtotal tiroidektomi ile çıkartılacak doku, standart makroskopi incelemesine tabi tutuldu.
Resim 3.3. Subtotal tiroidektomi dokusunun standart makroskopik incelemesi

Resim 3.4. Subtotal tiroidektomi dokusunun standart makroskopik incelemesi
“Subtotal tiroidektomi yapılsaydı geride kalacak olan” tiroid dokusu makroskopide milimetrik kesilerle değerlendirilerek tüm doku mikroskopik patolojik değişiklikler açısından incelendi.

Resim 3.5. Subtotal tiroidektomi yapılsaydı geride kalacak olan” tiroid dokusunun makroskopide milimetrik kesitlerle değerlendirilmesi
Resim 3.6. Subtotal tiroidektomi ve Subtotal tiroidektomi yapılsaydı geride kalacak olan” troid dokusunun makroskopide milimetrlik kesitlerle değerlendirilmesi
Çalışmanın sonunda veriler değerlendirildiğinde hastaların 33’ünün kadın ve 11’inin erkek olduğu görüldü. Yaş ortalamaları 49.8 (32-69) idi.

Komplikasyonlar açısından bakıldığında 21 hastada (% 47) geçici hipokalsemi oldu. Bunun dışında kalıcı veya geçici komplikasyon gelişen hasta olmadığı anlaşıldı.

Patolojik değerlendirme sonucunda 44 hastanın sadece 6’sında (%13) “subtotal tiroidektomi yapılsaydı geride kalacak olan” tiroid dokusunda herhangi bir patolojiye rastlanmadı.

Diğer 38 hastanın “subtotal tiroidektomi yapılsaydı geride kalacak olan” tiroid dokusuna bakıldığında 30 hastada (%68) nodüler guatr olduğu gözlenildi.

5 hastada (%11) iyi diferansiye tiroid tümörü vardı. Bu tümörlerin 4’ü papiller tiroid karsinomu, 1’i de minimal invaziv folliküler karsinomdu.

Papiller tiroid karsinomu saptanan 4 hastanın 2’si subtotal tiroidektomi yapılan dokudaki tümörlerin devamı, diğer ikisi de 2’si sadece “subtotal tiroidektomi yapılsaydı geride kalacak olan” dokudaki izole karsinomlardı.

Bunun dışında “subtotal tiroidektomi yapılsaydı geride kalacak olan” 2 hastada lenfositik tiroidit, 1 hastada da folliküler adenom (% 2) saptandı.

Sadece “Subtotal tiroidektomi yapılsaydı geride kalacak olan” dokudaki papiller tiroid kanserlerinin (2 olgu) çapları: 5’er mm idi. 1 hastadaki folliküler adenom çapı: 5 mm idi.

Nodüler guatr saptanan 30 hastadaki kolloidal nodül çapları: 2 – 6 mm (ortalama 3.8) arasında değişmekteydi.
“Subtotal tiroidektomi yapılsaydı geride kalacak olan” dokuda devamlılığı olan papiller tiroid kanserlerinin (2 olgu) çapları: 1.5 cm ve 2.5 cm idi.

Minimal invaziv foliküler kanser çapı 4.5 cm olarak ölçüldü ve aynı olgudaki malignite potansiyeli belli olmayan tümörün çapı 4 cm olarak ölçüldü.

İstatistiksel analiz sonuçlarına bakalım:

Tablo 4.1. Sağ subtotal doku v.s. Bilateral subtotal tiroidektomi Crosstabulation

<table>
<thead>
<tr>
<th>Tiroid</th>
<th>Nodüler</th>
<th>Papiller</th>
<th>Foliküler</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sağ Normal</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Nodüler</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Papiller</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Foliküler</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>4</td>
<td>1</td>
<td>44</td>
</tr>
</tbody>
</table>

Kappa: 0.354 (zayıf uyum)
Standart Hata: 0.169

Tablo 4.2. Sol subtotal doku v.s. Bilateral subtotal tiroidektomi Crosstabulation

<table>
<thead>
<tr>
<th>Tiroid</th>
<th>Nodüler</th>
<th>Papiller</th>
<th>Foliküler</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol Normal</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Nodüler</td>
<td>28</td>
<td>1</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Foliküler</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>4</td>
<td>1</td>
<td>44</td>
</tr>
</tbody>
</table>

Kappa: 0.124 (zayıf uyum)
Standart Hata: 0.175
Tablo 4.3. Sağ subtotal doku v.s. Sol subtotal doku Crosstabulation

<table>
<thead>
<tr>
<th></th>
<th>Sol</th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Nodüler</td>
<td>Foliküler</td>
<td></td>
</tr>
<tr>
<td>Sağ Normal</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Nodüler</td>
<td>3</td>
<td>26</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Papiller</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Foliküler</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>29</td>
<td>1</td>
<td>44</td>
</tr>
</tbody>
</table>

Kappa: 0.531 (orta derecede uyum)
Standart Hata: 0.130

%95 Güven Aralığı:

7/44 sağ subtotal doku- total tiroidektomi %15.91 CI (5.1 - 26.72)

10/44 sol subtotal doku- total tiroidektomi %22.73 CI (10.35 - 35.11)
5. TARTIŞMA

Subtotal tiroidektomide geride hastanın tiroid hormonu kullanmak zorunda kalmamasını garantiye alacak kadar fazla doku bırakılsa, nüks riski çok artar. Hasta her durumda tiroid hormonu kullanacaksa, dozun az ya da çok olması önemli değildir.

Bu noktada karşımıza çıkan soru tiroidektomide komplikasyon oranlarını belirleyen etkenler neler olduğudur. Yapılan bazı çalışmalar, ameliyat tipinin mi (total- subtotal), merkezin- cerrahın deneyiminin mi yoksa girişim sayısının mı (ilk girişim veya tamamlayıcı tiroidektomi/nüks) komplikasyon oranlarını etkilediğini açıklığa kavuşturmıştur.

Ameliyat tipi açısından bakacak olursak; Özbaş ve arkadaşlarının yaptığı bir çalışmada (750 vaka), total- subtotal-totale yakın tiroidektomilerde kalıcı
komplikasyonlar açısından fark olmadığını göstermektedir. Buna karşın subtotal tiroidektomi sonrasında ikinci girişim gereksinimi olabilmektedir (93).

İkincil girişimler açısından bakıncı Akin ve arkadaşlarının yaptığı bir çalışmada (238 vaka); ilk girişim sonunda kalıcı ses değişikliği olmazken, tamamlayıcı- retiroidektomi yapılanlarda %5.2 oranında kalıcı ses değişikliği görülmüştür. Ayrıca %1.1 olan kalıcı hipoparatiroidi oranı % 7.5’e çıkmaktadır (94).

Bir diğer etken olan merkezin deneyimini ise Doğan ve arkadaşlarının yaptığı çalışma ortaya koymaktadır. 10 yıl boyunca yapılan toplam 342 total tiroidektomi ameliyatı 5’er yıllık iki dönem halinde incelenmiştir. İlk 5 yıllık dönemde kalıcı ses değişikliği oranı %11.2 iken ikinci 5 yıllık dönemde bu oran % 1.2’e düşmektedir. Yine ilk 5 yıllık dönemde olan %13.6’lık kalıcı hipoparatiroidi oranı % 6.8’e düşmüştür. Buradan hareketle merkezlerin- cerrahların deneyiminin artmasının komplikasyon oranlarını büyük oranda etkilediğini görmekteyiz (95).

Özet olarak; merkezin – cerrahnın deneyiminin ve girişim sayısının (ilk girişim veya tamamlayıcı tiroidektomi/nüks) komplikasyon üzerine etkisi çok fazla iken, ameliyat tipinin (total veya subtotal) komplikasyon oranına etkili olmadığını görmekteyiz.

Subtotal tirodektomi yapılan multinodüler guatr olgularında uzun dönemde US ile saptanan nüks oranı farklı çalışmalarda % 40 – 60 arasında bildirilmiştir. Çalışmamız, bu olguların gerçek anlamda nüks değil, rezidü dokuda kalan mikronodüllerin büyümesi olduğunu göstermiştir.

Bu çalışmamız 44 olguna subtotal tiroidektomi yapılmış olsaydı; 3 hastaya tamamlayıcı tiroidektomi yapılması gerekecekti (ve total tiroidektomidenden daha yüksek morbidite riski olacaktır). 2 hasta, rezidü dokuda papiller mikrokanser ile yaşayacaktır (belki bu papiller mikrokanserler yaşam boyu sessiz kalacak, belki büyüyüp ikinci tiroidektomiye gerek duyulacak, ve potansiyel olarak anaplastik kansere de differansiyeye olma riski taşıyacaktır).
Yine bu çalışmadaki 44 olguya subtotal tiroidektomi yapılmış olsaydı; 31 hasta rezidü dokuda kolloidal mikronodüller ile yaşayacaktı (ve düşük olasılıkla da olsa ikinci tiroidektomi gerekecekti). 2 hasta lenfositik tiroiditli rezidü doku ile yaşayacaktı (rezidü hacmi çok da olsa, tiroid hormonu kullanmak zorunda kalacaktı).

Çalışmamıza benzer bir çalışmada Tekin K. ve arkadaşları Benign multinodüler guatr nedeniyle tiroidektomi tıptılın 34 hastada”subtotal tiroidektomi yapılsaydı kalacak olan rezidü dokuda”; % 73.5 mikronodül ve 1 papiller mikrokanşer (toplam 4 insidental mikrokanşer) saptamışlardır (96). Bizim çalışmamızda mikronodül oranı % 68’di ve 2 papiller mikrokanşer (5 insidental kanser) bulunmaktadır.
6. ÖZET

BİLATERAL SUBTOTAL TİROİDEKTOMİ YAPILAN MULTINODÜLER GUATR OLGULARINDA, REZİDÜ TİROİD DOKUSUNDA MİKRONODÜL ORANI

Çalışmaya alınan 33 kadın ve 11 erkek hastanın yaş ortalamaları 49.8 (32-69) olarak hesaplandığı, toplam 44 hastanın sadece 6’sında (%13) subtotal tiroidektomi yapılsaydı geride bırakılacak tiroid dokusunda’ndaki patoloji bulunmamaktaydı. 38 hastada (%87) ise 30’unda nodüler guatr, 3’ünde lenfositik tiroidit, 5’inde iyi diferansiye tiroid tümörü, 1’inde kollocüller adenom olmak üzere, geride bırakılacak tiroid dokusunda patolojik bulgular mevcuttu.

Benign patolojiler nedeniyle uygulanan tiroid cerrahisi içinde sınırlı yaklaşımların (enükleasyon, lobektomi, subtotal tiroidektomi) daha yüksek oranda nüksle birlikte olması, buna karşılık, geniş rezeksiyonların daha yüksek komplikasyon oranlarıyla birlikte olduğunun düşünüldüğünde nedeniyle rezeksiyonun sınırlı konusundaki tartışmalar sürmektedir. Çalışmamızın sonuçları multinodüler guatr tedavisinde yapılacak subtotal tiroidektomiyle hastaların büyük çoğunluğunda takıplerde nüks nedeni olabilecek ve reoperasyon gerektirebilecek patolojik tiroid dokusu bırakılacağını göstermektedir. Bu hastaların tedavisinde total tiroidektomi tercih edilecek ameliyat şekli olmalıdır.

Anahtar kelimeler: multinodüler guatr, subtotal tiroidektomi, rezidü, nüks, total tiroidektomi,
7. SUMMARY

THE RATIO OF MICRONODULES IN RESIDUAL THYROID TISSUE, THE PATIENT WHO PERFORMED BILATERAL SUBTOTAL TYROIDECTOMY AT MULTYNODULAR GOITRE

Multinodular goiter is one of the most frequent indications of thyroidectomy. Nowadays, total thyroidectomy is preferred by many clinical centers in the treatment of these patients. In this study, we purposed to estimate the pathologies that cause the local recurrence at residual tissue in subtotal thyroidectomy performed patients.

The patients that performed total thyroidectomy for MNG at AUTF General Surgery Department, between August 2007-April 2010 are included in this study. Standard total thyroidectomy is performed in all patients. Later we marked and cut the subtotal surgical margin on this thyroidectomy material. This subtotal surgical margin specimens are studied separately by Pathology Department. Patients that have malignancy diagnosis by FNAB, have recurrence and who didn’t accept the study are excluded.

33 female and 11 male patients are included the study. The mean age of the patients was 49.8 (32-69). At 6 patients of these 44 patients (13%), there were no pathology at subtotal surgical margin. At 30 of the remaining 38 patients (87%) nodular goiter, at 3 patients lymphocytic thyroiditis, at 5 patients well differentiated thyroid tumors were found at the subtotal surgical margin.

The choice between subtotal and total thyroidectomy for multinodular goiter is controversial. The disadvantage of limited approach such as enucleation, lobectomy and subtotal thyroidectomy is high recurrence rate but against that total thyroidectomy is thought to have high complication rate. This study shows that, if we perform subtotal thyroidectomy in the treatment of multinodular goiter, there will be pathologic tissue at the subtotal surgical margin, that can cause recurrence and need reoperation. So we recommend that total thyroidectomy must be preferred in the treatment of multinodular goiter.

Keywords: Multinodular goiter, subtotal thyroidectomy, residual, recurrence, total thyroidectomy
8. KAYNAKLAR

27.http://www.msdlatinamerica.com/ebooks/WernerandIngbarsTheThyroidAFundamentalClinicalText/sid529867.html

34. Dere F. Glandula Thyroidea ve Parathyroidea. Anatomi 1990; 497-50

86. Reed AF. The relations of the inferior laryngeal nerve to the inferior thyroid artery. Anatomi Record 1943; 85: 17-3.

94. Dr B Akin, Dr S Koçak, Dr S Aydın, Dr S Baskan. Ulusal cerrahi Kongresi 2000
95. Dr S Doğan, Dr S Koçak, Dr S Aydıntuğ, Dr S Demirer, Dr S. Baskan. Ulusal Cerrahi Kongresi 2002.

96. Tekin K, Yılmaz S ve ark. What would be left behind if subtotal thyroidectomy were preferred instead of total thyroidectomy? Am J Surg. 2010 Jun;199(6):765-9