ÇAMLIDERE BARAJI HAVZASINDA EROZYON PROBLEMİ VE RİSK ANALİZİ

Yüksek Lisans Tezi

Erkan YILMAZ

Ankara-2006
ÇAMLIDERE BARAJI HAVZASINDA EROZYON PROBLEMİ VE RİSK ANALİZİ

Yüksek Lisans Tezi

Erkan YILMAZ

Tez Danışmanı
Doç. Dr. Ihsan ÇİÇEK

Ankara-2006
ÇAMLIDERE BARAJI HAVZASINDA EROZYON PROBLEMİ VE RİSK ANALİZİ

Yüksek Lisans Tezi

Tez Danışmanı: Doç. Dr. İhsan ÇİÇEK

Tez Jürisi Üyeleri

<table>
<thead>
<tr>
<th>Adı ve Soyadı</th>
<th>İmzası</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doç. Dr. İhsan ÇİÇEK</td>
<td>..................</td>
</tr>
<tr>
<td>Doç. Dr. Günay ERPUL</td>
<td>..................</td>
</tr>
<tr>
<td>Yrd. Doç. Dr. Necla TÜRKOĞLU</td>
<td>..................</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tez Sınavı Tarihi - 04.12.2006
İÇİNDEKİLER

Sayfa No

ÖNSÖZ ...1

GİRİŞ ..1

1. KURAMSAL VE KAVRAMSAL ÇERCEVE ..5

1.1. EROZYONUN TANIMI VE EROZYON ÇEŞİTLERİ5

1.2. SU EROZYONUNUN AŞAMALARI ...7

1.2.1. Damla Erozyonu (Raindrop Erosion) ..7

1.2.2. Yüzey Erozyonu (Sheet Erosion) ..9

1.2.3. Parmak Erozyonu (Rill Erosion) ..10

1.2.4. Oyuntu Erozyonu (Gully Erosion) ...11

1.2.5. Akarsu Yatak Erozyonu (Linear / Alluvial Channel Erosion)12

1.3. SU EROZYONUNU ETKİLEYEN FAKTÖRLER ...13

1.3.1. İklim Koşulları ...13

1.3.2. Tопrak Koşulları ..14

1.3.3. Topografik Özellikler ...16

1.3.4. Bitki Örtüsü ...17

1.3.5. İnsan Faaliyetleri ..18

1.4. EROZYON ÇALIŞMALARINDA KULLANILAN MODELLER20

1.4.1. Niteliksel Modeller ..20

1.4.1.1. FAO ...20

1.4.1.2. ICONA ..21

1.4.1.3. CORINE ...21

1.4.2. Niceliksel Modeller ...22

1.4.2.1. WEPP (Water Erosion Predict Project) ..22

1.4.2.2. EPIC (Erosion-Productivity Impact Calculator)23

1.4.2.3. ANSWERS (Areal Nonpoint Source Watershed Environment Response Simulation) ...24

1.5. ÜNİVERSAL TОРРАK KАYIPLARІ EŞİTLİĞІ (USLE)24

1.5.1. Usle, Musle, Usle-M ve Rusle Gelişimi ...24

1.5.2. USLE Eşitliğinde Faktörlerin Belirlenmesi ...27
2. ÇAMLIDERE BARAJI HAVZASINDA USLE MOEDELİNE GÖRE EROZYONUN ...34
 2.1. HAVZANIN KONUMU...34
 2.1.1. İklim Özellikleri...36
 2.1.2. Usle R Faktörü...40
 2.2. ZEMİN ÖZELLİKLERİ VE USLE K FAKTÖRÜ.........................47
 2.2.1. Jeolojik Yapı...47
 2.2.2. Toprak Özellikleri...51
 2.2.3. Usle K Faktörü...53
 2.3. TOPOGRAFİK VE JEOMORFOLOJİK ÖZELLİKLER VE USLE LS FAKTÖRÜ ...61
 2.3.1. Topografik ve Jeomorfolojik Özellikler...............................61
 2.3.2. Usle LS Faktörü...65
 2.4. ARAZİ ÖRTÜSÜ ile USLE C ve P FAKTÖRLERİ.........................68
 2.4.1. Havzada Arazi Örtüsü...68
 2.4.2. Usle C Faktörü...71
 2.4.3. Usle P Faktörü...75
 2.5. HIDROGRAFİK ÖZELLİKLER ve SEDIMENT İLETİM ORANI............78
 2.5.1. Hidrografik Özellikler..78
 2.5.2. Sediment İletim Oranı – Sio (Sediment Delivery Rate – SDR).......79

SONUÇ ve TARTIŞMA ...85
 A – TOPRAK KAYIPLARI VE KONUMU...85
 B – BARAJ ÖMRÜ...90

KAYNAKÇA ...92
FOTOĞRAF LİSTESİ

Foto : 1 – Damla Krateri ... 8
Foto : 2, 3 – Çamlıdere Barajı Havzasında Parmaklar.......................... 10
Foto : 4, 5 – Çamlıdere Barajı Havzasında parmaklar ve oyunların
kırıgbıyır haline dönüşmesi ... 11
Foto : 6 – Kanal Erozyonu ... 12
Foto : 7,8 – Göl Tabanında çökelmişkilli tortullar................................. 48
Foto : 9, 10 – Volkanik ara katkılı göl tortulları 48
Foto : - 11, 12 – Havzadaki Volkanik kayakçalar 49
Foto : 13 – Yaylalar Krateri ... 49
Foto : 14 – Ovacık Krateri ... 50
Foto : 15, 16 – Kireçsiz Kahverengi Orman Toprakları 52
Foto : 17, 18 – Kahverengi Orman Toprakları 52
Foto : 19, 20, 21 – Kırgıyır alanları .. 71
Foto : 22, 23 – Havzada küçükbaş ve büyükbaş hayvancılık 75
Foto : 24, 25 – Havzada orman kesimi ve ağaclandırma alanları 76
Foto : 26, 27 – Havzadaki meralarda yapılan teraslar ve bentler 77

TABLO LİSTESİ

Tablo : 1 – Ekim Nöbetinin Erozyon Üzerine Etkisi 18
Tablo : 2 – İstasyonların İklim Sınıflandırması 37
Tablo : 3 – İstasyonlara ait F değerleri .. 43
Tablo : 4 – İstasyonlara ait R Değerleri .. 43
Tablo : 5 – Doğan’a (2002) göre r değerleri ve hesaplanan F değerleri .. 44
Tablo : 6 – Jeolojik Birimler .. 51
Tablo : 7 – Havzadaki Toprakların Alanları 53
Tablo : 8 - Toprak örneklerinin strüktür özellikleri 55
Tablo : 9 - Toprak örneklerinin organik madde miktarı 56
Tablo : 10 -Toprak örneklerinin hidrolik iletkenlikleri 57
Tablo : 11 – Toprak örneklerinin tekstür analizi sonuçları 58
Tablo : 12 – Toprak Örneklerinin K Değerleri ... 59
Tablo : 13 – Havza topraklarının aşınabilirlik durumları ... 60
Tablo : 14 – Yükselti Basamaklarına Göre Alan Dağılışı ... 62
Tablo : 15 – Eğim sınıflarına göre alanlar ... 63
Tablo : 16 – Havzadaki ağaç türlerinin alanları ... 69
Tablo : 17 – Havzadaki arazi türleri ... 70
Tablo : 18 – Havzada arazi örtüsüne göre C değerleri ... 72
Tablo : 19 – Havzada USLE C değerinin dağılımı ... 72
Tablo : 20 – Havzada yıllık ortalama toprak kayıplarına göre alanlar 87
Tablo : 21 – Arazi örtüsüne göre toprak kayıpları .. 88
Tablo : 22 – Toprak kayıbı sınıfları ve arazi örtüsüne göre dağılışı 88
Tablo : 23 – Orman alanlarındaki toprak kayıpları .. 89
Tablo : 24 – SİO eşitliklerine göre baraja taşınan toprak miktarları 91
Tablo : 25 – SİO eşitliklerine Çamlıdere Barajının ömürleri .. 91

ŞEKİL LISTESİ

Şekil : 1 - Bir yüzey akış parseli (Doğan, 1986) ... 28
Şekil : 2 - Kısmılara ayrılmış bit yağış diyagramı ... 29
Şekil : 3 - Bitki boyu ve kanopi kapalılığı arasındaki ilişkiye bağlı olarak toprak kaybı .. 33
Şekil : 4 - Malç, kanopi kapalılığı ve bitki boyuna bağlı olarak toprak kayıpları 33
Şekil : 5 - Eşyüşkelti eğrilerinin karele göre (gridlere) bölünmesi 46
Şekil : 6 - Eşyüşkelti eğrilerinden SYM elde edilmesi .. 66
Şekil : 7 - SYM’den akış yönlerinin belirlenmesi .. 67
Şekil : 8 - Akış yönlerine bağlı olarak akış birikiminin hesaplanması 67
Şekil : 9 - Aşınım ve Birikim Alanları .. 79
Şekil : 10 - Kullanılan SİO Modeli Akış Şeması ... 83
Şekil : 11 – USLE eşitliğinin elde edileme şemasi ... 85
Şekil : 12 - Baraj haznesinin kısımları ... 90
GRAFİK LİSTESİ

Grafik : 1, 2, 3 – Kum, silt+ince kum ve kil oranı ile USLE K değeri arasındaki ilişki ..30
Grafik : 4, 5, 6 – Strüktür kodu, hidrolik iletkenlik ve organik madde miktarı ile USLE K değeri arasındaki ilişki31
Grafik : 7 – Eğim , eğim uzunluğu ve L değeri arasındaki ilişki..................................32
Grafik : 8 - Eğim ve S değeri arasındaki ilişki. ..32
Grafik : 9 – İstasyonlara ait aylık ortalama sıcaklıkların yıl içindeki gidişi...38
Grafik : 10 – İstasyonlara ait aylık ortalama toplam yağışın yıl içinde dağılışı38
Grafik : 11 – F ve R değerleri arasındaki ilişki...42
Grafik : 12 – İstasyonlara ait yıllık R değerleri...45
Grafik : 13 – Havzanın Hipsografik Eğrisi...62
Grafik : 14 – Havzanın Yükselti Sıklık Grafiği...62
Grafik : 15 – Eğim Birikimi ...63
Grafik :16 – Havzada yükselti basamaklarına göre alanlar ve ortalama eğimler ...63
Grafik : 17 – Ağaç türlerinin yükseltiye göre dağılışları.................................69

HARİTA LİSTESİ

Harita 1: Çamlıdere Barajı Havzasının Konumu
Harita 2: Havza Çevresindeki Meteoroloji İstasyonları
Harita 3: Çamlıdere Barajı Havzasında Yağışların Erosif Gücü
Harita 4: Çamlıdere Barajı Havzası Yıllık Ortalama Toplam Yağış Haritası
Harita 5: Çamlıdere Barajı Havzası Jeoloji Haritası
Harita 6: Çamlıdere Barajı Havzası Toprak Haritası
Harita 7-8: Havzadaki Toprakların Strüktür Özellikleri ve Organik Madde Miktarları
Harita 9-10: Havzadaki Toprakların Hidrolik İletkenlikleri ile Silt+İnce Kum Yüzdeleri
Harita 11: Havzadaki Toprakların Kum Oranları
Harita 12: Çamlıdere Barajı Havzasında Toprakların Erozyna Duyarlılığı
Harita 13: Çamlıdere Barajı Havzası Fiziki Haritası
Harita 14: Çamlıdere Barajı Havzası Eğim Haritası
Harita 15: Çamlıdere Barajı Havzası Jeomorfografiya Haritası
Harita 16: Çamlıdere Barajı Havzasında USLE LS Değerleri Haritası
Harita 17: Çamlıdere Barajı Havzası Arazi Kullanım Haritası
Harita 18: Çamlıdere Barajı Havzasında USLE C Değerleri
Harita 19: Çamlıdere Barajı Havzası 1987 Yılı Landsat Görüntüsü
Harita 20: Çamlıdere Barajı Havzası 2000 Yılı Landsat Görüntüsü
Harita 21: Çamlıdere Barajı Havzasında Tali Havzalar ve Akarsu Havzaları
Harita 22-23-24-25: Çamlıdere Barajı Havzasında Alana Göre SİO'ları
Harita 26: Çamlıdere Barajı Havzasında Bagerello ve Ferro'ya Göre SİO
Harita 27: Çamlıdere Barajı Havzasında Yıllık Ortalama Toprak Kaybı
ÖNSÖZ

EĞİ ve DSİ tarafından yapılan baraj ömrü hesaplamalarının nasıl yapılacağına ait kabul edilebilir bilgiler elde edilememiştir. Bu çalışma barajların ömrülerini hesaplamak, barajların fizibilite çalışmalarında kullanılabilecek veriler sağlamak ve yapılan barajların ömrünü artırmak amacıyla alınması gereken önlemlerin nerelerde yapılması gerektiğini belirlemek amacıyla yapılmıştır.

Çalışmanın hazırlanması aşamasında birçok kişi fikir, bilgi ve görüş alınmıştır. Bu kişilerin birçok araştırmaya yön vermiş, hazırlayanın ufkunu açarak, çalışmaya işık tutmuştur.
Çalışmanın başlangıç safhasından, veri derleme, düzenleme, analiz ve sonuçlarının oluşturulmasında;

Çamlıdere Orman İşletmesi Müdürü Halil YÖRÜKOĞLU'na
KHGM Ankara Araştırmaları Enstitüsünden Hicrettin CEBEL'e
DSİ Erozyon Kontrolü ve Rüşubat Şubesinden Yaşar DİNÇSOY'a
DSİ CBS Şubesinden Kemal SEYREK'e
A.Ü.Z.F. Toprak Bölümünden Prof. Dr. Mustafa ÇANGA'ya
A.Ü.Z.F. Toprak Bölümünden Arş. Gör. Emrah ERDOĞAN'a
A.Ü.Z.F. Toprak Bölümünden Tülay TUNCAY'a
A.Ü. DTCF Coğrafya Bölümünden Yrd. Doç. Dr. Necla TÜRKOĞLU'na
A.Ü. DTCF Coğrafya Bölümünden Arş. Gör. Neşe KORKMAZ'a
A.Ü.E.B.F. Sosyal Bilimler Anabilim Dalından Arş. Gör. Onur ÇALIŞKAN'a
A.Ü. DTCF Coğrafya Bölümünden Doç. Dr. Uğur DOĞAN'a
A.Ü. Çankırı Orman Fakültesi'nden Arş. Gör. Ali Uğur ÖZCAN'a ve
A.Ü.Z.F. Toprak Bölümünden Doç. Dr. Günay ERPUL ile çok kıymetli hocam Doç. Dr. İhsan ÇİÇEK'e katkı ve yardımcılarından dolayı çok teşekkür ediyorum.
GİRİŞ

Hümanistlere göre insan, yüce bir varlık ve her şey insana hizmet eden bir amaç götmelidir. İnsanı odagına almayan kuram ve uygulamalar, hatalıdır. Öyleyse insanı merkeze almak, buna göre uygulamalar geliştirmek gerekmektedir.

Realistler, her bir duruma göre bu öğeler arasındaki etkileşimin değiştiğini, dolayısıyla bazen doğanın insanı bazen de insanın doğayı etkilediğini savunmaktadır. O halde doğa ile insan arasındaki etkileşim sürekli ve karşılıklı fayda-zarar ilişkisi olarak ortaya çıkmaktadır.

İdealistler insan-doğa etkileşimi çerçevesinde bir uyum olması gerektiğini, uyumun dengeli olması halinde de ideal şartların gerçekleştirilebileceğine inanırlar.

Doğal süreçler değerlendirildiğinde her bir etkinin bir tepki doğurması çok normaldir. Doğanın insanı etkilemesi çerçevesinde, doğal şartların değiştirilemeyeceği, fakat buna ancak uyum sağlanabileceğini bilinmektedir. Durum böyle olunca insan-doğa etkileşimi içerisinde değiştirilebileceğimiz tek unsur insanın yaptıkları ve yapacakları olarak karşımıza çıkmaktadır.
Bu bağlamda düşünüldüğünde insanın yapacakları doğaya zarar vermeyecek bir niteliğe kavuşturulabilir. Peki ya insanın doğaya verdiği zararlar nasıl giderilebilirir. Aslında bu konuda oldukça karamsar olanlar vardır. Bazı kişiler göre Endüstri Devrimiyle doğaya verilen zarar o kadar fazla olmuştur ki, artık geri dönüşü mümkün değildir.

İşte bu çerçevede doğaya yaptıklarımızın telafi edilmesi, yapacaklarımızın ise, iyi planlanması ve hesaplanması gerekmektedir. Ekonomik gelişme mantığıyla yapılacak planlamalarda sadece insan faydasi düşünülmemeli, doğada oluşabilecek tahribatlar hesaba katılabilmelidir. Çünkü doğal çevre hesaba katımadan yapılan birçok uygulama sonucunda doğa, insana gerekken cevabı bazen direkt olarak bazen de çok uzun zamana yayar vermektedir. Seller, taşınlar, kuraklık, çığ, heyelan, sis, arazinin çoraklaşması bunlara örnek verilebilir.

Erozyon ise, bu cevaplar içinde en yavaş gerçekleşen, hissedilmesi çok zor olan, hissedildiğinde ise geri kazanımın oldukça zor olduğu bir afettir. Çoğu zaman insan bunun farkındalığında bile olmaz. Hissedildiğinde geri dönüşümesi zor olmasına rağmen, önlem alınması kolay ve ucuz bir afettir de erozyon.

Bu nedenle yapılacak planlamalar, iyi bir araştırma yapıldıktan ve iyi bir etkileşim envanteri ortaya çıkarıldıktan sonra hayata geçirilmelidir. Ancak bu sayede doğa ve insan etkileşimi birbirine zarar vermeden, dengeli bir şekilde devam edebilir.

Burada söylenmesi gereken bir nokta da, havzanın kendini yenileme yeteneğinin kaybolmamış olmasıdır. Aslında Ovacık Krateri çevresinde, kavak ağaçlarının yaygın bir duruma geçmesi, burada daha önce bir orman olmadığını veya bu ormanın tahribatından sonra toprak yapısının da bozulduğunu gösterebilir. Çünkü kavak öncül bir ağaçtır ve orman gelişimi için toprak dengesini kuran bir özelliğe sahiptir.

Çamlıdere Barajı Havzası 750 km²'ye yakın alanıyla içinde orman, mera, tarım alanı ve yerleşmeleri barındıran bir özelliğe sahiptir. Bu özellik erozyon şiddetini belirlemek amacıyla yapılabilecek çalışmalarında da ayrıntıya inmeyi güçleştirmektedir. Bu çalışmada erozyonun şiddedinin niceliğini belirlemek amacıyla 1950'li yıllarda beri Amerika Birleşik Devletlerinde
birçok çalışmaya konu edilmiş Universal Toprak Kayıipları Eşitliği (USLE) kullanılmıştır. Esasında parsel temelli olan bu eşitlik, son yıllarda havzalara da uygulanmaktadır. Özellikle bilgisayar teknolojisindeki gelişmeler bu uygulamaları arttırmıştır.

Çalışma; kaynak tarama, veri derleme ve düzenleme, arazi gözlemleri, laboratuar çalışmalar, bilgisayar analizleri ve hesaplamaları gibi bölümlerden oluşmuş ve en sonunda da elde edilen veriler ışığından havzadaki erozyonun genel görünümü belirlenmiştir.

Çalışmanın sunumu aşamasında direkt olarak havzadaki erozyona girilmemiştir. Önce genel erozyon mekaniği özetlenmiştir. Daha sonra bu mekaniği etkileyen faktörler etki derecesine göre verilmiştir. Erozyon çalışmalarında kullanılan metodolojilerde anlatılduktan sonra USLE modelinin gelişimi ve kritiği yapıldıktan sonra havzadaki uygulaması anlatılmış ve sonuçları irdelenmiştir.
1. KURAMSAL VE KAVRAMSAL ÇERCEVE

1.1. EROZYONUN TANIMI VE EROZYON ÇEŞİTLERİ

Latince kökenli bir sözcük olan “erozyon” dilimizde “kemirme” anlamına gelmektedir. Yerel olarak erozyon için süprüntü, uçkun, dalaz gibi ifadeler de kullanılmaktadır (Bahtiyar, 2006).

Erozyon, toprakın ve ana kayanın çeşitli dış güçlerle aşındırılmasıyla tasınmaya hazır duruma getirilmesi, aşındırılan ve daha önce ayırtlanmış malzememin (fiziksel veya kimyasal ayırma) taşınması, bu esnada taşınan malzemeyle tekrar aşındırılması ve nihayetinde de biriktirilmesi şeklinde tanımlanabilir. Birikim noktası bazen topografik bir eğim kırıklığı olabileceği gibi bir dere, akarsu veya rezervuar alan da olabilir.

Hızlandırılmış erozyon (ekstralated erosion) ise insanların yanlış arazi kullanımı ve hatalı tarımsal faaliyetleri sonucunda ortaya çıkarmış oldukları bir erozyondur. İnsanlar özellikle tarımsal amaçlar için toprağı işlemeeye başladıklarından itibaren, toprak kayıbi sürecini de başlatmış ve giderek hızlandırılmışlardır (Bahtiyar, 2006). Hızlandırılmış erozyonla oluşan toprak taşınmaları, toprak profinin üst katmanlarında başlamakta ve bu yolla...
binlerce, hatta milyonlarca yılda oluşmuş bulunan toprakların önce üst katmanları ve daha sonra ise alt katmanları taşınarak, toprak profilleri giderek siğlaşmaktadır ve bitki yetiştirmeye yarayan gerçek toprak, erozif güçler tarafından zamanla yok edilmektedir (Sarı, 2005).

Erozyonun oluşumu dış güçlerin etkinliğine ve bunların şiddetine bağlıdır. Dolayısıyla erozyon da, aşınmaya neden olan dış gücü göre sınıflandırılabilir. Bu açıdan bakıldığında erozyon; su, rüzgar, buzul, dalga erozyonu gibi türlüleri ayrılar. Fakat özellikle su ve rüzgar erozyonun birlikte etkin olduğu alanlar da mevcuttur.

Su erozyonu, genel anlамиyla yağışlar ile yeryüzüne düşen suların çeşitli şekilde yaptıkları aşındırma, taşma ve biriktirme faaliyetlerini kapsar. Alansal olarak dünyanın her tarafında görülür. Bu nedenle dünyada en fazla problemin olduğu erozyon türüdür.

Rüzgâr erozyonu, kurak ve yarı kurak alanlarda, su erozyonundan daha etkin bir işlev görmektedir. Çünkü bu alanlarda su erozyonu ancak epizodik yağışlarla meydana gelir (Erinç, 2001). Fakat her zaman rüzgârla aşındırma ve biriktirme faaliyetine maruz kalmaktadır.

Buzul erozyonu da buzulların yaptıkları aşınım, taşınım ve biriktirme olarak tarif etmek mümkündür. Fakat yeryüzündeki buzul alanları insanlar tarafından ekonomik bir amaç güderek kullanılmadığı için, buzul erozyonu diğerlerine oranla daha az zararlı görülmektedir.

1.2. SU EROZYONUNUN AŞAMALARI

Bugün Türkiye’de sularla meydana gelen erozyonun sınıflandırılmasında kullanılan sistem, Amerika Birleşik Devletleri Tarım Bakanlığı tarafından geliştirilmiş sistemin, Türkiye koşullarına göre değiştirilmiş şeklidir (Balci ve Ökten, 1987). Bu sisteme göre erozyon, yüzey ile oyuntu erozyonu ve bunların şiddetlerine göre sınıflandırılır.

Burada şunun da belirtilmesi gerek ki su erozyonunda aşındırmanın odağı, noktadan başlar, yüzeysel erozyona dönüş ve ardından da çizgisel erozyonla son bulur. Buna göre su erozyonu başlıca beş aşamadan oluşmaktadır.

1.2.1. Damla Erozyonu (Raindrop Erosion)

Erozyon olayının ilk aşamasıdır. Özellikle arazide toprağın parçalanmasına ve taşımaya hazır duruma getirilmesinin sağladığı için önemlidir. Bu terim, çeşitli kaynaklarda yağmur damlası erozyonu, sıçratma erozyonu şeklinde de tanımlanmaktadır.

Toprağa düşen yağmur damlaları toprak taneciklerini 1–1,5 m çapında bir daire içerisinde etrafa ve hemen hemen 60 cm yukarı doğru sıçratar (Mater, 1987). Bu da bu tip erozyonla taşımının sınırlı olduğunu göstermektedir.

1.2.2. Yüzey Erozyonu (Sheet Erosion)

Yağmur damlası bir noktaya enerji göndermekte ve dolayısıyla naktasal bir aşındırma yapmaktadır. Aşındırma yapan damlaların toprak yüzeyinde birikmesi, belli bir kısmının sızmması ve geri kalının da yüzeyi kaplayacak şekilde aksa geçmesi ile yüzey erozyonu başlar. Bu erozyonu tabaka erozyonu olarak niteleyenler de vardır. Çünkü bu evrede sular artık arazi yüzeyini kaplayan bir tabaka halinde hareket ederler.

Yüzey erozyonu ile toprağın üst kısmını taşıdığından, bu erozyonun şiddetti olduğu alanların çevrelerine göre daha açık renkte bir görünüm gösterdiği bilinmektedir (Mater, 1987).
1.2.3. Parmak Erozyonu (Rill Erosion).

Erozyonun yüzeysel aşınmadan çizgisel aşınmaya geçtiği aşamadır.

Foto: 2, 3 – Çamlıdere Barajı Havzasında Parmaklar

1.2.4. Oyuntu Erozyonu (Gully Erosion)

Foto: 4, 5 – Çamlıdere Barajı Havzasında parmaklar oyuntuya dönüşüyor (Solda), Oyuntular kırılgıbayır şeklini almış (Sağda).

Oyuntu erozyonuna bağlı olarak gelişen kanallar “V” ve “U” şekilli olabilir. Bu şekil toprağın ve toprağın alt kısmının özelliğine bağlıdır. Eğer

1.2.5. Akarsu Yatak Erozyonu (Linear / Alluvial Channel Erosion)

Foto: 6 – Kanal Erozyonu

Alüvyal kanallardaki erozyon bank ve yatak tabanını kapsayarak akan suyun, hidrolik gücü tarafından dağınık sedimentin yıkanarak taşınmasını sağlar. Akarsu yüzeyinde veya hemen altında odaklanan erozyon, yamacın altının kazılması/oyulmasına yol açar ve eğer kısmen bir önceki yüzey akışla işlanmışsa, bankın üst kesmi çöker.

Hem aşındırma hem de biriktirme yapan akarsuların, sanırım erozyon açısından en büyük işlevi taşımıdır. Çünkü aşındırılan malzeme taşınmaz ise üzerinde oluşacak flora, malzemenin sabitleşmesini sağlayacak ve tekrar aşındırılmaya gerek duyulacaktır. Böylece hem taşınma geçikecek hem de üzerinde örttüği toprak parçasını erozyondan koruduğu için, aşınmayı
azaltacaktır. Oysa akarsular bunları taşıyarak, rezervuar alanına biriktirecektir ki bu da zaten erozyonun son aşamasıdır.

Akarsuların erozyonun oluşmasında diğer bir kilit rolü ise, yerel kaide seviyesi rolüne bağlı olarak, diğer tüm erozyon aşamalarına yön vermesidir.

Akarsular, mekanik, korrazyon ve korozyon yoluya aşındırma yaparlar (Erinç, 2000).

1.3. SU EROZYONUNU ETKİLEYEN FAKTORLER

Erozyon, birçok çalışmada aşağıdaki eşitlik ile ifade edilmeye çalışılır (Balcı ve Ökten, 1987).

\[E = f(I, K, T, B, H) \]

Bu eşitliği ile belirtilen bu faktörler;

E = Erozyon Miktarı veya şiddeti
I = İklim
K = Toprak
T = Topografya
B = Bitki Örtüsü
H = İnsan 'dır

Bu çalışmada biz de bu faktörlerin etkisini özetlemeyi uygun gördük.

1.3.1. İklim Koşulları

Erozyonun şiddetini etkileyen en önemli faktör iklimdir. Çünkü su erozyonunun motoru olarak kabul edilen suyun kaynağı, farklı şekillerde oluşsa da yağış ve dolayısıyla etkiler. Fakat iklimin erozyonu etkilemesi oldukça karışık bir denklemdir.

İklim elemanlarından sıcaklık, yağışın türü ve şiddetini, toprağın nem miktarını, toprağın donmuş olup olmamasında ve dolayısıyla infiltrasyon ve erozyon üzerinde etkili olmaktadır. Rüzgar ise yağmur damlalarının düşme
açısı ve toprağa çarpma hızıında etkili olmaktadır. Ancak bunlardan en etkilisi yağıştır (Balci ve Ökten, 1987).

Toprak kaybı ile yağışlar arasında yağmur damlalarının toprak yüzeyine çarpması ve yüzey akışlara ilave olması nedeniyle çok yakın bir ilişki vardır. Bu durum özellikle yüzey akış ve parmak erozyonun için söz konusu olup en önemli yağış karakteristiği yağış yoğunluğu kabul edilmektedir (Çanga, 1985).

1.3.2. **Toprak Koşulları**

İdeal özelliklerine sahip olmaları halinde toprakların erozyona karşı dirençlerinin yüksek olmasıına, ideal özelliklerinin bozulması halinde ise toprakların erozyona karşı dirençlerini kaybetmelerine neden olan toprak ve yüzey özelliklerinden bazıları aşağıda verilmiştir.

- Strüktür oluşumu, agregatlaşma
- Agregatların suya dayanıklılığı
- Özdül ağırlık
Gözenek hacmi, gözenek çapları ve gözeneklerin devamlılığı
Kil minerallerinin miktarı ve tipi
Organik madde miktarı
Değişebilir katyonların cinsi ve miktarı
Mikroorganizma faaliyetinin düzeyi
Yağışlardan önceki toprağın nem içeriği gibi daha pek çoğu burada verilmemiş olan toprak özellikleri, toprak erozyonunun oluşması ve oluşacak erozyonun şiddet derecesine etkide bulunmaktadır (Sarı, 2005).

Geçirgenliğin fazla olması erozyonun oluşumunu azaltır. Çünkü yağışla yere inen sular yeraltına sızar ve aşındırma yapamaz. Fakat birim yağışın birim geçirgenlikten fazla olduğu zamanlarda sular yeraltına sızmaya imkanı bulamadan aşıya geçebilir.

Organik madde, toprakların su tutma kapasitelerini artırır, yüzey akış kayıplarını azaltır, özellikle ağır topraklarda havalanmayı düzenler ve daha iyi bir yapıcı ve tavan durumu hazırlar. Organik maddenin toprahta kümeleşmesi...
uyarak, iyı bir toprak yapısı ve tav durumunu oluşturması, infiltrasyonu artıran yüzey akış kayıplarını azaltması, su ve rüzgar erozyonu kayıplarının normal düzeye inmesinde de büyük rol oynamaktadır (Akalan, 1987).

1.3.3. Topografik Özellikler

Normal olarak erozyon, artan eğim ve eğim uzunluğuna bağlı olarak yüzey akışının hızı ve hacmin artışına paralel bir şekilde artar. Düz bir yüzeyde yağmur damlaları toprak parçalarını tesadüfî olarak her yöne sıçratırlar ancak, eğimli bir yüzeyde eğim aşağıya sıçrayan taneler eğim yukarı olanlardan daha fazladır. Bunun oranı eğim artışına bağlıdır (Çanga, 1985).

Erozyonun şiddet açısından eğim derecesi, eğim uzunluğundan daha önemlidir. Çeşitli araştırmacılardan aynı koşullar altında eğimin artması ile erozyon şiddetinin arttığını deneysel olarak belirlemişlerdir (Balci ve Ökten, 1987).

Erozyon şiddet ile eğim arasındaki fonksiyonel ilişki, değişik yağış karakteristikleri ve arazi kullanılma koşulları altında farklı olmaktadır. Örneğin, eğimin % 5'ten % 10'a çıkması halinde erozyon miktarında 3 katı oranda, % 15'e çıkması halinde ise 5 katlı bir artış olduğu bulunmuştur (Balci ve Ökten, 1987).

1.3.4. Bitki Örtüsü

Toprak üzerindeki bitki örtüsü, her şeyden evvel, yağmur damlalarının toprak zerrelerine çarpmasını, dolayısıyla yüzeysel tabakanın tahribini önler. Bitki örtüsünün bu koruyucu görevi, yağmur damlalarını tutarak, hızlarını azaltmaktadır (Doğan ve Güçer, 1976).

Bitki örtüsü, toprak ile atmosfer arasında bir tampon veya koruyucu katman gibi rol oynar. Bitkilerin yapraklar ve saplar gibi toprak üstü kısımlar; yağmur damlalarının, yüzeyden akan suyun ve rüzgarın enerjilerini emerek toprağa daha az enerjinin geçişini sağlarlarken, bitki örtüsünün kök sistemlerinden oluşan toprak altı kısmını toprakların mekanik dayanıklılıklarına katkıda bulunurlar (Çanga, 1985).

Orman ölü örtüsü en şiddetli yağışları kolaylıkla geçirebilecek bir infiltrasyon kapasitesine sahiptir. Örneğin çürüntü-mul mor tipi humus içeren
bir orman örtüsü 150 mm/saat şiddetinde bir yağış kolaylıkla süzerek toprağa geçirebilir. Bu alanlarda geçirenlik ölü örtünün kalınlığıyla orantılıdır (Balci ve Ökten, 1987).

Kültür bitkilerinin türüne göre erozyon miktarı deşiflemektedir. Köy Hizmetleri Genel Müdürlüğü (KHGM) tarafından yapılan bir araştırmaya göre, eğer örtü bitkilerinin ekili olduğu bir arazideki aşınma miktarı 1 kabul edilirse, aşınmanın tahillarda 5, endüstri bitkilerinde 20 olacağı belirtilmiştir (Çelik ve Anaç, 2005). Ayrıca kültür bitkilerinde uygulanan nöbetleșe ekim de erozyonu etkilemektedir (Tablo 1).

<table>
<thead>
<tr>
<th>Nöbet Sistemi</th>
<th>Ortalama Toprak Kaybı (Ton/ha/yıl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mısır-Buğday-Üçgül</td>
<td>6,67</td>
</tr>
<tr>
<td>Sürekli Buğday</td>
<td>24,95</td>
</tr>
<tr>
<td>Sürekli Mısır</td>
<td>48,66</td>
</tr>
</tbody>
</table>

Tablo: 1 – Ekim Nöbetinin Erozyon Üzerine Etkisi

1.3.5. İnsan Faaliyetleri

Yeryüzünde görüldükleri andan itibaren canlılar, özellikle insanlar bilerek ve/veya bilmederek üzerinde yaşadıkları arazilerin bitkii örtüsünü sürekli olarak tahrip etmişler ve etmektedirler. Günümüzde de insanlar yaşamlarını sürdürebilmek için tarım ve hayvancılık yapmak zorundadırlar. Bu durum ise sürekli olarak yeryüzündeki bitki ve toprak varlıkların tahrip edilmesine yol açmaktadır. Doğal denge koşulları içerisinde, en azından doğal güçlerin erozyonla taşıdığı toprak miktarı kadar yeniden toprak oluşumu esastır. Söz konusu bu denge, insanların doyayı kullanmaya
başladıkları döneminde kadar devam etmiş ve insanların doğaya ve araziye müdahaleleri ile birlikte bu denge toprakların aleyhine dönüştür. İnsanların sürekli olarak bitki örtüsünü tahrip etmesi ve uygun özelliklere sahip olmayan toprakları tarima açması, erozyona ortam hazırlamaktadır. Bunların yanı sıra arazi ve toprakların oluşturulken kazandıkları yeteneklerine uygun olmayan kullanım biçimleri altında işletilmeleri ve hatalı ve yanlış tarım yöntemleri uygulanarak kullanılmaları da erozyon zararının beklenilenden fazla olmasına neden olmaktadır (Sarı, 2005).

Üretimin arttırılmasında bilgi ve beceri temel koşuldur. Bilgisizlik sonucu yapılan yanlışlıklar ve beceri eksikliği nedeniyle erozyonu hazırlayan ve hızlandırılan faktörleri ana başlıklarla aşağıdaki gibi sıralamak mümkündür (Bahtiyar, 2005).

Toprağı, üretim gücçune (yetenek sınıfinina) uygun olarak kullanmamak,
Dik veya çok dik eğimli (% 12'den fazla) arazilerde, toprak koruyucu önlem almadan toprak işlemeli tarım yapmak,
Çok sığ (20 cm.'den az derin) topraklı arazilerde, taşlık ve kayalık yerlerde toprak işlemeli tarım yapmak,
Uygun olmayan tarım alet-makineleri kullanmak ve hatalı toprak işlemesi yapmak,
 o Toprağı eğim doğrultusunda işlemek,
 o Toprağı alt - üst eden ve strüktürünü bozan işleme yapmak,
 o Toprağı, erozyon gücü yüksek yağışlardan önce işlemek,
Toprak koruyucu kültürel (bitkisel) önlemlere yer vermемek,
 o Bitki artıktı tarım yapmamak,
 o Arazileri topluca nadasa bırakmak,
 o Hatalı bitki ekim nöbeti uygulamak,
 o Yeşil gübrelemeye gerekli önemi vermemek,
 o Ahir gübresini tarlaya vermemeyip, yakmak,
 o Şeritvari ekim sistemi uygulamamak,
Otlak alanlarını usulüne göre kullanmamak,
Erken ve aşırı otlamak,
Otlak alanlarını toprak işlemeli tarım alanlarına dönüştürmek,
Ormanları iyi koruyamamak,
Orman arazisini toprak işlemeli tarıma açmak,
Orman içi otlama yapmak,
Usulsüz ve kaçak kesim yapmak,
Ormanları yakmak.

1.4. EROZYON ÇALIŞMALARINDA KULLANILAN MODELLER

1.4.1. Niteliksel Modeller

1.4.1.1. FAO

Bir havza veya bölgesinde, erozyondan etkilenmeyen (durağan) alanlar ile, erozyondan etkilenen (durağan olmayan) alanlarda uygulanan, aktif erozyon özelliklerinin sistematik haritalanmasında diğer bir ifadeyle, potansiyel erozyon derecesinin ve erozyon riskinin kalitatif (nitelik) olarak haritalanmasında **FAO (Birleşmiş Milletler Gıda Tarım Teşkilatı) Metodu** kullanılabilir. Diğer bir ifade ile, **FAO metodu**; bir havzada mevcut ve aktif olan erozyonu değerlendiriren ve kalitatif olarak tanımlayan haritalama metodudur. Bu yöntemın prensibi, hava ve/veya uyu fotoğraflarını yorumlama ve arazi gözlemlerinden yararlanarak, yeni bir yoruma dayalı olarak potansiyel erozyon haritalamasını tamamlayıcı nitelikte erozyonun haritalanmasıdır. Bu metodoloji;

Arazi stabilizesi derecesinin belirlenmesi,
Durağan ve durağan hale getirilmiş alanlar için erozyon risk derecesinin tanımı, erozyona müsait alanlar veya erozyona neden olan özel etmenler gibi yerel özelliklerin tanımlanması ve değerlendirilmesi,

Durağan olmayan alanlar için hakim erozyon tipinin tanımlanmasının (bu erozyonun şiddeti ve değişim hızıyla ilişkilidir), bir lejenta dayalı olarak haritalanması, gibi adımlarından oluşur. Böylece durağan ve durağan hale getirilmiş alanlarda erozyon risklerinin yoğunluğu, eğilimleri ve etken faktör belirlenerek, uygulanacak toprak muhafaza tedbirlerinin tespiti yapılır (Anonim, 2005).

1.4.1.2. ICONA

Önemli diğer bir erozyon haritalama metodolojisi ise, İspanyolların geliştirdiği, PAP/RAC/UNEP (Öncelikli Eylem Planı) Uluslararası Teşkilatının katkılarıyla ülkemizde de katıldığı ve pilot havzalarda uygulanan ICONA yöntemidir. Bir havza veya bölgede, su erozyonunun mevcut durumunu ve erozyon riskini kalitativ olarak haritalama için kullanılır. Burada;

Arazi kullanımı,
Bitki örtüsü yoğunluğu,
Fizyografik birimler (topografya ve eğim) ve
Lito-pedolojik birimler (jeoloji ve toprak) dikkate alınarak, ilk olarak koruma düzeyleri ve erozyona duyarlılık haritaları, daha sonra bu iki haritanın çakıştırılması ile de “Erozyon Durum Haritası” hazırlanmaktadır (Anonim, 2005).

Bu yöntem ülkemizde de birçok alanda kullanılmış ve erozyon alanlarını belirlenmiştir (Doğan vd., 2000a, Bayram vd., 2003).

1.4.1.3. CORINE

Diğer bir erozyon metodolojisi ise, Avrupa Topluluğuna üye ülkelerçe uygulanan erozyon riski ve arazi kalitelerini belirleyen CORINE modelidir. Bu modelde;
Toprak aşınım duyarlığı (erodibilite= aynı koşular altında toprakların erozyona karşı nispi duyarlılığıdır)
Aşındırıcı etken,
Topografik durum ve
Bitki örtüsü indisleri, dikkate alınarak “Erozyon Risk Değerlendirmesi” yapılmaktadır

Bu model Avrupa Birliği Ülkelerinde uygulanız ve birçok ülkede erozyon çalışmalarını standardize etmeyi amaçlayan bir modeldir (Anonim, 2005).

1.4.2. Niceliksel Modeller

Bu modeller genel olarak fizik yasalarına bağlı olarak geliştirilen, bazıları deneysel modellerden yararlanarak oluşturulmuş uygulamalardır. Bu modeller deney sonuçlarını ve erozyona etki eden faktörleri fiziki yasalarla mekanize etmeye çalışırlar.

1.4.2.1. WEPP (Water Erosion Prediction Project).

Bu model USLE ve RUSLE’nin eksik yönlerini tamamlamak amacıyla geliştirilmiştir. Zaten hemen hemen aynı kadro tarafından geliştirilmiştir.
USLE ve RUSLE deneysel ve/veya istatistiksel modeller olmasına rağmen bu model fiziki temellere dayalıdır.

Su Erozyonu Tahmin Modeli, yeni bir erozyon modeli olarak Amerikan Tarım Bakanlığı (USDA) tarafından geliştirilmiştir. Modelin teknik tabanı; iklim, su geçirgenliği, hidroloji, toprak fiziği, bitki örtüsü, hidrolik koşullar ve erozyon mekaniğine dayanır. Özellikle toponomik şartlar ve bitki amanajmanı yönünden diğer modellere nazaran oldukça iyi tahmin yapar. Ayrıca geçici erozyon (bir yerden bir yere taşınım) ve konumsal erozyon (burada erozyonun cinsi kastedilmiştır; parmak, parmaklar arası gibi) tahmini konusunda da yeterlidir. Günlük, aylık ve yıllık erozyon tahmini için seçenekler sunmaktadır. Ayrıca geleceğe yönelik tahminler de yapabilmektedir (Flanagan and Nearing, 1995).

1.4.2.2. EPIC (Erosion-Productivity Impact Calculator).

tarıma yatırım yapan müteşebbislere için oldukça kullanılmıştır (Cooke ve Doornkamp, 1990).

1.4.2.3. ANSWERS (Areal Nonpoint Source Watershed Environment Response Simulation)

Yağış,
Topografik özellikler,
Su geçirgenliği ve sızma,
Sediment parçalanması ve iletimi,
Parmak, parmak arası ve kanal,

1.5. ÜNİVERSAL TOPRAK KAYIPLARI EŞİTLİĞİ (USLE)

1.5.1. Usle, Musle, Usle-M ve Rusle Gelişimi

USLE, Birleşik Devletler Tarım Bakanlığı Toprak Koruma Bölümü tarafından geliştirilen, günümüzde dünyanın hemen her yerinde kullanılan, en yaygın ve bilinen su erozyonu tahmin modellerinden biridir. Amerika Birleşik Devletlerinde 10.000'den fazla tarım çiftliğindeki deneme sonuçlarının

\[A = R \cdot K \cdot L \cdot S \cdot C \cdot P \]

Formülde;

\[A = \text{Yıllık toprak kaybı (t ha}^{-1} \text{y}^{-1}) \]
\[R = \text{Yağış erozyon indisi (MJ mm ha}^{-1} \text{h}^{-1} \text{y}^{-1}) \]
\[K = \text{Toprağın erozyona duyarlılığı (t ha h}^{-1} \text{MJ}^{-1} \text{mm}^{-1}) \]
\[L = \text{Eğim uzunluğu faktörü} \]
\[S = \text{Eğim dikliği faktörü} \]
\[C = \text{Ürün ve arazi yönetim faktörü} \]
\[P = \text{Toprak koruma önlemleri} \]

USLE yukarıda da de‘gilendiği gibi yıllık ortalama toprak kayıplar için oldukça kullanışlıdır. Fakat özellikle tek bir yağış sonucu oluşan erozyon miktarını ölçmede yetersiz kaldıgı bilinmektedir (Kinnel, 2000). Bunun yanında USLE’nin parsel bazında erozyon miktarını daha doğru hesapladığı fakat oluşan toprak kaybının ne kadarının dere, çay, nehir veya göl ya da barajlara taşındaki hakkında bir sediment iletim oranı (Sediment Delivery Ratio – SİO) sunmadığı eleştirisi yapılmaktadır.

Bu nedenlerden dolayı USLE eşitliğinde yeni düzenlemeler yapılmış ve MUSLE (Modifed Universal Soil Lose Equalation) olarak yeniden adlandırılmıştır. Williams ve Berndt (1972) bu eşitliğe göre herhangi bir yağış sonucu oluşan erozyon miktarı;

\[SY = X \cdot K \cdot L \cdot S \cdot C \cdot P \]

Formülde;

\[SY = \text{Yıllık toprak kaybı (t ha}^{-1} \text{y}^{-1}) \]
\[X = \text{Erozyona neden olan tek yağışın indisi} \]
\[K = \text{Toprağın erozyona duyarlılığı (t ha h}^{-1} \text{MJ}^{-1} \text{mm}^{-1}) \]
\[L = \text{Eğim uzunluğu} \]
\[S = \text{Eğim dikliği} \]
\[C_e = \text{Ürün ve arazi yönetim faktörü} \]
\[P_e = \text{Toprak koruma önlemleri} \]

Burada \(C_e, P_e \) yağışın meydana geldiği dönemdeki ürün yönetimi faktörü ve toprak koruma önlemini olarak ifade edilmiştir. \(X_e \) ise;

\[X_e = \alpha(Q_e q_r)^{0.56} \] olarak USLE’deki \(R \) yani yağış faktörünün yerine konulmuştur.

Formülde;
\[\alpha = \text{Deneysel bir katsayı} \]
\[Q_r = \text{Akış miktarı} \]
\[q_r = \text{Erozyon esnasında, en fazla akış miktarının oranını ifade etmektedir.} \]

R faktörünün hesaplanmasında yeni eşitlikler geliştirilmiştir. Ayrıca 1 yıldan daha kısa (Mesela; 15 günlük) dönemlerde oluşan toprak kaybı hesaplanabilmektedir.

K faktörünün belirlenmesinde özellikle yıl içerisindeki farklılıklar göz önüne alınabilmektedir.
İçbükey ve dışbükey eğime sahip yamaçlar için yeni hesaplamalar geliştirilmiştir.

 Ürün yönetimi faktörü hesabı için kanopi, kanopi yüksekliği ve bunların yıl içindeki değişimleriyle ilgili ayrıntılı çözümler vardır.

 Bunlara rağmen RUSLE eşitliğinin Türkiye’de uygulanması şu an oldukça zor görülmektedir (Çanga, 1985).

 Usle ve Rusle’nin toprak kaybını iyi hesaplamadığı dile getirilse de (Kinnel, 2005) bu kadar çok faktörü içinde barındıran, özellikle çok fazla deneme sonucunda ortaya çıkan ve gerçeğe en yakın sonucu veren modelin Usle olduğu, bu modelin çok fazla uygulama alanı bulmasından anlaşılmaktadır.

 1.5.2. **USLE Eşitliğinde Faktörlerin Belirlenmesi**

 USLE eşitliğinde herhangi bir faktörün belirlenmesinde yüzey akış parselleri kullanılır. Bu parseller ilk olarak Wischemeir ve Smith (1978) tarafından uygulandığı için standart olarak kabul edilmiştir. Bu standartlar,
22,13 m eğim uzunluğu,
% 9 eğimli,
Eğim yönünde sürülmüş,
Devamlı nadas yapılan bir alan olarak bilinmektedir.

 Bir parametrein erozyonu nasıl etkilediği, parametre haricinde diğer tüm faktörler sabit tutularak deneysel çalışmalarla belirlenmeye çalışılır. Eğim
uzunluğunun erozyona etkisi belirlenmek istendiğinde diğer şartların hep aynı olduğu, fakat eğim uzunluğunun farklı olduğu parseller oluşturulur. Daha sonra, oluşan erozyon ile eğim uzunluğu arasındaki ilişki istatistiksel ve matematiksel olarak değerlendirilerek sonuca varılır.

Ya da bir alandaki toprak duyarlılığının erozyona etkisi ölçülmek istendiğinde,

\[K = \frac{A}{El_0} \]

eşitiği kullanılır.

1.5.3. USLE ve Analizi

USLE esitiği ilk olarak ABD Tarım Bakanlığı’nın 282 nolu el kitabında Kayalık Dağlarının doğu kısmının hazırlanmış erozyon belirleme modeli olarak karşımıza çıkmaktadır (Wischmeier, ve Smith, 1965). Bundan sonra sürekli gelişirilerek günümüzde kadar kullanılmıştır. Ülkemizde USLE esitiği

28
genellikle ziraat mühendisleri, orman mühendisleri, inşaat mühendisleri ve peyzaj mimarları tarafından kullanılmaktadır.

Şekil: 2 - Kısmılara ayrılmış bir yağış diyagramı

USLE eşitliğinde kullanılan toprak erozyon duyarlılık faktörü olan K değeriinin hesaplanması, beş farklı toprak parametresine dayanır. Bunlar,

a) Silt + İnce kum yüzdesi (0,002 – 0,100 mm)
b) Kum yüzdesi (0,100 – 2,000 mm)
c) Organik madde yüzdesi –a
d) Strüktür kodu – b (Strüktür sınıfinı göre belirlenir)
e) Geçirgenlik kodu –c (Geçirgenlik sınıfidir) olarak sıralanır.

Bunlardan toprağın tekstür özelliklerini yansıtan kum, ince kum+silt ve kil oranlarına bakıldığında Hjustrom diyagramına benzeyen bir manzara görülür. Diğer faktörlerin sabit tutulup, sadece kum, kil ve ince kum+silt özellikleri incelendiğinde;

Grafik : 1, 2, 3 – Kum, silt+ince kum ve kil orani ile USLE K değeri arasındaki ilişkiye
kum oranına bağlı olarak USLE K değerinin düştüğü görülmektedir (Grafik 1, 2, 3). Aynı şekilde kil oranındaki artış da K değerinin düsmesine neden olmaktadır. Fakat silt+ince kum oranının artış erozyon duyarlılığını da artırmaktadır. Buna ek olarak, K değerinin belirlenmesinde silt+ince kum oranının etkisinin çok fazla olmasıdır. Çünkü kil oranı K değerinde ancak 0,25’lik, kum oranı 0,14’lük bir değişim potansiyeline sahipken silt+ince kumda bu değer 0,6’ya ermektedir.

K değerinin belirlenmesinde diğer faktörlerin etkisine bakıldığında da silt+ince kum oranının etkisini geçen bir parametre ile karşılaşılmaz. Toprak strüktürü K değerinin belirlenmesinde 0,12’lik bir değer arzederken, hidrolik iletkenlikte bu değer 0,1’e düşmektedir. Organik madde miktarının etkisi ise K değerinin belirlenmesinde en azdır (Grafik 4, 5, 6).

Grafik : 4, 5, 6 – Strüktür kodu, hidrolik iletkenlik ve organik madde miktarı ile USLE K değeri arasındaki ilişki

Toprakta strüktüre bağlı olarak agregat oluşumu arttığıında erozyon da artmaktadır. Çünkü geçirgenlik azalmaktadır. Geçirgenlik arttıkça (Hidrolik kodla ters orantılı) erozyona duyarlılık azaltmaktadır. Yine organik madde miktarının artması da erozyonu azaltmaktadır (Grafik 4, 5, 6).

USLE eşitliğindeki topografik faktör genellikle L (Eğim Uzunluğu Faktörü) ve S (Eğim Faktörü) değerlerinin çarpımıyla elde edilir. Eğim uzunluğu; akışın başladıği noktadan birikimin oluşacağı eğime kadar olan mesafe ya da akışın başladığı noktadan bir kanal veya drenaj ağına (akarsu kanalına) olan mesafe olarak tanımlanmıştır.
USLE eşiğinde eğim uzunluğu arttıkça erozyon artmaktadır. Bunun yanında eğim uzunluğunun etkisi 22 metreden sonra farklılık göstermektedir. 22 m eğim uzunluğu kadar, eğimim artışına bağlı olarak erozyon azalmaktayken, 22 m'den sonra eğim arttıkça, eğim uzunluğunun erozyona etkisi de artmaktadır.

Grafik : 7 – Eğim , eğim uzunluğu ve L değeri arasındaki İlişki

USLE eşiğindeki eğim dikliği (S değeri) faktörü, araziye ait eğimin bir fonksiyonudur. Eğimin artmasına bağlı olarak bu faktörde artışlar görülür. Fakat bu etki çizgisel bir et kilden çok üssel bir fonksiyona bağlı olarak değişmektedir (Grafik 8).

Grafik : 8 - Eğim ve S değeri arasındaki ilişki.

C faktöründe, devamlı işlenen nadasa bırakılmış bir tarlanın değeri 1 olarak alınmış ve diğer arazilerdeki değerin bundan daha düşük olacağı düşünülmüştür.

![Şekil 3 – Bitki boyu ve kanopi kapalılığı arasındaki ilişkiye bağlı olarak toprak kaybı](image)

Bunun yanında bitki örtüsünün boyu arttıkça C değeri yani erozyon artmaktadır (Bitkilerin boyu, nomografa metre olarak yerleştirilir - Şekil 4)

![Şekil 4 – Malç, kanopi kapalılığı ve bitki boyuna bağlı olarak toprak kayıpları](image)

Diğer bir faktör ise arazinin malçla örtülme oranıdır. Malç, yüzeydeki ot, ot tipi bitkiler, yüzeyde çürüyen sıkışmış yüzey örtüsü ve çürümemiş bitki artıkları ile geniş yapraklı bitkiler tarafından oluşturulmuş yüzey örtüsüdür. Bu oran arttıkça erozyon miktarı düşmektedir.
2. ÇAMLIDERE BARAJI HAVZASINDA USLE MOEDELİNE GÖRE EROZYONUN DURUMU

2.1. HAVZANIN KONUMU

Harita : 1 - Çamlidere Barajı Havzasının Konumu

Sularını Karadeniz’de boştalan Sakarya Nehri Havzası içerisinde yer alan Çamlıdere Havzası, DSİ tarafından belirlenen bölgelerden 5. bölge 12. bölümde yer almaktadır.

Çamlıdere Barajı havzasında erozyonun şiddetini belirlemek amacıyla yaptığımız çalışmanın bu kısmı daha önce USLE eşitliğini anlatırken kullandığımız sistematik çerçevesinde ortaya konacaktır. Anlatımda coğrafi faktörler erozyonu etkileme durumuna göre verilmeye verilecektir.

İKLİM ÖZELLİKLERİ VE USLE R FAKTORÜ

2.1.1. İklim Özellikleri

Çamlıdere Barajı Havzası, daha önce de belirtildiği gibi coğrafi olarak Karadeniz Bölgesi ile İç Anadolu Bölgesi arasında bir geçiş kuşağındada yer alır. Bu geçiş çoğu öillezkte kendini hissettirdiği gibi iklim özelliklerinde de kendini gösterir. Özellikle Karadeniz'den gelen nemli hava kütüllerinin, Köroğlu Dağlarını aşıp, İç Anadolu platolarına geçmeden önce derin vadileri ve hava kütüllerine dik uzanan sırtlarıyla bir durak noktası oluşturur.

İç Anadolu Bölgesi’ne komşu olması ve denize uzaklığı Karadeniz Bölgesi’nin nemli karakterini almasını engellemiştir. Bu nedenle Erinci’in kuraklık indisine göre yarık kurak bir iklime denk gelmektedir. Havza içinde baraja yaklaşılığındaki (Peçenek İst.) kuraklaşma artarken, havzanın doğusuna (Kızılcahamam İst.) ve kuzeyine gidildikçe nemlilik artmaktadır (Tablo 2). De Martonne’’a göre havza yarık nemli olarak nitelendirilmektedir. Yani havza az nemli fakat kuraklığı meylli bir saha durumundadır.
Tablo 2 - İstasyonların İklim Sınıflandırması

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Çamlidere</td>
<td>444,5</td>
<td>8,7</td>
<td>25,0</td>
<td>Yarı Nemli</td>
<td>Yarı Kurak</td>
</tr>
<tr>
<td>Peçenek</td>
<td>403,1</td>
<td>8,7</td>
<td>27,7</td>
<td>Yarı Nemli</td>
<td>Yarı Kurak</td>
</tr>
<tr>
<td>Khamam</td>
<td>508,3</td>
<td>9,8</td>
<td>27,7</td>
<td>Yarı Nemli</td>
<td>Yarı Kurak</td>
</tr>
</tbody>
</table>

Harita 2 - Havza çevresindeki meteoroloji istasyonları
Yıllık ortalama sıcaklık havza içerisinde 8,7 °C civarındadır. Fakat burada istasyonların yükseltisi de önemlidir. Peçenek istasyonu 1050 metrede 8,7 °C, Çamlıdere 1175 metrede 8,7 °C yıllık ortalama sıcaklığa sahiptir. Kızılcahamam istasyonu ise 1033 metrede 9,8 °C sıcaklığa sahiptir (Tablo 2). Bunlara bakılarak havzada doğuya gidildikçe sıcaklığın yükseldiği anlaşılmaktadır. Bu da özellikle yerleşmelerin havza doğusunda yoğunlaşmasını bir nedeni olabilir.

Havzada yıllık ortalama yağış Çamkoru ve Kızılcahamam’da 508 mm, Çamlıdere’de 444 mm, Peçenek istasyonunda ise 403 mm civarındadır. Yani Baraj çevresi yarı kurak iklim bölgesi sınırlayken baraj gölünden uzaklaşıkça yağış artmaktadır. Bunda yükseltilin de etkisi vardır.

Burada dikkat çeken diğer bir nokta bütün istasyonlarda yağışlı dönemin iki defa görülmesidir ki bu havzanın karasal bir karakterde olduğunu, deniz etkini az olduğunu göstermektedir.

Ayrıca havzanın sıcaklığı olduğu gibi yağış açısından da doğusu ile batısı arasında yıllık ortalama toplam yağış açısından farklılık gösterdiği anlaşılılmaktadır. Buna göre havzanın kuzey ve doğusuna gidildikçe yıllık toplam yağış ve yıllık ortalama sıcaklık artmaktadır.

Buharlaşma, Kızılcahamam istasyonu verilerine göre nisan ve aralık ayları arasındaki bir dönemde görülmektedir. Temmuz ayı buharlaşmanın en
fazla olduğu aydır (209 mm). Buharlaşma'nın var olup da en az olduğu ay ise Aralık ayıdır (15 mm).

2.1.2. USLE R Faktörü

USLE modelinde yağışın erozyon oluşturma gücü, El₃₀ olarak tanımlanan değerin hesaplanmasına bulunmaktadır. Yıllık erozyon oluşturma indeksi olan Rₚ değeri ise yıl boyunca oluşan yağışların El₃₀ değerlerinin toplanmasıyla bulunur. Buna göre bir yıllık Rₚ değeri;

\[R_p = \sum_{i=1}^{n} El_{30} \]

şeklinde hesaplanır.

Burada

- \(R_p \) = Hesaplanan yılın toplam yağış erozyon indeksi
- \(n \) = Yıl içerisindeki yağış sayısı
- \(El_{30} \) = Her bir yağışın erosif gücü olarak belirtilmektedir.

Bir yağışın \(El_{30} \) değerinin hesaplanması, direkt olarak yağış diyagramlarının incelenmesiyle mümkün olmaktadır. El₃₀ değeri aslında E ve I₃₀ değerlerinin çarpımının 100’e bölünmesiyle elde edilmektedir.

\[El_{30} = \frac{E \times I_{30}}{100} \]

E değeri her bir yağışın toplam kinetik enerjisinin ifade eder ve \(E = 210.1 + 89 \log_{10} I \) formülü ile hesaplanır.

Burada;
\(E = \text{Birim kinetik enerji (ton-m ha}^{-1}). \)
\(I = \text{Hesabi yapılan yağış kismi için ortalama yağış yoğunluğu (cm sa}^{-1}) \)
olarak belirtilmiştir.

Bir diğer sorun alanda bulunan istasyonun gerekli verilere sahip olmamasıdır. Çünkü Türkiye’de DMİGM’ne ait istasyonların sadece Büyük Klima İstasyonlarında yağış diyagramları kullanılmaktadır ki USLE eşitliğindeki \(R \) değerin hesaplanması için bu diyagramlara ihtiyaç vardır. Bu problemden dolayı ki araştırma alanında var olan 3 istasyonun \(R \) değerleri hesaplanamamıştır. Çünkü istasyonlar Küçük Klima istasyonudur ve buralarda yağış ölçülürken plüviyometre kullanılmaktadır.

Bu sayılan sorunları ortadan kaldırmak için bazı yöntemler uygulanmaktadır. Fakat onların kullanılabilmesi için de yağış tekerrür eğrilerine ihtiyaç vardır ve maalesef DMİGM tarafından yayınlanan tekerrür eğrileri sadece Büyük Klima İstasyonları için mevcuttur. Bu zorlukların ortadan kaldırılması amacıyla geliştirilen başka çözümler vardır.

\[F = \sum_{x=1}^{12} \frac{p^2}{P} \]

eşitliğiyle bulunur. Bu eşitlikte \(F \) değeri yıllık erozyon indeksini; \(p \) her bir ayın yağış miktarını (mm) ; \(P \) ise yıllık yağış toplamı (mm) olarak verilmiştir.

\[R = b + aF \]

Buradaki \(a \) ve \(b \) değerleri katsayıdır. Bu katsayılar her iklim bölgesi için farklıdır. Bu nedenle bu indeksen kullanılması için bu katsayıların belirlenmesi gereklidir.

Sonuç olarak bu iki değer arasında doğrusal bir ilişkinin bulunduğunun anlaşılması ve \(r^2=0,91 \) olarak hesaplanmıştır (Grafik:11). Yapılan işlem sonucunda

\[R = 2,5084F - 77,845 \] eşitiğine ulaşılmıştır.

Grafik : 11 – F ve R değerleri arasındaki ilişki
Tablo : 3 – İstasyonlara ait F değerleri

Bu eşitliğe bağlı olarak Çamlıdere Barajı Havzasında bulunan 3 istasyonla birlikte çevredeki istasyonlar da (Harita 2) kullanılarak havza için F değerleri daha sonra da R değerleri hesaplanmıştır. (Tablo 3, 5)

<table>
<thead>
<tr>
<th>İstasyon Adı</th>
<th>Çeltikçi</th>
<th>Beypażari</th>
<th>Peçenek</th>
<th>Seben</th>
<th>Güvem</th>
<th>Çamlıdere</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Değeri</td>
<td>15,3</td>
<td>18,8</td>
<td>22,6</td>
<td>27,5</td>
<td>30</td>
<td>33,7</td>
</tr>
<tr>
<td>İstasyon Adı</td>
<td>Bolu</td>
<td>Çamkoru</td>
<td>PazarKöy</td>
<td>Kızılocamam</td>
<td>Gerede</td>
<td>Gökçesu</td>
</tr>
<tr>
<td>R Değeri</td>
<td>43,7</td>
<td>47,5</td>
<td>59,3</td>
<td>59,8</td>
<td>71</td>
<td>75,4</td>
</tr>
</tbody>
</table>

Tablo : 5 – İstasyonlara ait R Değerleri

Bu sonuçlara göre araştırma alanı ve çevresinde R değerlerinin en düşük olduğu istasyon, 15,3 ile havza güneyindeki Çeltikçi, en yüksek değer ise 75,6 ile Gökçesudur. Havza içerisindeki istasyonlardaki ise; Çamkoru 47,5, Çamlıdere 33,7 ve Peçenek ise 22,6 R değeriyle ortalarla yer almaktadır.
<table>
<thead>
<tr>
<th>Aylar</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>Yıllık</th>
</tr>
</thead>
<tbody>
<tr>
<td>İstanbul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MERSİNE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANKARA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRABZON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOCAELI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KONYA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAYSERI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sivas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÇORUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KASTAMONU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KÜTAHYA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZONGuldak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAVİÇ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RİZE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Çamlidere Barajı havzası çevresinde istasyonların R değerleri genel olarak kuzeye doğru artmaktadır. Bunda Karadeniz’in büyük etkisi vardır. Çünkü yağış değerleri de aynı özelliği taşımaktadır (Grafik 12).

Elde edilen R değerleri direkt olarak kullanılmamıştır. R değerinin alana yayılması için Toy ve Foster, (1998) tarafından kullanılan yöntem benimsenmiştir (Harita 3). Bu yöntem

\[R_y = R_b \times \left(\frac{P_y}{P_b} \right)^{1.75} \]

esitliği ile gösterilmektedir ve

\(R_y \) = Değişer bilinmemen noktanın hesaplanan R değeri

\(R_b \) = Değişer bilinen referans istasyonun R değeri

\(P_y \) = Değişer bilinmemen noktanın ortalama yıllık yağışı (mm).

\(P_b \) = Değişer bilinen referans istasyonun ortalama yıllık yağışı (mm)'ni ifade etmektedir.

Bilindiği gibi yağış birçoakt faktör etkilemektedir. Bu nedenle yağış etkileyen bakı, yükselti, denize yakınlık, enlem vb. birçok faktörün, bu alana yayma işlemi esnasında hesaba katılması gerekir. Oysa bu faktörlerin yağışı

Yıllık denkleme göre

$$Ph = Po + 54h$$

olarak hesaplanır.

Bu denklemde Ph belirli nokta için tahmin edilen yıllık yağış miktarı (mm), Po yıllık yağış miktarı bilinen noktanın yağış değeri (mm), h ise hektometre cinsinden yükselti farklı ve yağışı tahmin edilmek istenen noktanın yükseltisinden, yağış değeri bilinen istasyonun yükseltisi çıkarılarak elde edilir. Bu eşitliğe göre her 100 metre yüksekçe çıkıldıkça yıllık toplam yağış 54 mm artmaktadır.

Bu bilgilere bağlı olarak yağış haritasının oluşturulmasında aşağıdaki metot benimsenmiştir.

![Şekil 5 - Yağış Modeli Ağış Şeması](image)

Yağış haritaları oluşturulurken bu çalışmada kullanılan modelin aşamaları aşağıdaki gibidir.

a) İlk olarak alana ait **Sayısal Yükelti Modeli** elde edilir.

b) Daha sonra yağış istasyonlarının yükseltilerine bağlı olarak yeni bir **İstasyon Yükelti Modeli** oluşturulur.

c) İstasyonun yıllık yağış değeri göre yeni bir **İstasyon Yağış Modeli** oluşturulur ki bu yükselti hesaba katılmadan yapılan ve bazen çok kişi tarafından kullanılan bir yağış haritasıdır.

2.2. ZEMİN ÖZELLİKLERİ VE USLE K FAKTÖRÜ

2.2.1. Jeolojik Yapı

Alt-Orta Miyosen, havzada bir geçiş teşkil edecektedir. Bir kısmı kireçtaşı ve kiltaşıdan, bir kısmı kiltaşı ile volkanik materyal ara katkılı, bir kısmı da volkanik tuf, dasit ve andezit ağırlıklı diğer volkanik malzemelerden oluşur.

Karasal ortamda oluşmuş olan konglomera, kumtaşı, kiltaşı ve jipsten oluşan ilk kısm transgresif bir seriyi andıracak şekilde alttan üstte doğru dizilmiş gösterir. Genellikle gri, yeşil, boz, sarı ve sarımsı beyaz renkte görülürler (Altun vd, 2002). Bunlar şehir tabanında oluşan tortullardır.

Özellikle bu alandaki transgresif serinin daha önce var olan gölünün alanını genişlettiğini gösterirken, bu tortullar içinde jipsin bulunuşu aкла gölün kurak devreler geçirdiğiine işaret etmektedir. Bu birim havzada sadece göl çevresinde görülmektedir.
Foto : 7,8 – Göl Tabanında çökelmişkilli tortullar

Muhtemelen bu çökelmeler oluşturuldan sonra bu alanda volkanizma başlamış ve görsel tortullarla volkanik malzemelerden oluşan diğer geçiş birimi oluşmuştur.

Volkanik ara katkı tortullardan oluşan geçiş birimi kumtaşı, kıltası, şeytuf ve kireçtaşlarından oluşmaktadır (Foto 9, 10). Beyaz, gri renkte, orta-kalin tabakalı çörtlü kireçtaşı, beyaz, sarı renklı, orta tabaklı kumtaşı, gri, yeşil renkli ince tabakalı yer yer kartonumsu seviyeler içeren kıltasları ile tüfler içerir (Bilginer vd, 2002). Bölgede göl çökelimi devam ederken etkinliğini sürdüren volkanizma ürünleri tüflitler şeklinde çökelime katılmıştır (Yurdakul vd., 1998).

Foto : 9, 10 – Volkanik ara katkı göl tortulları

Genellikle baraj gölünün doğusunda, Elmalı ve Kavutçu Köyleri civarı ile Ovacık Krateri tabanında yayılım göstermektedir.
Bu tortullar üzerinde erozyon çok şiddetlidir. Tortullar içerisindeki tüflerin yüzeye çıktığı bazı yerlerde peri bacasına benzeyen şekiller oluşmuştur (Foto 9, 10).

Geçiş kısmının son üyesi dasit ve riyolit türde lav, tuf ve aglomeradan oluşur. Lavlar beyaz, gri, pembe renkli, akma yapıları, yer yer blok gibi görülür. Lavların andezit, dasit olanları porfiry dokuda, riyolitler ise camlı akma yapıları gösterirler. Yer yer volkanizmanın çıkan ürün yakınında göllerle temas ederek ani soğumaya bağlı olarak oluşan perlittiler de bu birim içerisindedir.

Foto : - 11, 12 – Havzadaki Volkanik kayaçlar

Volkanik birimler havzada oldukça geniş bir yayılım gösterir. Özellikle dasitin yoğun olduğu yerler Alakoç ve Örenköy batısındayken, andezit ve piroklastik materyalin yayılımı çok geniştir.

Foto : 13 – Yaylalar Krateri

Bölgede volkanizma merkezi erüpsiyon şeklinde gerçekleşmiştir. Özellikle Çamkoru’nun 10 km batısında çapı 2500 metreye varan krater (Bu çalışmada bu krater Ovacık Krater olarak adlandırılacaktır – Foto 14) ile Mahye Tepesi kuzeyinde yer alan, çapı 3000 metreye varan, (Bu çalışmada
bu krater Yaylalar Krateri olarak adlandırılacaktır – Foto 13) krater bu merkezi erüpsiyonun kanıtlıdır (Sür, 1994).

Foto : 14 – Ovacık Krateri

Pliyosen tortulları volkanizmaya bağlı olarak gölün parçalanması ve farklı alanlarda varlığını korumasıyla oluşmuştur. Bu nedenle sadece Çamlıdere batısında ve Osmansin Köyü civarında yayılım göstermektedir.

Kuaterner alüvyonları, havzada akarsuların vadi tabanlarında görülmektedir. Özellikle vadilerin baraja yaklaştığında tabanlarının genişlemesyle ortaya çıkmaktadır. Bunun yanında Yaylalar Krateri tabanında
da çevreden gelen akarsular tarafından oluşturulmuş geniş bir alüvyal alan bulunmaktadır. Diğer alanlarda oldukça az yayılır.

<table>
<thead>
<tr>
<th>Eroz.Duy.*</th>
<th>Eroz.Duy.</th>
<th>Jeolojik Birimler</th>
<th>Alan (km²)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>A-O Miy.- Andezit, Dazit, Pirosklastik Mat.</td>
<td>554</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>A-O Miy.- Çakıllaşı, Kumtaşı, Kumtaşı</td>
<td>100</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Pli. - Konglomera, Kumtaşı, Kıltaşı</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>A-O Miy.- Kireçta, Kuma, Konglome, Çört, Kıl.</td>
<td>29</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>K - Alüvyon</td>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

Tablo : 6 – Jeolojik Birimler

*Bayramin vd (2003)’e göre erozyon duyarlılığı

Buna göre havzadaki jeolojik birimlerin %77’si erozyona karşı dirençli, % 23’ü ise erozyona eğilimli alanları oluştururdu.

2.2.2. Toprak Özellikleri

Havzada toprak çeşitliliği oldukça azdır. Bunun nedeni anakaya özelliklere bağlıdır. Çünkü havzanın nerdeyse tamamı volcanik ve volcanik ara katkılı formasyonlardan oluşmaktadır. Bu nedenleki ki havzada 3 farklı toprak türü görülmektedir (Harita 6).

Bu toprak gruplarından ilki, kireçsiz kahverengi orman toprağıdır. Bu toprak grubu, 722 km²lik alanın 620 km²’sini kaplamakta ve tüm havzanın % 86’sını oluştururdu. Yarı nemli iklim koşulları altında gelişmiş olan bu toprak grubu jeolojik olarak volcanik birimler üzerinde gelişmiştir. Bazı
alanlarda baraj gölüne kadar sokulur ve göl tortulları üzerinde de yayılım gösterir.

Çamlıdere Baraj Gölü Havzasında kireçsiz kahverengi orman topraklar en derin topraklar olarak karşımıza çıkmaktadır. Genellikle 50 cm ile 1 m arasında bir derinliğe sahiptir (Foto 16). Ama bazı yerlerde daha derinliği birkaç metreye kadar inebilmektedir. Bu toprak birçok yerde çok taşlı bir profile sahiptir (Foto 15).

![Foto : 15, 16 – Kireçsiz Kahverengi Orman Toprakları](image)

Bu topraklar çok sağdır. Özellikle Özmuş Köyü civarında derinlik çok azdır. Bu alanda topografyanın eğimini olması toprakların derinleşmesini engellemiştir (Foto 17). Fakat bu topraklar havza genelinde de sığ bir karakterdedir (Foto 18).

![Foto : 17, 18 – Kahverengi Orman Toprakları](image)

Havzadaki toprakların erozyona duyarlılık dereceleri çok farklı özellikliler göstermektedir. Doğan vd (2000)’nin ülkemiz topraklarının erozyona duyarlılıklarını ölçümleri çalışmada, Ankara’da kahverengi orman topraklarının USLE K değerinin, 0,14 ile 0,25 arasında değiştiği, kireçsiz kahverengi topraklarda bu değerin 0,07 ile 0,23 arasında bir farklilik gösterdiği belirlenmiştir.

<table>
<thead>
<tr>
<th>Büyük Toprak Grupları</th>
<th>%</th>
<th>Alan (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alüvyal Topraklar</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Kahverengi Orman Toprakları</td>
<td>13</td>
<td>94</td>
</tr>
<tr>
<td>Kireçsiz Kahverengi Orman Topraklar</td>
<td>86</td>
<td>620</td>
</tr>
<tr>
<td>Toplam</td>
<td>100</td>
<td>722</td>
</tr>
</tbody>
</table>

Tablo : 7 – Havzadaki Toprakların Alanları

Alüvyal toprakların K değerleri ise 0,1 ile 0,26 arasında değişmektedir.

2.2.3. Usle K Faktörü

Alınan örneklerin organik madde, strüktür ve hidrolik iletkenlik analizleri A.Ü. Ziraat Fakültesi, Toprak Bölümü laboratuarında yapılmıştır.\(^1\)

Toprakların strüktür sınıfları araziden alınan örnekler göre belirlenmiş, daha sonra strüktür sınıfları için USLE eşitiğinde kullanılan strüktür kodları belirlenmiştir. Bu sınıflar ve strüktür kodları aşağıda belirtilmiştir (Tablo 8).

<table>
<thead>
<tr>
<th>Numune No</th>
<th>Strüktür Tipi</th>
<th>USLE Strüktür Kodu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. Zayıf, küçük granüler strüktür (1-2 mm).</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2. Orta, küçük yarı köşeli blok strüktür</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3. Zayıf, çok küçük granüler (< 1 mm).</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4. Zayıf, küçük granüler strüktür (1-2 mm).</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5. Orta, orta kaba yari köşeli blok strüktür (2-5mm).</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6. Orta, orta kaba yarı köşeli blok strüktür</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>7. Kuvvetli, orta kaba yari köşeli blok strüktür</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>8. Zayıf, çok küçük yari köşeli blok strüktür</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>9. Zayıf, çok küçük yari köşeli blok strüktür</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>10. Orta, orta kaba yarı köşeli blok strüktür</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>11. Zayıf, küçük granüler strüktür</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>12. Zayıf küçük yari köşeli blok strüktür</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>13. Zayıf, çok küçük granüler strüktür</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>14. Zayıf, küçük granüler strüktür</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>15. Zayıf, küçük granüler strüktür</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>16. Zayıf, çok küçük granüler strüktür</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>17. Çok zayıf, çok küçük granüler strüktür</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>18. Zayıf, küçük granüler strüktür</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>19. Zayıf, küçük granüler strüktür</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>20. Orta, orta kaba yari köşeli blok strüktür</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>21. Orta, küçük yari köşeli blok strüktür</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>22. Orta, küçük yari köşeli blok strüktür</td>
<td>4</td>
</tr>
<tr>
<td>23</td>
<td>23. Orta, orta kaba granüler strüktür</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>24. Orta, küçük yari köşeli blok strüktür</td>
<td>4</td>
</tr>
</tbody>
</table>

\(^1\) Analizler A.Ü. Ziraat Fak. Toprak Bölümü’nden Tülay TUNÇAY tarafından yapılmıştır.
Tablo : 8 - Toprak örneklerinin strüktür özellikleri

25	25. Orta, küçük yar köşeli blok strüktür	4
26	26. Zayif, çok küçük yar köşeli blok strüktür	4
27	27. Orta, küçük yar köşeli blok strüktür	4
28	28. Zayif, küçük granüler strüktür	2
29	29. Zayif, küçük granüler strüktür	2
30	30. Orta, küçük yar köşeli blok strüktür	4
31	31. Zayif, küçük granüler strüktür	2
32	32. Orta, küçük yar köşeli blok strüktür	4

Toprakta strüktür tanımlaması yapılıırken; dayanıklılık, sınıf (büyüklük) ve tip sıralaması takip edilmiştir. Dayanıklılık, strüktürün agregasyon derecesidir. Sınıf, büyüklük agregatların çapına göre tanımlanır. Her strüktür tipinin kendine özgü büyüklük sınıfları vardır. Çok küçük, küçük, orta kaba, kaba, çok kaba olmak üzere beş büyüklük sınıfı içerebilir.

Harita : 7 – 8 – Havzadaki toprakların strüktür özellikleri ve organik madde miktarları

Havzadaki toprakların strüktür sınıflarına göre erozyona duyarlılıkları genellikle güneyden kuzeye doğru artmaktadır ve Ovacık Krateri batısı erozyon riskinin olduğu alan olarak ortaya çıkmaktadır (Harita 7).

Buna göre toprakların organik madde miktarları ve USLE eşitliğinde kullanılan organik madde oranları aşağıdaki verilmştir (Tablo 9). Havzadaki toprakların organik madde miktarları genellikle kuzeye ve özellikle kuzeybatıya gidildikçe artmaktadır. Buna bağlı olarak kuzeybatıdaki toprakların da erozyona direnci artmaktadır (Harita 8).

<table>
<thead>
<tr>
<th>Numune No</th>
<th>X UTM Koordinatı</th>
<th>Y UTM Koordinatı</th>
<th>Organik Madde Oranı (%)</th>
<th>USLE Oranı %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>456710</td>
<td>4483578</td>
<td>3,1</td>
<td>3,1</td>
</tr>
<tr>
<td>2</td>
<td>456239</td>
<td>4486538</td>
<td>2,9</td>
<td>2,9</td>
</tr>
<tr>
<td>3</td>
<td>455481</td>
<td>4488494</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>454833</td>
<td>4490630</td>
<td>2,9</td>
<td>2,9</td>
</tr>
<tr>
<td>5</td>
<td>458131</td>
<td>4488900</td>
<td>2,7</td>
<td>2,7</td>
</tr>
<tr>
<td>6</td>
<td>449775</td>
<td>4492634</td>
<td>4,2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>447951</td>
<td>4490956</td>
<td>2,6</td>
<td>2,6</td>
</tr>
<tr>
<td>8</td>
<td>447952</td>
<td>4488417</td>
<td>2,8</td>
<td>2,8</td>
</tr>
<tr>
<td>9</td>
<td>446910</td>
<td>4486869</td>
<td>2,7</td>
<td>2,7</td>
</tr>
<tr>
<td>10</td>
<td>448887</td>
<td>4484847</td>
<td>2,6</td>
<td>2,6</td>
</tr>
<tr>
<td>11</td>
<td>454168</td>
<td>4482870</td>
<td>3,5</td>
<td>3,5</td>
</tr>
<tr>
<td>12</td>
<td>449078</td>
<td>4480579</td>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>13</td>
<td>446162</td>
<td>4479319</td>
<td>1,3</td>
<td>1,3</td>
</tr>
<tr>
<td>14</td>
<td>442031</td>
<td>4479578</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>15</td>
<td>441920</td>
<td>4474426</td>
<td>1,6</td>
<td>1,6</td>
</tr>
<tr>
<td>16</td>
<td>437404</td>
<td>4473785</td>
<td>1,6</td>
<td>1,6</td>
</tr>
<tr>
<td>17</td>
<td>435048</td>
<td>4475512</td>
<td>2,4</td>
<td>2,4</td>
</tr>
<tr>
<td>18</td>
<td>431437</td>
<td>4474460</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>19</td>
<td>430471</td>
<td>4472484</td>
<td>3,6</td>
<td>3,6</td>
</tr>
<tr>
<td>20</td>
<td>426440</td>
<td>4474489</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>21</td>
<td>424865</td>
<td>4478084</td>
<td>5,5</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>427681</td>
<td>4481027</td>
<td>5,1</td>
<td>4</td>
</tr>
<tr>
<td>23</td>
<td>432492</td>
<td>4482989</td>
<td>2,3</td>
<td>2,3</td>
</tr>
<tr>
<td>24</td>
<td>437194</td>
<td>4482930</td>
<td>4,5</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>441973</td>
<td>4482631</td>
<td>3,5</td>
<td>3,5</td>
</tr>
<tr>
<td>26</td>
<td>442740</td>
<td>4483907</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>27</td>
<td>442030</td>
<td>4473850</td>
<td>3,4</td>
<td>3,4</td>
</tr>
<tr>
<td>28</td>
<td>439020</td>
<td>4469463</td>
<td>2,1</td>
<td>2,1</td>
</tr>
<tr>
<td>29</td>
<td>441740</td>
<td>4470928</td>
<td>1,6</td>
<td>1,6</td>
</tr>
<tr>
<td>30</td>
<td>450952</td>
<td>4469965</td>
<td>2,4</td>
<td>2,4</td>
</tr>
<tr>
<td>31</td>
<td>448717</td>
<td>4475117</td>
<td>2,4</td>
<td>2,4</td>
</tr>
<tr>
<td>32</td>
<td>450613</td>
<td>4477716</td>
<td>2,1</td>
<td>2,1</td>
</tr>
</tbody>
</table>

Tablo : 9 - Toprak örneklerinin organik madde miktarı

Alınan örneklerin hidrolik iletkenliklerini belirlemek için, hidrolik iletkenlik setine uygun şekilde yerleştirildikten sonra, üzerine su verilmiş, ilk damlaların akmaması beklenmiştir. Damlalar akmaya başlayıncı toprağın suya doygun hale geldiği anlaşılmiştir. 1, 6, 24 ve 48 saat okumaları yapılmış, su
süzüldükten sonra üstteki boşluk ölçülmüştür. Çikan su dereceli silindire konmuş ve miktarı belirlenmiştir. Daha sonra gerekli eşitlikler kullanılarak örneklerin hidrolik iletkenlikleri belirlenmiştir. Alınan örneklerin hidrolik iletkenlikleri ve sınıfları aşağıdaki gibidir (Tablo 10).

<table>
<thead>
<tr>
<th>Numune No</th>
<th>Geçirgenlik (cm/h)</th>
<th>Hidrolik İletkenlik Kodu</th>
<th>Numune Numarası</th>
<th>Geçirgenlik (cm/h)</th>
<th>Hidrolik İletkenlik Kodu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,21</td>
<td>3</td>
<td>17</td>
<td>2,43</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>14,97</td>
<td>1</td>
<td>18</td>
<td>3,75</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>16,31</td>
<td>1</td>
<td>19</td>
<td>7,53</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>11,88</td>
<td>2</td>
<td>20</td>
<td>4,80</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3,15</td>
<td>3</td>
<td>21</td>
<td>3,61</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5,39</td>
<td>3</td>
<td>22</td>
<td>4,03</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3,99</td>
<td>3</td>
<td>23</td>
<td>14,23</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3,43</td>
<td>3</td>
<td>24</td>
<td>8,86</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>1,41</td>
<td>4</td>
<td>25</td>
<td>3,63</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>2,55</td>
<td>3</td>
<td>26</td>
<td>4,52</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>9,82</td>
<td>2</td>
<td>27</td>
<td>3,84</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>0,88</td>
<td>4</td>
<td>28</td>
<td>3,52</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>10,55</td>
<td>2</td>
<td>29</td>
<td>14,49</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1,06</td>
<td>4</td>
<td>30</td>
<td>8,05</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>7,07</td>
<td>2</td>
<td>31</td>
<td>13,59</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1,10</td>
<td>4</td>
<td>32</td>
<td>5,81</td>
<td>3</td>
</tr>
</tbody>
</table>

Tablo : 10 -Toprak örneklerinin hidrolik iletkenlikleri

Harita : 9, 10 – Havzadaki toprakların hidrolik iletkenlikleri ile silt+ ince kum yüzdeleri

<table>
<thead>
<tr>
<th>Numune No</th>
<th>Kaba %</th>
<th>Silt+İnce Kum %</th>
<th>Kil %</th>
<th>Numune No</th>
<th>Kaba %</th>
<th>Silt+İnce Kum %</th>
<th>Kil %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67,3</td>
<td>29,3</td>
<td>3,4</td>
<td>17</td>
<td>56,1</td>
<td>40,7</td>
<td>3,2</td>
</tr>
<tr>
<td>2</td>
<td>82,3</td>
<td>15,7</td>
<td>2,0</td>
<td>18</td>
<td>80,1</td>
<td>17,8</td>
<td>2,1</td>
</tr>
<tr>
<td>3</td>
<td>74,8</td>
<td>23,1</td>
<td>2,1</td>
<td>19</td>
<td>61,2</td>
<td>36,4</td>
<td>2,4</td>
</tr>
<tr>
<td>4</td>
<td>89,0</td>
<td>8,5</td>
<td>2,5</td>
<td>20</td>
<td>72,9</td>
<td>24,3</td>
<td>2,9</td>
</tr>
<tr>
<td>5</td>
<td>87,3</td>
<td>10,5</td>
<td>2,2</td>
<td>21</td>
<td>82,0</td>
<td>17,6</td>
<td>0,4</td>
</tr>
<tr>
<td>6</td>
<td>90,9</td>
<td>7,5</td>
<td>1,6</td>
<td>22</td>
<td>80,6</td>
<td>17,4</td>
<td>2,0</td>
</tr>
<tr>
<td>7</td>
<td>79,0</td>
<td>19,8</td>
<td>1,2</td>
<td>23</td>
<td>78,9</td>
<td>17,7</td>
<td>3,4</td>
</tr>
<tr>
<td>8</td>
<td>76,0</td>
<td>21,3</td>
<td>2,7</td>
<td>24</td>
<td>95,4</td>
<td>4,0</td>
<td>0,6</td>
</tr>
<tr>
<td>9</td>
<td>80,2</td>
<td>18,5</td>
<td>1,3</td>
<td>25</td>
<td>85,7</td>
<td>11,4</td>
<td>2,9</td>
</tr>
<tr>
<td>10</td>
<td>60,6</td>
<td>33,6</td>
<td>5,7</td>
<td>26</td>
<td>78,4</td>
<td>19,0</td>
<td>2,6</td>
</tr>
<tr>
<td>11</td>
<td>76,8</td>
<td>19,0</td>
<td>4,2</td>
<td>27</td>
<td>89,8</td>
<td>9,0</td>
<td>1,2</td>
</tr>
<tr>
<td>12</td>
<td>84,0</td>
<td>14,1</td>
<td>1,8</td>
<td>28</td>
<td>69,0</td>
<td>30,4</td>
<td>0,6</td>
</tr>
<tr>
<td>13</td>
<td>90,1</td>
<td>7,7</td>
<td>2,2</td>
<td>29</td>
<td>78,8</td>
<td>18,6</td>
<td>2,6</td>
</tr>
<tr>
<td>14</td>
<td>88,1</td>
<td>10,4</td>
<td>1,5</td>
<td>30</td>
<td>91,9</td>
<td>7,2</td>
<td>1,0</td>
</tr>
<tr>
<td>15</td>
<td>95,4</td>
<td>4,0</td>
<td>0,6</td>
<td>31</td>
<td>86,6</td>
<td>12,5</td>
<td>0,9</td>
</tr>
<tr>
<td>16</td>
<td>93,7</td>
<td>4,9</td>
<td>1,4</td>
<td>32</td>
<td>79,0</td>
<td>16,4</td>
<td>4,6</td>
</tr>
</tbody>
</table>

Tablo : 11 – Toprak örneklerinin tekstür analizi sonuçları

Harita : 11 – Havzadaki toprakların kum oranları
Elde edilen sonuçlar aşağıda belirtilen formülde gerekli yere koyularak toprakların K değerleri bulunmuştur (Tablo 12).

\[K = \frac{2.77M^{1.14}(10^{-4})(12 - a) + 4.28(b - 2) + 3.29(c - 3)}{100} \]

Burada M, silt, ince kum ve kum yüzdesine göre hesaplanan bir değerdir. \(M = z(z + y) \) eşitliği ile bulunur (\(y = \) Kum yüzdesi, \(z = \) Silt + İnce Kum yüzdesi, \(c = \) geçirgenlik kodu, \(b = \) strüktür kodu, \(a = \) organik madde yüzdesi).

<table>
<thead>
<tr>
<th>Numune No</th>
<th>K Değeri</th>
<th>Numune No</th>
<th>K Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,16</td>
<td>17</td>
<td>0,23</td>
</tr>
<tr>
<td>2</td>
<td>0,10</td>
<td>18</td>
<td>0,13</td>
</tr>
<tr>
<td>3</td>
<td>0,05</td>
<td>19</td>
<td>0,15</td>
</tr>
<tr>
<td>4</td>
<td>0,01</td>
<td>20</td>
<td>0,29</td>
</tr>
<tr>
<td>5</td>
<td>0,14</td>
<td>21</td>
<td>0,16</td>
</tr>
<tr>
<td>6</td>
<td>0,11</td>
<td>22</td>
<td>0,15</td>
</tr>
<tr>
<td>7</td>
<td>0,20</td>
<td>23</td>
<td>0,09</td>
</tr>
<tr>
<td>8</td>
<td>0,21</td>
<td>24</td>
<td>0,07</td>
</tr>
<tr>
<td>9</td>
<td>0,22</td>
<td>25</td>
<td>0,13</td>
</tr>
<tr>
<td>10</td>
<td>0,29</td>
<td>26</td>
<td>0,24</td>
</tr>
<tr>
<td>11</td>
<td>0,05</td>
<td>27</td>
<td>0,12</td>
</tr>
<tr>
<td>12</td>
<td>0,20</td>
<td>28</td>
<td>0,22</td>
</tr>
<tr>
<td>13</td>
<td>0,01</td>
<td>29</td>
<td>0,07</td>
</tr>
<tr>
<td>14</td>
<td>0,11</td>
<td>30</td>
<td>0,09</td>
</tr>
<tr>
<td>15</td>
<td>0,01</td>
<td>31</td>
<td>0,01</td>
</tr>
<tr>
<td>16</td>
<td>0,02</td>
<td>32</td>
<td>0,19</td>
</tr>
</tbody>
</table>

Tablo : 12 – Toprak Örneklerinin K Değerleri

Bu sayede elde edilen K değerleri örneklerin GPS ile belirlenen konumlarına yerleştirilmiştir. İşlemler yapılırken Universal Transversal Merkator (ED 1950) projeksiyonu kullanılmıştır.

Konumları belirlenen örnek noktalarına göre, havzani K değeri haritası elde edilmiştir. İşlem yapılırken doğal yakınlik analizi (Natural Neighbour). interpolasyon yöntemi kullanılmıştır.

Elde edilen haritaya göre (Harita 12) havza topraklarının % 5'i çok az aşınabilir durumdadır. % 13,5'i az aşınabilir topraklardan oluşan havzanın, % 72'si orta derecede, % 9,5'lik kısmı ise kuvvetli derecede aşınabilir topraklardan oluşmaktadır (Tablo 13).

<table>
<thead>
<tr>
<th>K Değeri</th>
<th>Alan (km²)</th>
<th>Alan %</th>
<th>Birikimli %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01-0,05</td>
<td>35,87</td>
<td>4,97</td>
<td>4,97</td>
</tr>
<tr>
<td>0,06-0,1</td>
<td>96,28</td>
<td>13,34</td>
<td>18,31</td>
</tr>
<tr>
<td>0,11-0,15</td>
<td>275,09</td>
<td>38,11</td>
<td>56,41</td>
</tr>
<tr>
<td>0,16-0,2</td>
<td>245,55</td>
<td>34,01</td>
<td>90,43</td>
</tr>
<tr>
<td>0,21-.25</td>
<td>57,68</td>
<td>7,99</td>
<td>98,42</td>
</tr>
<tr>
<td>0,26-0,29</td>
<td>11,42</td>
<td>1,58</td>
<td>100,00</td>
</tr>
<tr>
<td>Toplam</td>
<td>721,89</td>
<td>100,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Tablo : 13 – Havza topraklarının aşınabilirlik durumları

Harita 12 incelendiğinde havzada, erozyon potansiyelinin fazla olduğu alanlar ile erozyona dirençli toprakların üçer ada oluşturacak şekilde dağıldığı görülmektedir.

Çok az aşınabilir topraklar, Alakoç Köyü batısında ve baraj gölünü kuzeyinde karşımaza çıkmaktadır. Bunun nedeni bu alandaki topraklarda özellikle kum oranının fazla olmasıdır (Harita 11).

Az aşınabilir topraklar ise çok az aşınabilir toprakların çevresinde ve Özmuş Köyü ile İnceöz Yaylası civarında görülmektedir. Aslında bu alanlar kahverengi orman topraklarının bulunduğu alanlara genel olarak uymaktadır (Harita 6).

Burada ayrıca dasıt, riyolit ve tüflitin bulunduğu alanların da (Harita 5) erozyona karşı dirençli olduğunu belirtmek gerekir. Bunun yanıında belirtilmesi gereken diğer bir nokta da jeolojik birimlerle USLE K değeriine
göre yapılan haritanın, erozyona duyarlılık açısından birbirinin tersi özelliklere sahip olduğu durumda. Çünkü jeolojik birimlerden vulkanik alanlar genellikle erozyona dirençli olarak nitelendirilirken, USLE K değeri açısından bu alanlar erozyona müsait alanlar olarak çıkılmaktadır.

2.3. TOPOGRAFİK VE JEOMORFOLOJİK ÖZELLİKLER VE USLE LS FAKTÖRÜ

2.3.1. Topografik ve Jeomorfolojik Özellikler

Yükseltinin havzadaki dağılış yüzdesi oldukça farklılıklar göstermektedir. Havzanın yarısı 1400 metreden düşük yükseltılere sahipken % 10’u 1700 metrenin üzerinde durmaktadır. Bu da bize havzada yüksek yerlerin az olduğunu göstermektedir (Grafik 13, Tablo 14).
<table>
<thead>
<tr>
<th>Yükselti Sınıfı</th>
<th>Alan %</th>
<th>Alan Birikimi %</th>
<th>Alan (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>995-1049</td>
<td>4,93</td>
<td>4,93</td>
<td>36,64</td>
</tr>
<tr>
<td>1050-1099</td>
<td>5,06</td>
<td>9,99</td>
<td>36,55</td>
</tr>
<tr>
<td>1100-1149</td>
<td>5,11</td>
<td>15,11</td>
<td>36,94</td>
</tr>
<tr>
<td>1150-1199</td>
<td>6,07</td>
<td>21,18</td>
<td>43,83</td>
</tr>
<tr>
<td>1200-1249</td>
<td>7,74</td>
<td>28,91</td>
<td>55,89</td>
</tr>
<tr>
<td>1250-1299</td>
<td>7,59</td>
<td>36,50</td>
<td>54,79</td>
</tr>
<tr>
<td>1300-1349</td>
<td>7,33</td>
<td>43,83</td>
<td>52,95</td>
</tr>
<tr>
<td>1350-1399</td>
<td>7,87</td>
<td>51,70</td>
<td>56,82</td>
</tr>
<tr>
<td>1400-1449</td>
<td>8,20</td>
<td>59,90</td>
<td>59,26</td>
</tr>
<tr>
<td>1450-1499</td>
<td>7,50</td>
<td>67,40</td>
<td>54,15</td>
</tr>
<tr>
<td>1500-1549</td>
<td>6,38</td>
<td>73,78</td>
<td>46,11</td>
</tr>
<tr>
<td>1550-1599</td>
<td>6,92</td>
<td>80,70</td>
<td>49,99</td>
</tr>
<tr>
<td>1600-1649</td>
<td>5,45</td>
<td>86,15</td>
<td>39,34</td>
</tr>
<tr>
<td>1650-1699</td>
<td>4,68</td>
<td>90,83</td>
<td>33,82</td>
</tr>
<tr>
<td>1700-1749</td>
<td>3,62</td>
<td>94,45</td>
<td>26,17</td>
</tr>
<tr>
<td>1750-1799</td>
<td>2,80</td>
<td>97,25</td>
<td>20,20</td>
</tr>
<tr>
<td>1800-1849</td>
<td>1,72</td>
<td>98,97</td>
<td>12,45</td>
</tr>
<tr>
<td>1850-1899</td>
<td>0,62</td>
<td>99,59</td>
<td>4,45</td>
</tr>
<tr>
<td>1900-1949</td>
<td>0,32</td>
<td>99,90</td>
<td>2,28</td>
</tr>
<tr>
<td>1950-1999</td>
<td>0,09</td>
<td>99,99</td>
<td>0,65</td>
</tr>
<tr>
<td>2000-2040</td>
<td>0,01</td>
<td>100,00</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Tablo: 14 – Yükselti Basamaklarına Göre Alan Dağılışı

Grafik: 13 – Havzanın Hipsografik Eğrisi

Havzada en geniş alan kaplayan yükseltiler 1200 m ile 1600 m arasındaki yoğunlaşmışdır (Grafik 14).

Havzada eğimin azaldığı alanlar dağın bir özellik göstermektedir. Yaylalar ve Ovacık Kraterlerinin tabanında, Atça, Çamköy, Meşeler Köyü çevresinde, Özmuş ve İnceöz Yaylası kuzeyinde ve baraj gölü çevresinde eğim genellikle düşktür.

<table>
<thead>
<tr>
<th>Eğim Sınıfı</th>
<th>Alan km²</th>
<th>Alan %</th>
<th>Birlıkli Alan %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>123</td>
<td>17.05</td>
<td>17.05</td>
</tr>
<tr>
<td>6-10</td>
<td>150</td>
<td>20.74</td>
<td>37.79</td>
</tr>
<tr>
<td>11-15</td>
<td>188</td>
<td>26.00</td>
<td>63.79</td>
</tr>
<tr>
<td>16-20</td>
<td>129</td>
<td>17.38</td>
<td>78.17</td>
</tr>
<tr>
<td>21-25</td>
<td>79</td>
<td>10.94</td>
<td>89.10</td>
</tr>
<tr>
<td>26-30</td>
<td>44</td>
<td>6.07</td>
<td>95.16</td>
</tr>
<tr>
<td>31-35</td>
<td>21</td>
<td>2.95</td>
<td>98.14</td>
</tr>
<tr>
<td>36-40</td>
<td>9</td>
<td>1.27</td>
<td>99.41</td>
</tr>
<tr>
<td>41-45</td>
<td>3</td>
<td>0.40</td>
<td>99.81</td>
</tr>
<tr>
<td>46-67</td>
<td>1</td>
<td>0.19</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Grafik : 15 – Eğim Bırkimi Tablo : 15 – Eğim sınıflarına göre alanlar

Grafik :16 – Havzada yükselti basamaklarına göre alanlar ve ortalama eğimler
Çamlıdere Barajı Havzası genel olarak, fay dikliklerinden, farklı yükseklikteki platonlardan, krater tabanlarında gelişen ovalardan ve farklı eğimdeki yamaçlardan oluşmaktadır. Faylar tabakaların eğilmenmesine neden olmuş ve bazı alanlarda kuesta topografyasının görülmesini sağlamıştır (Harita 5, 15).

Orta yükseklikteki plolar ile yüksek plolar arasındaki geçiş çok belirgindir. Bazı yerlerde birbirinin devami niteliğinde olan bazı kısımlarda da sırtlar halinde kalabilmışlardır.

Havzadaki zirve düzlüğüleri genellikle tek tepeler ve sırtlar halindeidir. Bunlar Ovacık Krateri güneyinde ve Mahye Tepesi civarında birer plato özelliğindedir.

Havza’daki jeomorfolojik olarak erozyonun en fazla olduğu alanlar genellikle yamaç karakterindeki alanlardır. Bu alanlarda oluşan topraklar, sadece suyun değil aynı zamanda yerleşiminin de etkisiyle eğim boyunca
taşınmaktadır. Erozyon açısından bu alanlar haricinde platoların dış sınırları da dışbükey bir eğim yarattığı için erozyon açısından tehlikeli alanlar olarak nitelendirilebilir.

2.3.2. Usle LS Faktörü

USLE eşitliği parsel temelli bir model olduğundan, araştırma alanı bir havzanın tamamı olduğunda, topografik faktörün belirlenmesinde zorluklar yaşanmaktadır. Bu zorlukların ilk eğim uzunluğu değerinin hesaplanmasıdır.

Eğim uzunluğu değerinin hesaplanmasının yanında bir diğer sorun en yüksek eğim uzunluğu değerinin belirlenmesidir.

- 22 metre eğim uzunluğu için L faktörü 1,1
- 44 metre eğim uzunluğu için L faktörü 1,2
- 66 metre eğim uzunluğu için L faktörü 1,5
- 88 metre eğim uzunluğu için L faktörü 0,6 değerinin kullanılması önerilmiştir. Bundan da anlaşılacağı gibi yarı kurak alanlarda, \(\lambda \) değerin etkisi sürekli artmamaktadır. Belli bir noktadan sonra düşmektedir.

Bu çalışmada Çamlıdere Barajı Havzasının yarı nemli - yarı kurak koşulları altında olduğunu düşünülenek, en uzun eğim uzunluğu değerini 150 m olarak alınmıştır (Erpul ve Erdoğan, 2005).

Eğim uzunluğu değerinin özellikle sayısal ortamda belirlenmesi maksadıyla birçok yöntem önerilmiştir. Bu çalışmada eğim uzunluğu değeri belirlenirken Kinnel’in (2001) önerdiği yöntem uygulanmıştır. Buna göre eğim
uzunluğu değeri CBS sistematiği içerisinde akış birikimine (Flow Accumulation) denk gelmektedir.

Akış birikimi CBS ortamında aşağıda belirtildiği gibi hesaplanmaktadır ve genel olarak USLE eğim uzunluğu mantığına uymaktadır.

Bu yöntemde ilk olarak sayısal eşyükselti eğrilerine bağlı olarak, CBS terminolojisinde DEM olarak bilinen sayısal yükselti modeli oluşturulur (Şekil 5, 6).

Şekil : 5 – Eşyükselti eğrilerinin kareleme (gridlere) bölünmesi

Yöntemin temelinde kareleme metodu vardır ve bu grid veya cell (hücre) olarak isimlendirilir. Eşyükselti eğrilerine göre doğal yakınlık ve üçgenleme metoduyla SYM (Sayısal Yükselti Modeli) oluşturulur.

Şekil : 6 – Eşyükselti eğrilerinden SYM elde edilmesi
Elde edilen SYM’den ilk olarak akış yönleri belirlenir (Şekil 7).

Akış yönlerine göre akış birikimi hesaplanır. Bu yöntemde her bir kare kendine akan grid sayısından 1 fazla akış birikimine sahiptir (Şekil 8). Elde edilen birikim değerleri alan ve dolayısıyla akış birikimine doğru bir ilişkiye sahiptir. Bu ilişki her bir gridin boyutu ile şekillenir.

Yani bir gride gelen akış birikimi bu gridin akış birikimi değer ve alanı ile çarpılarak bulunur. Eğim uzunluğu değeri de aynı şekilde grid boyut ile akış birikimi değeriin çarpımına eşittir.

Bu çalışmada topografik bilgiler 1:25.000 ölçekli topografa haritasından alınmış ve grid boyutu 10 m alınarak, analiz edilmiştir. Yani \(\lambda \) değeri hesaplanırken akış birikimi değeri 10 ile çarpılarak belirlenmiştir.
L faktörü hesaplanırken

\[L = \left(\frac{\lambda}{22,13} \right)^m \]

işitliğinden faydalanılmıştır.

\[m = 0.5; \text{eğim} > 5\% \]
\[m = 0.4; 3\% < \text{eğim} < 5\% \]
\[m = 0.3; 1\% < \text{eğim} < 3\% \]
\[m = 0.2; \text{eğim} < 1\% \] olarak alınmıştır.

 Eğim dikliği faktörü yanı S değerinin hesaplanmasında, yine Moore vd., (1992)’in önerdiği eşitlik kullanılmıştır. Bu eşitliğe göre,

\[S = (\sin \theta / 0,896)^{1,3} \] şeklinde hesaplanır (\(\theta \) = radyan cinsinden eğimi ifade etmektedir.).

2.4. ARAZİ ÖRTÜSÜ ile USLE C ve P FAKTÖRLERİ

2.4.1. Havzada Arazi Örtüsü

<table>
<thead>
<tr>
<th>Bitki Türü</th>
<th>Alan (km²)</th>
<th>Alan %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meşe</td>
<td>113</td>
<td>30</td>
</tr>
<tr>
<td>Karaçam</td>
<td>81</td>
<td>21</td>
</tr>
<tr>
<td>Karaçam-Kavak</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Karaçam-Sarıçam</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Kavak</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Sarıçam</td>
<td>88</td>
<td>23</td>
</tr>
<tr>
<td>Sarıçam-Göknar</td>
<td>72</td>
<td>19</td>
</tr>
<tr>
<td>Göknar</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Toplam</td>
<td>377</td>
<td>100</td>
</tr>
</tbody>
</table>

Tablo : 16 – Havzada ağaç türlerinin alanları

Göknar ormanları havzada, Ovacık Krateri batısında, Yaylalar Krateri güneyinde ve havzanın kuzeybatısında görülür. Saf olarak az bulunurken, sarıçam ile birlikte oluşturduğu meşeler havzanın % 21’inde karışımıza çıkar.

Sarıçamlar havza batısında, Yaylalar Krateri çevresinde ve Çamlıdere güneybatısında bulunur. Ayrıca Ovacık Krateri çevresindeki yüksek yerlerde de bazen saf, bazen de göknar ile birlikte meşeler oluşturur.

Karaçam ormanları havzanın batısında, doğusunda ve kuzeyinde yükseltinin fazla olduğu yerlerde, sarıçam ormanlarını çevreleyecek şekilde dağılış gösterir. En geniş alan kapladığı yer, baraj gölü batısidir.

Grafik : 17 – Ağaç türlerinin yükseltiye göre dağılışları

Karışık türlerin bulunduğu meşcereler, saf meşcerelere göre yükselti açısından daha dar bir alanda görülür (Grafik 17).

Havzada ormanlardan sonra en geniş alan kaplayan arazileri meralar oluşturur. Meralar, Yaylalar Krateri tabanında, Ovacık Krateri çevresinde, Özmuş, Peçenek Köyleri arasındaki geniş bir alan oluştururken havzanın diğer kısımlarında ormanlar ile tarım alanları arasında şeritler halinde uzanır (Harita 17, Tablo 17).

Ziraat alanları, genellikle, alçak ve orta yükseltideki platolar üzerinde yoğunlaşmıştır. Bu alanlarda genellikle tahıl tarımı yapılır.

<table>
<thead>
<tr>
<th>Arazi Örtüsü</th>
<th>Alan (km²)</th>
<th>Alan %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orman Alanları</td>
<td>377</td>
<td>52</td>
</tr>
<tr>
<td>Mera Alanları</td>
<td>206</td>
<td>29</td>
</tr>
<tr>
<td>Ziraat Alanları</td>
<td>97</td>
<td>13</td>
</tr>
<tr>
<td>Kirgibayır Alanları</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>İskan Alanları</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Taşlık Alanlar</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Toplam</td>
<td>722</td>
<td>100</td>
</tr>
</tbody>
</table>

Tablo : 17 – Havzada arazi türleri

Baraj gölü doğusu ve kuzeyi erozyonun şiddetli olduğu alanlardır. Bu alanlarda bitki örtüsü çok zayıftır. Bu nedenle yamaçlar sel sularıyla kırıklayıcı görünümü kazanmıştır (Foto 19, 20, 21).
Yerleşmeler havzanın doğu kısmında genellikle köy özelliğindeyken, batıda yayla yerleşmeleri hakimdir. En yoğun yerleşim alanı, Çamlıdere ilçesi ve çevresindeki yoğunlaşmaktadır. Bu alanlar özellikle nüfus açısından da kalabalık yerlerdir.

Taşlık alanlar, baraj seti çevresinde ve fayların bulunduğu yerlerde yoğunlaşmaktadır. Genellikle volkanik kayaçlardan oluşan bu yerler bitki ve toprak örtüsünden yoksundur. Çok dik eğimler oluştururan bu alanlarda yaygın kayaç türü andezittir.

2.4.2. Usle C Faktörü

Havzada C faktörünün belirlenmesinde ve haritalanmasında, OGM’den elde edilen meşcere türlerini ve arazi kullanımını gösteren haritadan yararlanılmıştır.
C Faktörü belirlenirken bitki örtüsü türü, kapalılığı, yoğunluğu ve tahmini malç durumu değerlendirilmiştir. Bu işlemler esnasında arazi gözlemleri ve önceki çalışmalar yol gösterici olmuştur (Tablo 18).

<table>
<thead>
<tr>
<th>Sıra</th>
<th>Simge</th>
<th>Ağaç Türleri ve Arazi Kullanımı</th>
<th>Tepe Kapalılığı %</th>
<th>Çapı</th>
<th>C Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BÇk</td>
<td>Bozuk Karaçam</td>
<td>-</td>
<td>-</td>
<td>0,10</td>
</tr>
<tr>
<td>2</td>
<td>BÇkKv</td>
<td>Boz. Karaçam - Kavak</td>
<td>-</td>
<td>-</td>
<td>0,10</td>
</tr>
<tr>
<td>3</td>
<td>BÇkM</td>
<td>Bozuk Karaçam - Meşe</td>
<td>-</td>
<td>-</td>
<td>0,10</td>
</tr>
<tr>
<td>4</td>
<td>BÇs</td>
<td>Bozuk Sarıçam</td>
<td>-</td>
<td>-</td>
<td>0,10</td>
</tr>
<tr>
<td>5</td>
<td>BÇsM</td>
<td>Bozuk Sarıçam - Meşe</td>
<td>-</td>
<td>-</td>
<td>0,10</td>
</tr>
<tr>
<td>6</td>
<td>BG</td>
<td>Bozuk Göknan</td>
<td>-</td>
<td>-</td>
<td>0,10</td>
</tr>
<tr>
<td>7</td>
<td>BKv</td>
<td>Bozuk Kavak</td>
<td>-</td>
<td>-</td>
<td>0,10</td>
</tr>
<tr>
<td>8</td>
<td>BM</td>
<td>Bozuk Meşe</td>
<td>-</td>
<td>-</td>
<td>0,10</td>
</tr>
<tr>
<td>9</td>
<td>BMBt</td>
<td>Bozuk Meşe Baltalığı</td>
<td>-</td>
<td>-</td>
<td>0,10</td>
</tr>
<tr>
<td>10</td>
<td>ÇBÇs</td>
<td>Bozuk Sarıçam</td>
<td>-</td>
<td>-</td>
<td>0,11</td>
</tr>
<tr>
<td>11</td>
<td>ÇBÇsG</td>
<td>Bozuk Sarıçam – Gök.</td>
<td>-</td>
<td>-</td>
<td>0,11</td>
</tr>
<tr>
<td>12</td>
<td>ÇBG</td>
<td>Bozuk Göknan</td>
<td>-</td>
<td>-</td>
<td>0,11</td>
</tr>
<tr>
<td>13</td>
<td>ÇBMKv</td>
<td>Bozuk Meşe - Kavak</td>
<td>-</td>
<td>-</td>
<td>0,11</td>
</tr>
<tr>
<td>14</td>
<td>Çka</td>
<td>Karaçam</td>
<td>-</td>
<td>-</td>
<td>0,06</td>
</tr>
<tr>
<td>15</td>
<td>Çka0</td>
<td>Karaçam</td>
<td>-</td>
<td>< 8</td>
<td>0,05</td>
</tr>
<tr>
<td>16</td>
<td>Çka3</td>
<td>Karaçam</td>
<td>41 - 70</td>
<td>< 8</td>
<td>0,03</td>
</tr>
<tr>
<td>17</td>
<td>Çkb3</td>
<td>Karaçam</td>
<td>41 - 70</td>
<td>8 - 20</td>
<td>0,03</td>
</tr>
<tr>
<td>18</td>
<td>Çkc3</td>
<td>Karaçam</td>
<td>41 - 70</td>
<td>8 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>19</td>
<td>Çkc1</td>
<td>Karaçam</td>
<td>< 10</td>
<td>20 - 36</td>
<td>0,05</td>
</tr>
<tr>
<td>20</td>
<td>Çkc2</td>
<td>Karaçam</td>
<td>11 - 40</td>
<td>20 - 36</td>
<td>0,04</td>
</tr>
<tr>
<td>21</td>
<td>Çkc3</td>
<td>Karaçam</td>
<td>41 - 70</td>
<td>20 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>22</td>
<td>Çkcd1</td>
<td>Karaçam</td>
<td>< 10</td>
<td>20 - 52</td>
<td>0,06</td>
</tr>
<tr>
<td>23</td>
<td>Çkcd2</td>
<td>Karaçam</td>
<td>11 - 40</td>
<td>20 - 52</td>
<td>0,05</td>
</tr>
<tr>
<td>24</td>
<td>Çkcd3</td>
<td>Karaçam</td>
<td>41 - 70</td>
<td>20 - 52</td>
<td>0,04</td>
</tr>
<tr>
<td>25</td>
<td>ÇkÇsa</td>
<td>Karaçam - Sarıçam</td>
<td>-</td>
<td>< 8</td>
<td>0,03</td>
</tr>
<tr>
<td>26</td>
<td>ÇkÇsb3</td>
<td>Karaçam - Sarıçam</td>
<td>41 - 70</td>
<td>8 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>27</td>
<td>ÇkÇsc3</td>
<td>Karaçam - Sarıçam</td>
<td>41 - 70</td>
<td>20 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>28</td>
<td>ÇkÇscd1</td>
<td>Karaçam - Sarıçam</td>
<td>< 10</td>
<td>20 - 52</td>
<td>0,06</td>
</tr>
<tr>
<td>29</td>
<td>ÇkÇscd2</td>
<td>Karaçam - Sançam</td>
<td>11 - 40</td>
<td>36 - 52</td>
<td>0,05</td>
</tr>
<tr>
<td>30</td>
<td>Çkd1</td>
<td>Karaçam</td>
<td>< 10</td>
<td>36 - 52</td>
<td>0,06</td>
</tr>
<tr>
<td>31</td>
<td>ÇkKvb3</td>
<td>Karaçam - Kavak</td>
<td>41 - 70</td>
<td>8 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>32</td>
<td>ÇkKvc3</td>
<td>Karaçam - Kavak</td>
<td>41 - 70</td>
<td>20 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>33</td>
<td>Çsa</td>
<td>Sarıçam</td>
<td>-</td>
<td>< 8</td>
<td>0,05</td>
</tr>
<tr>
<td>34</td>
<td>Çsa0</td>
<td>Sarıçam</td>
<td>< 10</td>
<td>< 8</td>
<td>0,05</td>
</tr>
<tr>
<td>35</td>
<td>Çsa3</td>
<td>Sarıçam</td>
<td>41 - 70</td>
<td>< 8</td>
<td>0,03</td>
</tr>
<tr>
<td>36</td>
<td>Çsb3</td>
<td>Sarıçam</td>
<td>41 - 70</td>
<td>8 - 20</td>
<td>0,03</td>
</tr>
<tr>
<td>37</td>
<td>Çsb1</td>
<td>Sarıçam</td>
<td>< 10</td>
<td>8 - 20</td>
<td>0,06</td>
</tr>
<tr>
<td>38</td>
<td>Çsb3</td>
<td>Sarıçam</td>
<td>41 - 70</td>
<td>8 - 20</td>
<td>0,04</td>
</tr>
<tr>
<td>39</td>
<td>Çsb2</td>
<td>Sarıçam</td>
<td>11 - 40</td>
<td>8 - 36</td>
<td>0,05</td>
</tr>
</tbody>
</table>

2 Bu faktörün belirlenmesinde A.Ü. Çankırı Orman Fakültesi’nde Araştırma Görevlisi olarak görev yapan Sayın Ali Uğur ÖZCAN'dan yardım alınmıştır.
<table>
<thead>
<tr>
<th>No.</th>
<th>ÇsBc2</th>
<th>Sarıçam</th>
<th>11 - 40</th>
<th>20 - 36</th>
<th>0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Çsbç3</td>
<td>Sarıçam</td>
<td>41 - 70</td>
<td>8 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>42</td>
<td>Çsc1</td>
<td>Sarıçam</td>
<td>< 10</td>
<td>20 - 36</td>
<td>0,06</td>
</tr>
<tr>
<td>43</td>
<td>Çsc2</td>
<td>Sarıçam</td>
<td>11 - 40</td>
<td>20 - 36</td>
<td>0,05</td>
</tr>
<tr>
<td>44</td>
<td>Çsc2/Gb2</td>
<td>Sarıçam - Göknar</td>
<td>11 - 40</td>
<td>20 - 36</td>
<td>0,05</td>
</tr>
<tr>
<td>45</td>
<td>Çsc3</td>
<td>Sarıçam</td>
<td>41 - 70</td>
<td>20 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>46</td>
<td>Çscd1</td>
<td>Sarıçam</td>
<td>< 10</td>
<td>20 - 52</td>
<td>0,06</td>
</tr>
<tr>
<td>47</td>
<td>Çscd1/a</td>
<td>Sarıçam</td>
<td>< 10</td>
<td>20 - 52</td>
<td>0,05</td>
</tr>
<tr>
<td>48</td>
<td>Çscd1/Gb3</td>
<td>Sarıçam</td>
<td>11 - 40</td>
<td>20 - 52</td>
<td>0,03</td>
</tr>
<tr>
<td>49</td>
<td>Çscd2</td>
<td>Sarıçam</td>
<td>11 - 40</td>
<td>20 - 52</td>
<td>0,05</td>
</tr>
<tr>
<td>50</td>
<td>Çscd3</td>
<td>Sarıçam</td>
<td>41 - 70</td>
<td>20 - 52</td>
<td>0,03</td>
</tr>
<tr>
<td>51</td>
<td>ÇscKbc3</td>
<td>Sarıçam - Karaçam</td>
<td>41 - 70</td>
<td>8 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>52</td>
<td>ÇscKc2</td>
<td>Sarıçam - Karaçam</td>
<td>11 - 40</td>
<td>20 - 36</td>
<td>0,04</td>
</tr>
<tr>
<td>53</td>
<td>ÇscKc3</td>
<td>Sarıçam - Karaçam</td>
<td>41 - 70</td>
<td>20 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>54</td>
<td>ÇscKcd1</td>
<td>Sarıçam - Karaçam</td>
<td>< 10</td>
<td>20 - 52</td>
<td>0,05</td>
</tr>
<tr>
<td>55</td>
<td>ÇscKcd2</td>
<td>Sarıçam - Karaçam</td>
<td>11 - 40</td>
<td>20 - 52</td>
<td>0,04</td>
</tr>
<tr>
<td>56</td>
<td>ÇscKcd3</td>
<td>Sarıçam - Karaçam</td>
<td>41 - 70</td>
<td>20 - 52</td>
<td>0,03</td>
</tr>
<tr>
<td>57</td>
<td>Çsd/a</td>
<td>Sarıçam</td>
<td>-</td>
<td>< 8</td>
<td>0,03</td>
</tr>
<tr>
<td>58</td>
<td>Çsd/a3*</td>
<td>Sarıçam</td>
<td>41 - 70</td>
<td>< 8</td>
<td>0,03</td>
</tr>
<tr>
<td>59</td>
<td>Çsd/Çsga</td>
<td>Sarıçam - Göknar</td>
<td>-</td>
<td>< 8</td>
<td>0,03</td>
</tr>
<tr>
<td>60</td>
<td>Çsd/Çsga3</td>
<td>Sarıçam - Göknar</td>
<td>41 - 70</td>
<td>< 8</td>
<td>0,03</td>
</tr>
<tr>
<td>61</td>
<td>Çsd/GÇsa</td>
<td>Sarıçam - Göknar</td>
<td>-</td>
<td>< 8</td>
<td>0,03</td>
</tr>
<tr>
<td>62</td>
<td>Çsd1</td>
<td>Sarıçam</td>
<td>< 10</td>
<td>36 - 52</td>
<td>0,06</td>
</tr>
<tr>
<td>63</td>
<td>Çsd1/a</td>
<td>Sarıçam</td>
<td>< 10</td>
<td>36 - 52</td>
<td>0,05</td>
</tr>
<tr>
<td>64</td>
<td>Çsd1/a0</td>
<td>Sarıçam</td>
<td>< 10</td>
<td>36 - 52</td>
<td>0,05</td>
</tr>
<tr>
<td>65</td>
<td>Çsd1/Çsga0</td>
<td>Sarıçam - Göknar</td>
<td>< 10</td>
<td>36 - 52</td>
<td>0,04</td>
</tr>
<tr>
<td>66</td>
<td>Çsd1/Gb3</td>
<td>Sarıçam - Göknar</td>
<td>11 - 40</td>
<td>36 - 52</td>
<td>0,03</td>
</tr>
<tr>
<td>67</td>
<td>Çsgbc2</td>
<td>Sarıçam - Göknar</td>
<td>11 - 40</td>
<td>8 - 36</td>
<td>0,04</td>
</tr>
<tr>
<td>68</td>
<td>Çsgbc3</td>
<td>Sarıçam - Göknar</td>
<td>41 - 70</td>
<td>8 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>69</td>
<td>Çsgc2</td>
<td>Sarıçam - Göknar</td>
<td>11 - 40</td>
<td>20 - 36</td>
<td>0,04</td>
</tr>
<tr>
<td>70</td>
<td>Çsgc3</td>
<td>Sarıçam - Göknar</td>
<td>41 - 70</td>
<td>20 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>71</td>
<td>Çsgcd2</td>
<td>Sarıçam - Göknar</td>
<td>11 - 40</td>
<td>20 - 52</td>
<td>0,04</td>
</tr>
<tr>
<td>72</td>
<td>Çsgcd3</td>
<td>Sarıçam - Göknar</td>
<td>41 - 70</td>
<td>20 - 52</td>
<td>0,03</td>
</tr>
<tr>
<td>73</td>
<td>ÇsKvb3</td>
<td>Sarıçam - Karaçam</td>
<td>41 - 70</td>
<td>8 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>74</td>
<td>E</td>
<td>Kırılgıyırı Alanı</td>
<td>-</td>
<td>-</td>
<td>1,00</td>
</tr>
<tr>
<td>75</td>
<td>Ga2</td>
<td>Göknar</td>
<td>11 - 40</td>
<td>< 8</td>
<td>0,04</td>
</tr>
<tr>
<td>76</td>
<td>Gbc3</td>
<td>Göknar</td>
<td>41 - 70</td>
<td>8 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>77</td>
<td>Gc3</td>
<td>Göknar</td>
<td>41 - 70</td>
<td>20 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>78</td>
<td>Gcd3</td>
<td>Göknar</td>
<td>41 - 70</td>
<td>20 - 52</td>
<td>0,03</td>
</tr>
<tr>
<td>79</td>
<td>GÇbc3</td>
<td>Göknar - Sarıçam</td>
<td>41 - 70</td>
<td>8 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>80</td>
<td>GÇsb1</td>
<td>Göknar - Sarıçam</td>
<td>< 10</td>
<td>8 - 36</td>
<td>0,05</td>
</tr>
<tr>
<td>81</td>
<td>GÇsb1</td>
<td>Göknar - Sarıçam</td>
<td>< 10</td>
<td>8 - 36</td>
<td>0,05</td>
</tr>
<tr>
<td>82</td>
<td>GÇsb2</td>
<td>Göknar - Sarıçam</td>
<td>11 - 40</td>
<td>8 - 36</td>
<td>0,04</td>
</tr>
<tr>
<td>83</td>
<td>GÇsb2</td>
<td>Göknar - Sarıçam</td>
<td>11 - 40</td>
<td>8 - 36</td>
<td>0,04</td>
</tr>
<tr>
<td>84</td>
<td>GÇsb3</td>
<td>Göknar - Sarıçam</td>
<td>41 - 70</td>
<td>8 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>85</td>
<td>GÇsc3</td>
<td>Göknar - Sarıçam</td>
<td>41 - 70</td>
<td>20 - 36</td>
<td>0,03</td>
</tr>
<tr>
<td>86</td>
<td>GÇscd2</td>
<td>Göknar - Sarıçam</td>
<td>11 - 40</td>
<td>20 - 52</td>
<td>0,04</td>
</tr>
<tr>
<td>87</td>
<td>GÇscd3</td>
<td>Göknar - Sarıçam</td>
<td>41 - 70</td>
<td>20 - 52</td>
<td>0,03</td>
</tr>
<tr>
<td>88</td>
<td>I</td>
<td>İskan Alanı</td>
<td>-</td>
<td>-</td>
<td>0,50</td>
</tr>
<tr>
<td>89</td>
<td>Kvb2</td>
<td>Kavak</td>
<td>11 - 40</td>
<td>8 - 20</td>
<td>0,08</td>
</tr>
</tbody>
</table>
Elde edilen haritaya göre (Harita 18) havzada erozyon potansiyeli en yüksek alanlar, bitki örtüsünden yoksun kırgıbayır alanlardır. Bu alanlar daha önce söylenildiği gibi baraj gölü çevresindedir. Kırgıbayır alanları havzanın % 3,4'ünü oluşturmaktadır (Tablo 18, 19).

Erozyon potansiyelinin yüksek olduğu diğer alanlar ise başta ziraat alanları, iskân alanları ve orman toprağı olarak belirtilen meralardır. Bu alanların havzadaki oranı % 40'ı geçmektedir.

Taşlık alanlar havzada genellikle akarsular tarafından derince yarılmış ve derin vadilerin oluşturduğu yerlerdir. Bu alanların topografik olarak erozyona müsait olmasına rağmen, üzerinde toprak örtüsü yoktur. Bu nedenle USLE C değeri 0 olarak alınmış ve erozyon olmayan alanlar olarak nitelendirilmiştir (Tablo 18, 19).

<table>
<thead>
<tr>
<th>Arazi No</th>
<th>C Değeri</th>
<th>Alan (km²)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (taşlık)</td>
<td>0</td>
<td>7,4</td>
<td>1,0</td>
</tr>
<tr>
<td>2 (orman)</td>
<td>0,03</td>
<td>118,6</td>
<td>16,4</td>
</tr>
<tr>
<td>3 (orman)</td>
<td>0,04</td>
<td>19,1</td>
<td>2,6</td>
</tr>
<tr>
<td>4 (orman)</td>
<td>0,05</td>
<td>52,2</td>
<td>7,2</td>
</tr>
<tr>
<td>5 (orman)</td>
<td>0,06</td>
<td>20,0</td>
<td>2,8</td>
</tr>
<tr>
<td>6 (orman)</td>
<td>0,08</td>
<td>0,1</td>
<td>0,0</td>
</tr>
<tr>
<td>7 (orman)</td>
<td>0,1</td>
<td>161,7</td>
<td>22,4</td>
</tr>
<tr>
<td>8 (orman)</td>
<td>0,11</td>
<td>4,7</td>
<td>0,6</td>
</tr>
<tr>
<td>9 (mera)</td>
<td>0,15</td>
<td>206,4</td>
<td>28,6</td>
</tr>
<tr>
<td>10 (ziraat)</td>
<td>0,4</td>
<td>97,2</td>
<td>13,5</td>
</tr>
<tr>
<td>11 (y erleme)</td>
<td>0,5</td>
<td>10,0</td>
<td>1,4</td>
</tr>
<tr>
<td>12 (kır gıbayır)</td>
<td>1</td>
<td>24,3</td>
<td>3,4</td>
</tr>
<tr>
<td>Toplam</td>
<td>0,17</td>
<td>722,0</td>
<td>100</td>
</tr>
</tbody>
</table>

Tablo : 18 – Havzada arazi örtüsüne göre C değerleri

Tablo : 19 – Havzada USLE C değerinin dağılımı
2.4.3. Usle P Faktörü

Havzadaki tarım alanlarında USLE eşitliğe göre erozyon kontrol uygulamalarının bulunmaması nedeniyle P faktörü hesaplamaya katılmamıştır (Burada, eşyökselti eğrilerine paralel sürüm, teraslama vb. gibi yöntemler uygulanmamaktadır).

1990’lı yıllar öncesi özellikle ormanlardan kaçak kesim yapıldığı, meralarda yoğun hayvan otlatıldığı yöre sakinlerinden alınan bilgilerden anlaşılmaktadır.

Foto : 22, 23 – Havzada küçükbaş ve büyükbaş hayvancılık

Havzada orman kesimi, Çamlıdere Orman İşletmesine bağlı olarak belli bir programa göre, yaz aylarında yapılmakta ve bu alanlar tekrar açılardığına seyredilir ve steplerin arttığı yerlerde yapılan küçükbaş hayvancılık yükseklerde ormanların yoğunlaşmasına bağlı olarak yerini Büyükbaş hayvancılığa bırakır. Büyükbaş hayvancılık özellikle havza batisındaki yaylalarda görülmektedir.

Havzada orman kesimi, Çamlıdere Orman İşletmesine bağlı olarak belli bir programa göre, yaz aylarında yapılmakta ve bu alanlar tekrar açılıp tekrar açılıдолmaktadır. Aynı şekilde ormanlarda gençleştirme çalışmaları da mevcuttur

Foto : 24, 25 – Havzada orman kesimi ve ağaçlandırma alanları

Foto: 24, 25 – Havzada orman kesimi ve ağaçlandırma alanları

Bu bilgiler Çam. Orm. İşlt. Müdürü Halil YÖRÜKOĞLU’ndan alınmıştır.

4 Bu bilgiler DSİ 5. Bölge Rüsubat ve Erozyon Kontrolü Şube Müdürü, M. Ramiz AKIN’dan alınmıştır.
Ayrıca Ovacık Krateri çıkışında Dörtkonak yaylası çevresindeki mera alanlarında da teraslama işlemi yapılmıştır. Fakat bu alanlar ağaçlandırılmamıştır. Bunlara ek olarak bu alandaki derelere sedimenti tutacak küçük bentalerde yapılmıştır (Foto 26, 27).

Foto : 26, 27 – Havzadaki meralarda yapılan teraslar ve bentaler

Ovacık Krateri çevresinde bu yıllar arasında bitki yoğunluğu açısından büyük farklar vardır. Özellikle bu alanda kavakların alanı sürekli genişlemektedir. Bunun yanında Yaylalar Krateri çevresindeki orman alanları da kratere doğru genişlemektedir.

2.5. HİDROGRAFİK ÖZELLİKLER ve SEDİMENT İLETİM ORANI

2.5.1. Hidrografik Özellikler

Daha önce de söylendiği gibi Çamlıdere Barajı Havzası Sakarya Nehri su toplama havzasının bir bölümü oluşturmaktadır. Havzanın suları ve dolyayısıyla erozyona uğrayan malzemeler, baraj yapılmadan önce Bayındır çayı ile havza dışına taşınmaktadır. Barajın yapılmasıyla havza suları 5 ana tali havzadaki akarsularca taşınmaktadır (Harita 21).

Bu akarsular doğudan batıya doğru, Büyük Dere, Kocaağaç Deresi, Derecik Deresi ile Gürlük ve Akkaya dereleridir.

Akkaya Deresi havzanın güneyindeki, Gürlük deresi batısındaki, Derecik deresi kuzeyindeki, Kocaağaç ve Büyük Dere de havza suları baraj gölünne taşır.

Havza en küçük alanı 1 km2 den başlayan, en büyük alanı 5 km2 olan toplam 430 tane tali akarsu havzasından oluşmaktadır. Bunlar genellikle yan derelerin havzalarıdır.

Havzada Strahler’e (1996) göre oluşturduğumuz akarsu derecelerinden, 1 ve 2. derecedeki dereler yaz kuraklığı nedeniyle yazın akış göstermezler, 3, 4 ve 5. derecedeki akarsular yazın da akışlarına devam ederler (Harita 21).

Havzadaki akarsuların akımları, Mayıs ve Haziran aylarında en yüksek seviyeye ulaşmaktadır.
2.5.2. Sediment İletim Oranı – SİO (Sediment Delivery Rate – SDR)

![Şekil 9 – Aşınım ve Birikim Alanları](Wall vd., 1997).

Bu açıdan bakıldığında havza birikim ve aşınım alanları olmak üzere iki ana bölüme ayrılabilir. Fakat USLE eşitliği havzaya bu açıdan bir bakış getirmemektedir. Havzanın tamamını erozyon aşınma alanı olarak görür.

Diğer bir yöntem de rezervuarın bir baraj veya göl olması durumunda, tabanda biriken tortulların kalınlıklarının ölçümüdür. Bu sayede birim zamanda oluşan tortul kalınlığı ölçülür, bunun hacim ağırlığı belirlenerek, baraja gelen sedimentin oranı tahmin edilir (Hay, 1994).

5 Bu yöntem DSİ tarafından bazı barajlar için uygulanmıştır.
Bunlardan başka SİO’nun belirlenmesinde bazı istatistiksel yöntemler de vardır. Bunlar var olan çalışmalara bağlı olarak bazı parametrelerin sediment iletim oranı hesaplamaları için kullanılabileceği temeline dayanır. Bunlardan ilk hava ya da erozyona uğrayan sahanın alanına bağlı olarak geliştirilen. Bunlardan en fazla tanınanları:

a) Renfro (1975) Teksas’ta Blackland Preri alanlarında 14 havzanın verilerine bağlı olarak, r2=0,92 ile geliştirdiği bir eşitlik. Bu eşitliğe göre

\[\log (\text{SİO}) = 1,7935 - 0,14191 \log A \]

b) Vanoni’nin (1975) 300 havzanın incelenmesiyle oluşturduğu eşitlikte,

\[\text{SİO} = 0,42A^{-0.125} \]

c) Boyce’un (1975) geliştirdiği eşitlikte,

\[\text{SİO} = 0,3750A^{-0.2382} \]

d) Amerika Birleşik Devletleri Tarım Bakanlığı’nın geliştirdiği eşitlik ise (USDA, 1972)

\[\text{SİO} = 0,5656A^{-0.11} \]

Eşitliklerin hepsinde “A” kilometrekare olarak havza alanını ifade etmektedir.

Fakat bu eşitliklerde havzanın yükseltisi, iklimi, eğimi, bitki örtüsü, jeolojik özellikleri, toprak özellikle ri ve özellikle geçirgenlik göz önüne alınmaz.

Bunlardan başka;

Yağış ve akım ilişkilerine,

Eğim, yarılma, topografik yazı (yükselti farkı),

Havzadaki toprakların tekstürüne,

bağlı olarak geliştirilen birçok eşitlik bulunmaktadır (Da Ouyang ve Bartholic, 2005).
Burada önemli olan benzer havza özellikleridir. Aynı bölgede bir kaç tali akarsu havzasındaki iletime bağlı olarak geliştirilen eşitlikler, bu bölgenin diğer havzaları için kullanılırsa çok büyük farklılıklar ortaya çıkmaz fakat özellikleri farklı bir bölgede uygulanması uygun değildir.

$$ SIO = \exp \left[-\beta \frac{L_i}{\sqrt{S_i}} \right] $$

Burada;

$SIO = $ Her bir hücre için belirlenmiş sediment iletim oranı

$L_i = $ Hücre su yolu uzunluğu (m) (Flow length).

$S_i = $ Hücre eğimi (%).

β ise akım ve sediment taşınaınına bağlı olarak geliştirilen bir katsayıdır ve 0,1 ile 1,6 arasında değişmektedir (İrvem ve Tülücu, 2001). Buradan da anlaşılacağı gibi bu katsayının belirlenebilmesi için havzaya ait akım ve sediment ölçümlerine ihtiyaç vardır.

Çalışma alanımızda bu türden ölçümlerin sadece akım için yapılması ve sedimentte ait bilgilerin uzak bir istasyon için mevcut olması bizi bu formülün daha sonra geliştirilen şeklini kullanmaya yönlendirmiştir. Bu yöntemde göre β katsayısının belirlenmesi için Usle R değerinin kullanılması gerekmektedir (Ferro vd., 2001). Buna göre

$$ \beta = 0,2802R^{-0,6689} $$ eşitiği kullanılmıştır.
Şekil : 10 - Kullanılan SİO Modeli Akış Şeması

SİO eşitliklerine göre havzadaki iletim oranı farklılık göstermektedir. En yüksek değer Bagarello ve Ferro (1999)'un geliştirdiği modelde karşımaza çıkarken, en düşük değer, Renfro (1975)'nin geliştirdiği eşitlikte hesaplanmıştır.

Hesaplanan sediment iletim oranlarındaki durum geliştirilen eşitlikler bağlı olarak şekillenmektedir. Bu eşitliklere göre tali havzaların alanları büyüdükçe SİO düşmektedir. Aların küçülmesine bağlı olarak SİO 1'e yaklaşmaktadır.

İkinci ölçüt eğimidir ve eğimin artışına bağlı olarak yerçekiminin de etkisiyle SİO artmaktadır. Son ölçüt ise hücre su yolu uzunluğudur. Buna göre de akarsu ve derelerden uzaklaştırıldı SİO oranı düşmektedir.

Bu üç ölçüte göre hazırlanan haritaya göre (Harita 26) eğimin fazla olduğu akarsu vadilerinde SİO artmaktadır. Bunda özellikle hücre suyolu uzunluğunun az olmasının da etkisi vardır. Buna karşın krater tabanlarında ve baraj göl çevresindeki az eğimli alanlarda SİO’nun düşük olduğu görülmektedir.

Burada söylenmesi gereken diğer bir nokta, özellikle havzada baraj gölünden uzaklaştırıkça R değerinin artmasına bağlı olarak SİO’nun da yükselmesidir.
SONUÇ ve TARTIŞMA

A. TOPRAK KAYIPLARI ve KONUMU

Yıllık ortalama toprak kayıplar USLE eşitliğine göre elde edilen R,K,LS ve C haritaların çarpımı sonucunda hesaplanmıştır (Şekil 11).

Şekil 11 – USLE eşitliğinin elde edileme şeması

Bunların hepsi birleştirildiğinde (Harita 26), erozyonun şiddetli olduğu alanlar şöyle sıralanmaktadır.

Ankara-İstanbul otoyolu doğusu havzada erozyon açısından bir hat çizmekte ve doğusunda erozyon artarken, batıda erozyon azalmaktadır.

Ovacık Krateri çıkışı şiddetli erozyon alanıdır. Bunda belirleyici olan faktör topografyadır (Harita 27 – Siyah 3).

Havza güneyinde, baraj gölünün doğusunda Elmalı ve Kavutçu köyleri civarı erozyonun şiddetli olduğu diğer bir alandır ve burada topografik şartlar, toprak duyarlılığı ve R değeri etkili olmuştur (Harita 27 – Siyah 4).

Erozyonun az olduğu alanlardan ilki Yaylalar Krateri tabanıdır. Çünkü bu alanda eğim oldukça düşüktür (Harita 27 – Beyaz 1).
Baraj gölünün doğusu haricindeki tüm çevresi erozyon açısından tehlikesiz alandır. Bunun nedeni bu alanda LS değerinin düşük olması ve toprak duyarlılığının az olmasıdır (Harita 27 – Beyaz 2).

Havza kuzeybatısı da erozyon açısından tehlikesiz alanlar içerisindedir. Bu alanda bitki örtüsünün yoğun olması erozyonu azaltmaktadır (Harita 27 – Beyaz 3).

Havzada erozyonu etkileyen iki ana etmen bitki örtüsü ve topografiyadır. Toprak duyarlılığı 0,01 ile 0,3 arasında değiştiği için yüksek belirleme gücüne sahiptir. Fakat C değeri yani bitki örtüsü 0 ile 1 arasında değişmekte ve belirleyiciliği artmaktadır. Yine LS yani topografiyının etkisi de 50 gibi yüksek değerlere ulaşabilmektedir.

Havzada yıllık ortalama toprak kaybı 530.000 ton olarak hesaplanmıştır (Ortala 7,3 ton/ha). Türkiye'de ortalama yıllık toprak kaybı 6,5 ton/ha olarak alındığında, havzadaki toprak kaybının Türkiye ortalamanın biraz üstünde olduğu anlaşılmaktadır.

Havzada 10 tonun üzerinde toprak kaybı olan yerlerin oranı, % 21 civarındadır. 5 tonun altında toprak kaybı olan yerler ise havza alanının % 56'sına denk gelmektedir (Tablo 20).

<table>
<thead>
<tr>
<th>Toprak Kaybı (ton/ha)</th>
<th>Alan km²</th>
<th>%</th>
<th>Birikimli % (Ters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 2</td>
<td>178</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>2,1 – 5</td>
<td>226</td>
<td>31</td>
<td>75</td>
</tr>
<tr>
<td>5,1 – 10</td>
<td>170</td>
<td>23</td>
<td>44</td>
</tr>
<tr>
<td>10,1 – 15</td>
<td>68</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>15,1 – 20</td>
<td>32</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>20,1 – 30</td>
<td>27</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>30,1+</td>
<td>21</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Toplam</td>
<td>722</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Tablo : 20 – Havzada yıllık ortalama toprak kayiplarına göre alanlar
Çok şiddetli toprak kaybının olduğu yerler havzanın % 10’u civarındadır. Havzada 2-5 ton arasında toprak kaybı olan yerler oldukça genişştir.

Havzada kaybolan toprakların 180.000 tonu orman alanlarında erozyona uğramaktadır. Orman alanlarından bu kadar yüksek erozyon miktarının olması, orman alanlarının geniş olmasından ve topografyanın erozyona müsait olasından kaynaklanmaktadır (Tablo 21).

<table>
<thead>
<tr>
<th>Arazi</th>
<th>Alan (km2)</th>
<th>Ortalama (ton/ha)</th>
<th>Toprak Kaybı (ton/yıl)</th>
<th>Toprak Kaybı %</th>
<th>Birikimli %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taşılk</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>İskan</td>
<td>10</td>
<td>15</td>
<td>15354</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Kırğıbayır</td>
<td>24</td>
<td>34</td>
<td>83018</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Ziraat</td>
<td>97</td>
<td>10</td>
<td>100436</td>
<td>19</td>
<td>38</td>
</tr>
<tr>
<td>Mera</td>
<td>206</td>
<td>7</td>
<td>149732</td>
<td>28</td>
<td>66</td>
</tr>
<tr>
<td>Orman</td>
<td>377</td>
<td>5</td>
<td>180874</td>
<td>34</td>
<td>100</td>
</tr>
<tr>
<td>Toplam</td>
<td>722</td>
<td>7,3</td>
<td>529272</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Tablo : 21 – Arazi örtüsüne göre toprak kayıpları

Toplam toprak kaybının en fazla olduğu alanlar, ormanlardan sonra, meralar, ziraat alanları ve bitki örtüsünden mahrum, kırğıbayır alanlardır. Bu kırğıbayır alanları yıllık ortalama toprak kaybı 34 ton/ha gibi bir değerle çok şiddetli erozyon alanları çıkmaktadır (Tablo 21). Bu alanlar havzanın % 3,4’ünü kaplamlmasına rağmen toplam erozyonun % 16’ısı bu alanlardan kaynaklanır.

Bu alanlar şiddetli erozyonun görüldüğü en geniş yerlerdir (Tablo 22).

<table>
<thead>
<tr>
<th>Sınıflar</th>
<th>kırğıbayır</th>
<th>iskan</th>
<th>ziraat</th>
<th>mera</th>
<th>orman</th>
<th>toplam</th>
<th>toplam</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>169,4</td>
<td>817,5</td>
<td>1.547,2</td>
<td>4.542,3</td>
<td>10.833,3</td>
<td>17.910</td>
<td>alan (ha)</td>
</tr>
<tr>
<td>0-2</td>
<td>0,2</td>
<td>0,3</td>
<td>1,1</td>
<td>6,3</td>
<td>15,0</td>
<td>25</td>
<td>oran %</td>
</tr>
<tr>
<td>2,1-5</td>
<td>309,3</td>
<td>157,4</td>
<td>2.322,3</td>
<td>5.698,4</td>
<td>14.037,2</td>
<td>22.525</td>
<td>alan (ha)</td>
</tr>
<tr>
<td>2,1-5</td>
<td>0,4</td>
<td>0,2</td>
<td>3,2</td>
<td>7,9</td>
<td>19,5</td>
<td>31</td>
<td>oran %</td>
</tr>
<tr>
<td>5,1-10</td>
<td>283,7</td>
<td>187,3</td>
<td>2.257,6</td>
<td>5.399,1</td>
<td>8.744,8</td>
<td>16.873</td>
<td>alan (ha)</td>
</tr>
<tr>
<td>5,1-10</td>
<td>0,4</td>
<td>0,3</td>
<td>3,1</td>
<td>7,5</td>
<td>12,1</td>
<td>23</td>
<td>oran %</td>
</tr>
<tr>
<td>10,1-15</td>
<td>193,2</td>
<td>181,2</td>
<td>1.369,8</td>
<td>2.501,4</td>
<td>2.548,3</td>
<td>6.794</td>
<td>alan (ha)</td>
</tr>
<tr>
<td>10,1-15</td>
<td>0,3</td>
<td>0,3</td>
<td>1,9</td>
<td>3,5</td>
<td>3,5</td>
<td>9</td>
<td>oran %</td>
</tr>
<tr>
<td>15,1-20</td>
<td>185,8</td>
<td>127,2</td>
<td>830,6</td>
<td>1.191,4</td>
<td>894,9</td>
<td>3.230</td>
<td>alan (ha)</td>
</tr>
<tr>
<td>15,1-21</td>
<td>0,3</td>
<td>0,2</td>
<td>1,2</td>
<td>1,7</td>
<td>1,2</td>
<td>4</td>
<td>oran %</td>
</tr>
<tr>
<td>20,1-30</td>
<td>312,7</td>
<td>139,5</td>
<td>824,8</td>
<td>937,2</td>
<td>491,1</td>
<td>2.705</td>
<td>alan (ha)</td>
</tr>
<tr>
<td>20,1-31</td>
<td>0,4</td>
<td>0,2</td>
<td>1,1</td>
<td>1,3</td>
<td>0,7</td>
<td>4</td>
<td>oran %</td>
</tr>
<tr>
<td>30,1+</td>
<td>975,9</td>
<td>124,5</td>
<td>552,9</td>
<td>348,1</td>
<td>100,2</td>
<td>2.102</td>
<td>alan (ha)</td>
</tr>
<tr>
<td>30,1+</td>
<td>1,4</td>
<td>0,2</td>
<td>0,8</td>
<td>0,5</td>
<td>0,1</td>
<td>3</td>
<td>oran %</td>
</tr>
<tr>
<td>Toplam</td>
<td>2.430</td>
<td>1.735</td>
<td>9.705</td>
<td>20.618</td>
<td>37.650</td>
<td>72.137</td>
<td>alan (ha)</td>
</tr>
<tr>
<td>Toplam</td>
<td>3</td>
<td>2</td>
<td>13</td>
<td>29</td>
<td>52</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Tablo : 22 – Toprak kaybı sınıfları ve ara az örtüsüne göre dağılışı
Ziraat alanlarında yıllık ortalama 10 ton/ha toprak, erozyonla taşınmaktadır. Bu değer, toprak toleransı 5 ton alındığında oldukça yüksektir. Ziraat alanları, havzanın % 13’ünü oluşturmasına rağmen toplam erozyonun % 19’u bu alanlardan kaynaklanmaktadır (Tablo 21, 22).

Yıllık ortalama toprak kaybının yüksek olduğu diğer yerler yerleşmeleridir. Fakat bu alanlar havzadaki toplam toprak kaybı açısından çok önemli bir yere sahip değildir. Çünkü havzanın ancak % 2’sini oluşturur ve toplam erozyonun da % 3’ü bu alanlardan meydana gelir.

Havzada orman alanlarından oluşan toprak kaybının üçte biri meşe alanlarından erozyona uğramaktadır. Bunda alanın geniş olması ve meşelerin bozuk baltalık şeklinde olmasının büyük etkisi vardır.

<table>
<thead>
<tr>
<th>Arazı</th>
<th>Alan (km²)</th>
<th>Ortalama (ton/ha)</th>
<th>Toprak Kaybı (ton/yıl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karaçam-Kavak</td>
<td>2</td>
<td>5</td>
<td>1064</td>
</tr>
<tr>
<td>Sarıçam-Karaçam</td>
<td>7</td>
<td>3</td>
<td>2023</td>
</tr>
<tr>
<td>Kavak</td>
<td>6</td>
<td>10</td>
<td>5479</td>
</tr>
<tr>
<td>Göknar</td>
<td>8</td>
<td>10</td>
<td>8070</td>
</tr>
<tr>
<td>Sarıçam-Göknar</td>
<td>72</td>
<td>4</td>
<td>28150</td>
</tr>
<tr>
<td>Karaçam</td>
<td>81</td>
<td>4</td>
<td>34218</td>
</tr>
<tr>
<td>Sarıçam</td>
<td>88</td>
<td>5</td>
<td>44671</td>
</tr>
<tr>
<td>Meşe</td>
<td>113</td>
<td>5</td>
<td>57198</td>
</tr>
<tr>
<td>Toplam</td>
<td>377</td>
<td>5</td>
<td>180874</td>
</tr>
</tbody>
</table>

Tablo : 23 – Orman alanlarındaki toprak kayıpları

Karasıık meşelerlerde de yıllık ortalama toprak kaybı miktarı düşmekteedir.
B. BARAJ ÖMRÜ

Akarsular üzerinde içme, kullanma, tarım ve endüstrinin su ihtiyaçlarını karşılama, enerji üretimi, taşın kontrolü gibi çok çeşitli amaçlarla barajlar ve göletler yapılmaktadır. Hangi amaca yönelik olursa olsun, sedimentasyon bilgisinin azlığından dolayı bu yapıları besleyen akarsuların getirdiği kum, silt, kil ve çakıl gibi katı maddeler baraj gölleri doldurmakta, depolama kapasitelerini azaltmaya ve bunun sonucu olarak barajların ekonomik ömrüleri kısaltmaktadır. Bu konu, yarı kurak bir iklimin egemen olduğu ve bununla birlikte karmaşık bir topografik yapıya sahip olan ülkemizde son derece önem kazanmaktadır (Seyrek vd., 2006).

Bu nedenle baraj ve diğer yapıların inşasına karar vermeden önce bunların verimliliklerinin bilinmesi gerekir. Verimlilik kapsamında düşünülebilecek baraj ömrünü hesaplamalarının sağlıklı bir şekilde yapılması, karar aşamasında oldukça etkili olacaktır.

Ölü hacim taşınan çakıl, kum, silt ile dolduğu zaman barajın ekonomik ömrünün bittiği anlamına gelir (Şekil 12). Bu nedenle ölü hacmi...
dolduracak materyalin ne kadar sürede taşınacağını hesaplanırsa barajın ekonomik ömrü hesaplanmış olacaktır.

Ölü hacim DSİ tarafından,

\[V_0 = Y \times r \times Ad \]
olarak hesaplanmaktadır. Burada Y baraj için bicilen ekonomik ömrü, r yıllık sediment verimini \((m^3/km^2/yıl) \), Vo iseölü hacmi ifade etmektedir (DSİ, 2000).

Bu çalışmada Çamlidere Barajınınölü hacmi,

\[Òh = (SY_y - OSY_y) \times SY_a \]
formülü kullanılarak hesaplanmıştır (Burada, \(\text{Öh} - \)ölü hacmi, \(SY_y - \) Su yapısı kotu yükseltisi, \(OSY_y - \) Su Yapısı kotuna bağlı olarak oluşturulan hayali göllen ortalama yükseltisi, \(SY_a \) ise, Su Yapısı kotuna bağlı olarak oluşturulan hayali göllen alanını ifade etmektedir. Hesaplarda aynı birim kullanılmalıdır, metre, metrekare, metreküp)

Buna göre barajın hacmi 95 hm\(^3\) olarak hesaplanmıştır.

Baraja toplam 716.000 ton toprak taşınmış kabul edilmiştir (530.000*1,35 = 715,5 ton/yıl). Bu toprağın hacim ağırlığı 1,6 alınmıştır (Akalan, 1987).

Buna göre toprak hacmi ve sediment iletim oranlarına bağlı olarak hesaplanan baraj ömrüleri aşağıda sunulmuştur.

<table>
<thead>
<tr>
<th>SİO</th>
<th>Kullanım Şekli</th>
<th>Toprak Kay. (ton/yıl)</th>
<th>SİO'lu Topr. Kaybı (Ton/yıl)</th>
<th>Toprak Hacmi m(^3)/yıl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferro vd (1998)</td>
<td>SİO Haritası</td>
<td>529.272</td>
<td>482.939</td>
<td>301.837</td>
</tr>
<tr>
<td>USDA (1972)</td>
<td>SİO Haritası</td>
<td>529.272</td>
<td>276.569</td>
<td>172.856</td>
</tr>
<tr>
<td>Vanoni (1975)</td>
<td>SİO Haritası</td>
<td>529.272</td>
<td>203.239</td>
<td>127.024</td>
</tr>
<tr>
<td>Boyce (1975)</td>
<td>SİO Haritası</td>
<td>529.272</td>
<td>168.432</td>
<td>105.270</td>
</tr>
<tr>
<td>Renfro (1975)</td>
<td>SİO Haritası</td>
<td>529.272</td>
<td>144.314</td>
<td>90.196</td>
</tr>
</tbody>
</table>

Tablo : 24 – SİO eşitliklerine göre baraja taşınan toprak miktarları

<table>
<thead>
<tr>
<th>SİO</th>
<th>Toprak Hacmi m(^3)/yıl</th>
<th>USLE + % 35 (m(^3)/yıl)</th>
<th>Hacim m(^3)</th>
<th>Baraj Ömrü (Yıl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferro vd. (1998)</td>
<td>301.837</td>
<td>407.480</td>
<td>0.41</td>
<td>233</td>
</tr>
<tr>
<td>USDA (1972)</td>
<td>172.856</td>
<td>233.355</td>
<td>0.23</td>
<td>407</td>
</tr>
<tr>
<td>Vanoni (1975)</td>
<td>127.024</td>
<td>171.483</td>
<td>0.17</td>
<td>554</td>
</tr>
<tr>
<td>Boyce (1975)</td>
<td>105.270</td>
<td>142.115</td>
<td>0.14</td>
<td>668</td>
</tr>
<tr>
<td>Renfro (1975)</td>
<td>90.196</td>
<td>121.765</td>
<td>0.12</td>
<td>780</td>
</tr>
</tbody>
</table>

Tablo : 25 – SİO eşitliklerine Çamlidere Barajının ömrüleri
KAYNAKÇA

Aküzüm, T., Öztürk, F., 1996, Topraksu Yapıları (Genişletilmiş II. Baskı), A.Ü. Ziraat Fak. Yayınları No: 1448, Ders Kitabı: 428, Ankara

Balcı N., Ökten, Y., 1987, Sel Kontrolü, KTÜ Basımevi, Trabzon

Cambazoğlu, M.K., Göğüş, M., 2004, Sediment Yield of Basin in the Western Black Sea Region of Turkey, Turkish J. Eng. Env. Sci.28, TUBİTaK., Ankara

Çeliker, A., Anaç, H., 2005 , Erozyon, Tarımsal Ekonomi Araştırma Enstitüsü

DSİ, 2000, Hidroloji Seminerleri, Etüt ve Plan Dairesi Başkanlığı, İstanbul

Erinç, S., 1996, Klimatoloji Metotları, Çantay Kitbevi, İstanbul

Erol, O., 2000, Genel Klimatoloji, Ankara

Erpul, G., 2006, Su Erozyonu Tahmin Modelleri Dersi Notları (Yüksek Lisans), Basılmamış, Ankara

Flanagan, D.C., Nearing, M.A., 1995, WEPP Erosion Model, National Soil Erosion Research Laboratory, 1196 Building SOIL, West Lafayette, IN 47907-1196 USA

Fournier, F., 1960, Climat et Erosion, Universitaries de France, Paris

Hat A.Ş., 2002, Uzaktan Algılama (Microimage TNT Mips Uygulamaları), Ankara
Hay, B.J., 1994, “Sediment and water discharge rates of Turkish Blacksea Rivers before and after hydropower dam construction”, Environmental Geology, S.23, s.276-283, Massachusetts

Kalin, L., 2003, Evaluation of Sediment Transport Models and Comparative Application of Two Watershed Models, National Risk Management Research Laboratory,

Lal, R.,1988, Soil Erosion Research Methods, Soil and Water Conservation Society, Netherland

Mater, B., 1987, Toprak Oluşumu, Erozyonu, İzmir

Renfro, G.W., 1975, Use Of Erosion Equation and Sediment Delivery Ratios for Predicting Sediment Yield. In Present and Prospective Technology for Predicting Department of Agriculture, Washington D.C.

Seyrek, K., Dinçsoy Y., Hatipoğlu, M., 2006, İvriz Baraj Havzasında Coğrafi Bilgi Sistemi Kullanılarak Erozyon Risk Haritasının Hazırlanması, DSİ Bülteni, Ankara (Baskıda)

Svetla. Rousseva, Asen Lazarov, Vihra Stefanova, Ilia Malinov, 2006, Soil Erosion Risk Assessments in Bulgaria,

ÖZET

Elde edilen değerler USLE eşitliğine bağlı olarak değerlendirilmiş ve havzadaki erozyonun şiddetı ve miktarı belirlenmiştir. Ayrıca baraj yapımından önceki topografiya haritasından elde edilen bilgilere ve barajın su alma yapısının özelliklerine bağlı olarak, ölü hacım hesaplarak, barajın ekonomik ömrü hesaplanmaya çalışılmıştır.

Elde edilen sonuçlara göre havzada yılda 716,000 ton toprak kaybolmaktadır. Bunun % 34'ü orman alanlarından, % 28'i meralardan, % 19'u tarım alanlarından, % 16'sı krgbayır (badlands) alanlarından, % 3'ü de yerleşme alanlarından kaynaklanmaktadır. Erozyonun en şiddetli olduğu yerlerin başında 34 ton/ha ile krgbayır alanları gelmektedir. Bunu 15 ton ile yerleşme alanları, 10 ton ile tarım alanları, 7 ton ile mera alanları ve 5 ton ile de orman alanları takip etmektedir.

SUMMARY

USLE (Universal Soil Loss Equitation) was used in this research which has been prepared for determining amount and intensity of erosion at the Çamlıdere Dam Basin. We used precipitation data for calculating Fournier Index which are belong the meteorological station neighborhood the dam lake basin. Then we calculated USLE R factor. USLE K factor was calculated form the data which belong the sample form the dam lake basin. And USLE LS factor was calculated form the DEM digitalized from the map which was prepared by HGK (General Command of Mapping - Turkey).

USLE was calculated by determined factors R.K.LS.C. (The P factor was not used.) Then we realized the USLE map and determined the hazard region. We used the topographic map which was produced before building the dam for calculating dam dead volume. So we could calculate the dam economic life.

The determined results show that there is 716,000 ton/ha soil loses in the dam lake basin. This lose is % 34 from the forests that has different characters. % 28 soil loss from pasture lands when % 19 loses from agriculture lands and % 15 from badlands. The fast soil lose is from badlands (34 ton-m/ha). A rural area is follow the badlands with 15 ton-m/ha soils lose.

We used the USLE results and sediment delivery ratios results for calculating the dam lake productivity life and obtained 5 different lives. According to Bagerello and Ferro (1999) the life is 233 years when USDA (1972) SDR shows 407 years. Calculated with Vanoni (1975) SDR, the life is 554 years when Boyce (1975) and Renfro (1975) SDR show 668 and 780 years.