Air sacs (*Sacci pneumatici*) in mallard ducks (*Anas platyrhynchos*)

Aysun ÇEVİK DEMİRKAN¹, R. Merih HAZIROĞLU², İbrahim KÜRTÜL³

¹Department of Anatomy, Faculty of Veterinary Medicine, Kocatepe University, Afyon, Turkey; ²Department of Anatomy, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey; ³Department of Anatomy, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey.

Summary: This study aimed to observe the air sacs (*Sacci pneumatici*) in mature Mallard ducks (*Anas platyrhynchos*). After animals (*n*=9) were euthanised by combination of ketamine 60 mg/kg and xylazine 6 mg/kg, methylmethacrylate (Takilon) was injected by way of trachea. They were put in a cold-aired room for two months for polymerization. Then, they were masonerised with 3% potassium hydroxide at 40 °C, cleaned with tap water, coloured by glass dye and photographed. Morphology of the cervical and clavicular air sacs was consistent with previous studies. The cranial thoracic air sacs were smaller than the caudal sacs pneumatising the second to seventh ribs by their diverticula. The caudal thoracic air sac had no diverticulum. The left abdominal air sac had two portions, i.e. the cranial and caudal sacs; the latter aerating the last three ribs and synsacrum, the former being smaller and narrower. Moreover, the right abdominal air sac was bigger than the left sac.

Key words: Air sac, mallard duck.

Yeşil başlı ördekte (*Anas platyrhynchos*) hava keseleri (*Sacci pneumatici*)

Anahtar sözcükler: Hava kesesi, yeşil başlı ördek.

Introduction

Air sacs in avian species besides respiration function have very important roles on the thermoregulation, regulation of the body weight during the flight, and voice production (7, 20). Not being directly related to each other, they are connected through the extra-pulmonary extensions of the bronchi. These extending sacs invade around several visceral organs and into many of the skeleton bones in different levels (6, 8, 12). The volume of the air sacs varies greatly among the species. Hence, it has been reported that the volume of the air sacs increases as the stretch of the muscles on the body wall changes (3).

There are five air sacs in mallard ducks namely; unpaired cervical sac, unpaired clavicular sac, paired cranial thoracic and caudal thoracic sacs, and paired abdominal sac (15, 16, 18). The cervical sac extend up the neck on each side of the vertebral column as far as the axis. The clavicular sac has diverticula which extend around the heart and between the muscles and bones of the thoracic girdle and shoulder joint (15). The paired cranial thoracic sacs lie ventral to the lungs between the sternal ribs and the heart and liver. Whereas the paired caudal thoracic sacs lie more caudally between the body wall and the abdominal sacs (4). The abdominal sacs have perirenal diverticula which extend between the kidney and pelvis, and femoral diverticula which surround the head of the femur and penetrate between the thigh muscles (15).

Morphology of the air sacs in several avian species has been well documented (11, 14, 17, 19) however, studies on that in mallard ducks, found wide-spread all over the world, are very scarce (1, 13). This observation aimed to investigate the features of the air sacs, and document the differences if there is, and further expanding our knowledge with contribution to the literature.

Material and Methods

This study was carried out on 9 adult mallard ducks (4 female and 5 male) obtained from Ankara province.
Methylmethacrylate (Takilon) was injected to all animals by way of trachea after euthanasia by intramuscular administration of ketamine HCl 60 mg/kg and xylazine 6 mg/kg combination (17). Then, animals were kept in a cold room for two months for polymerization. Later, they were macerated with 3% potassium hydroxide at 40 °C for 48 hours as described by Taşbaş et al (18) and Taylor et al (19). They were rinsed with running tap water and dried at room temperature. Each sac was externally coloured with a glass dye in different colours using a fine pointing brush. The *Nomina Anatomica Avium* (2) was used for the nomenclature.

Results

The air sacs associated with the lungs were revealed by corrosion cast method and status of their diverticula were observed (Fig. 1/-A). No sexual differences associated with air sacs in ducks were noted in this study. The prominent features of each sac were described as follows.

The cervical sac

The cervical sac was bilaterally located lateral to the last two cervical and first two thoracic vertebrae, and medial to the lungs (Fig. 1/-B). It communicated with the lungs via the first medio-ventral bronchii. The sac had three diverticula for associated areas. The vertebral diverticula, *diverticula vertebralia*, passing along the transversal and vertebral canals of the first two thoracic vertebrae that extended up to the first cervical vertebra, were fully developed (Fig. 1/-B1). It also aerated the first two ribs. The intermuscular diverticula, *diverticula intermuscularia*, protruded in a spear like shape between the cervical vertebrae and muscles, measuring approximately 1-2 cm long. The subcutaneous diverticula, *diverticula subcutanea*, were present cranio-dorsal to the clavicular sac.

The cervical sac aerated the first two thoracic and all the cervical vertebrae except the first one. The last five thoracic vertebrae, in contrast, were aerated directly by the lungs.

The clavicular sac

The clavicular sac was formed by the fusion of the bilaterally located diverticula under the trachea and attachment of the wings to the body (Fig. 1/-C). This sac had connection with the lungs through the third medio-ventral bronchii. The sac engulfed by the thoracic girdle, sternum, and heart occupied the entire cranial thoracic apertura.

The clavicular sac possessed six diverticula arranged intra- and extrathoracally. The cardiac diverticula, *diverticula cardiaca*, seen in front of the heart were merged on the median line (Fig. 2/-C5). The sternal diverticula, *diverticula sternalia*, the other intrathoracic diverticula, laid caudo-ventral direction to the former diverticula, aerating the sternum (Fig. 2/-C6).

Extrathoracic diverticula were observed around the cranial thoracic apertura. Among them were the subcapular diverticula, *diverticulum subcapulare*, which displayed leaf-like structures readily seen between the scapula and cervical sac (Figs. 1/-C1 and 2/-C1). Lateral to those the axillary diverticulum, *diverticulum axillare*, was observed beneath the shoulder muscles (Figs. 1/-C2 and 2/-C2). The subpectoral diverticulum, *diverticulum subpectoreale*, extrathoracally located caudal to the first two diverticula, lateral to the first two ribs, and beneath the pectoral muscles (Figs. 1/-C3 and 2/-C3). The last extrathoracic diverticulum was suprahumeral diverticulum, *diverticulum suprahumerale*, which was extended ventral to the axillary diverticulum, encircling the head of the humerus with its triangular shape (Figs. 1/-C4 and 2/-C4). This diverticulum aerating the humerus was the most developed of all.

The cranial thoracic sac

The cranial thoracic sac aerated by the first, second, and fourth medio-ventral bronchii was symmetrically located under the lateral wall of the body. It was rectangular in shape and larger than the caudal thoracic sac (Figs. 1/-D and 2/-D). It was found ventro-lateral to the lungs, medial to the sternal ribs, and lateral to the heart, liver and the caudal portion of the esophagus. This sac gave diverticula for the second to seventh sternal ribs for aeration.

The caudal thoracic sac

As for the cranial thoracic sac, the caudal thoracic sac was symmetrically located caudo-ventral to the lungs, receiving air via the fourth medio-ventral and first and second latero-ventral bronchii (Figs. 1/-E and 2/-E). It was almost two times larger than the cranial sac, having trace of the last four ribs. The caudal portion of the left caudal thoracic sac had relation with the gizzard. The caudal thoracic sac was encircled dorsally by the abdominal sac, and ventrally by the cranial thoracic sac, had no diverticulum.

The abdominal sac

The abdominal sac, occupying most of the coelom, was asymmetrically located as two parts in the abdomen (Figs. 1/-F and 2/-F). It extended from the caudal border of the lungs through the cloacae. This sac had connection with the lungs via the second, third, fourth, and fifth latero-ventral bronchii. Its lateral surface was smooth while the medial surface was irregular in structure because of the viscera. The left abdominal sac was divided into cranial (Fig. 2/-F1) and caudal (Fig. 2/-F2)
portions. The cranial portion aerated the last three ribs and synsacrum and medially possessed a trace of the gizzard whereas the caudal portion was smaller and narrower than the cranial portion. The right abdominal sac was longer than the left one and its body was narrower than the caudal end, comprising traces of the intestines.

Discussion and Conclusion
The most striking finding of this study was that no sex differences were observed among the duck studied. Findings of the study were consistent with those documented in the literature in general (7, 12, 20). However, if individually compared, the air sacs of the mallard duck showed great differences.
The cervical sac with its diverticula was similar to what was reported in previous studies (12, 20). It was clearly demonstrated, in this study, that the second cervical bone, axis, and the first two ribs were aerated by this sac in the mallard duck. This was dissimilar to other species like domestic chickens (5, 9).

Location and number of the diverticula of the clavicular sac was consistent with the literature (7, 12, 20). On the contrary, it was notable that the suprahumeral diverticulum giving air to the humerus was highly developed as compared to the other extrathoracal diverticulum.

The cranial thoracic diverticula which were reported not to aerate any bones and not to possess any diverticula (10), but in this study, it gave diverticula for the second to seventh ribs. Additionally, the caudal thoracic sac was absent in white Pekin duck (13) was present in the mallard duck, having no diverticula for aeration of any bone. With these features, the caudal thoracic sac in the mallard duck was similar to those described in the Nomina Anatomica Avium (2).

Tasbas et al (18) showed that in Denizli cock the cranial thoracic sac was larger than the caudal one, in contrast to our findings.

The left abdominal sac in this study was divided into two portions i.e. cranial and caudal portions. To our knowledge no data similar to this has been previously reported in the literature. The cranial portion aerated the last three ribs and synsacrum. The caudal portion was smaller and narrower, giving no diverticula for any bone.

The right abdominal sac in mallard ducks was longer than the left one, similar to the studies of King (10), King and McLelland (12), and Vollmerhaus and Sinowatz (20) but in contrary with the findings of Tasbas et al (18).

In conclusion, gross morphology of the air sacs in the mallard duck was closely examined and similarities and dissimilarities with the literature were documented.

Acknowledgements

The authors would like to thank Associate Prof Dr Ibrahim DEMİRKAN of Department of Surgery, Faculty of Veterinary Medicine, Kocatepe University, Afyon, Turkey for his valuable discussion and carefully reading the manuscript.

References

Adresse for correspondence

Yrd. Doç. Dr. Aysun Çevik Demirkan
Kocatepe Üniversitesi
Veterniner Fakultesi
Anatomi Anabilim Dalı
03200 – Afyon, Türkiye
E-mail: aysuncevik@yahoo.comT